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ABSTRACT

Ship maintenance is regulated by both the state and the classification society. The scope of maintenance works depends 
on the age of the ship and includes a dock, intermediate and special inspection. The problem is to estimate the reliable 
time of the ship maintenance and the downtime at the shipyard. The purpose of this article is to develop a more accurate 
model to predict a ship’s overall maintenance time. A multiple linear regression model is developed to describe the impact 
of historical data on hull repair, painting time, piping, age, structural and hull plate replacement for ship maintenance. 
In the literature, the least squares method is used to estimate unknown regression coefficients. The original value of the 
article is the use of a genetic algorithm to estimate coefficient values of the multiple linear regression model. Necessary 
analysis and simulations are performed on the data collected for oil and chemical or product tankers. As a result, 
a significant improvement in the adequacy of the presented model was identified.

Keywords: Mean time of dry-docking, average repair time, maintenance duration prediction; maintenance duration estimation; ship 
maintenance; genetic algorithm. 

INTRODUCTION

The goal of the shipyard is to ensure the supply of 
products and services for the period specified in the 
contract, in accordance with quality requirements and 
international standards. Customer satisfaction is monitored 
to optimise yard operations, from maintenance processes to 
ship delivery. Shipowners strive to reduce the maintenance 
period when ships are on low income. On the other hand, 
the yard is trying to shorten the repair period for dry docks 
and quays, to maximise revenues by contracting more 
ships. Maintenance works depend on the requirements 
of classification societies and the possibility of their 
performance by the shipyard.

One of the goals is to pre-define the maintenance work in 
the technical specification in order to limit any additional 
orders that arise during the maintenance, thus keeping 
the costs of the shipyards and vessels within the initially 
estimated budgetary margins. Another goal is to estimate 

the duration of maintenance in the technical specification, 
which depends on previously defined works. Any additional 
orders entail additional costs for both parties and result in 
extending the maintenance period of the dock. The ship yard 
needs additional manpower to cover additional orders for the 
ongoing projects, thus increasing the risk of adversely affecting 
the development of running parallel or sequential projects. 
For the shipowner, additional costs and delayed ship delivery 
time may have a negative impact on the continuation of the 
assumed commercial obligations.

The purpose of this paper is to develop a more accurate model 
to predict a ship’s overall maintenance time. A multiple linear 
regression model is used to describe the effect of hull repair 
data, ship age, painting time, piping, structural and hull plate 
replacement on the time required for ship maintenance. The 
data on maintenance work was collected at Constanta Shipyard 
in Romania. Another objective is to identify the variables that 
have a significant impact on the ship’s maintenance time and 
their inter-relationships. 
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LITERATURE REVIEW

Shipowners carry out preventive maintenance to extend 
the life cycle of ships’ machinery, power, equipment and 
vessels. A lot of effort is put into modelling the technical 
condition of the machines, machine elements and machine 
working conditions. Observation of the dependence of the 
operating parameters of machine elements and environmental 
parameters allows the prediction of the life cycle of the 
machine and planning the technical inspection of the machine 
at the right time. For example, the paper by [1] presented the 
possibility of determining the technical condition of lip seals 
on the basis that the proposed coefficient of correctness of 
the operation has been described. The authors proved the 
hypothesis that the quality of the oil affects the durability 
of lip seals and elaborated a maintenance system that is 
understandable to the crew, which is essential for increasing 
the durability of the ship. Familiarisation with adequate 
procedures can significantly contribute to the successful 
prevention of accidents [2]. When analysing the literature, 
two different opinions were identified.

On the one hand, to ensure the safe operation of a ship, the 
optimal interval of dry-docking inspections (Mean Time To 
Dry-docking) is estimated. Gong et al. [3] developed a condition-
based, decision-making approach for the inspection time. The 
probability distributions of the life-cycle costs include two 
components. The first component is the cost of ship maintenance, 
distinguishing dry-docking and structural renewal and, the 
second, is the cost of failure consequence. It is important to 
establish a cost-effective inspection time that allows the ship to 
stay longer in water, with an acceptable level of safety. The ship 
owner must decide in which sequence and when to carry out 
maintenance works of the ships. The article [4] presents a model 
of real state transitions of the ship main engine with states: 
(1) state of full serviceability, (2) state of partial serviceability, and 
(3) state of unserviceability. Empirical data concerning the ship’s 
main engine are used for calculating limiting probabilities for the 
process. Thus, it is possible to choose between the following two 
decisions: (1) perform a relevant preventive service of the engine 
to restore its state and then perform the commissioned task 
within the time limit determined by the customer or, (2) perform 
the preventive service and start performing the commissioned 
task. Wu et al. [5] developed a component maintenance priority 
measure, which is used to select a component for maintenance. 
This metric can be adapted to decide which ship to select next 
from among simultaneous shipyard access requests, while 
one ship is undergoing maintenance. In general, the date of 
commencement of maintenance works on the ship depends on 
the condition of the ship [3] and the required frequency and 
duration of maintenance.

On the other hand, the duration of the ship repair (Mean 
Time of Dry-docking, Average Repair Time) is estimated, 
because it is in the interest of both shipowners and shipyards to 
make it as short as possible. Ship maintenance adversely affects 
the availability of operations of the ship and the shipyard. 
A ship repair yard must be aware, well in advance, of the total 
workload and resources needed to complete each job. Usually, 

managers use a guide book with the given man-hour totals for 
each trade and the work rate of each trade, when determining 
the timescale and daily loadings for carrying out the repairs [6]. 
The graphs are compiled from historical data by shipyard 
workload planners and used, to assist the forward planning 
of the yard. There is no standard model used by shipyard 
owners in the range of ship maintenance duration estimation. 
Naffisah et al. [7] searched for any patterns in different types of 
maintenance works in order to estimate the repair time. They 
proposed the Artificial Neural Network forecasting with back-
propagation method, to upgrade the accuracy of maintenance 
duration predictions. Unfortunately, they obtained poorly 
accurate predictions due to the lack of a similar data pattern 
in the training data. The model is unable to make accurate 
predictions because there is a dissimilar or unrepresented 
data pattern in the training data. The high level of variance is 
explained by the influence of external factors, such as weather 
conditions and materials or maintenance employee availability. 
Surjandari and Novita [8] used the metod of Data Mining, 
Classification and Regression Trees to estimate the duration 
time of a ship’s dry-docking for maintenance. They were 
searching for a hidden pattern that shows the relationship 
between maintenance work and maintenance duration 
and classified three dry-docking works which influence 
maintenance duration: propeller, washing and plate. They 
achieved four classes of maintenance duration, with a different 
liner model for each class. For example, for the propeller, the 
linear model to estimate time is classified based on the washing 
task. If the washing surface is less than a given threshold, the 
maintenance duration is estimated based on the plate task 
and so on. Unfortunately, the presented model achieved high 
error values. The least squares method for estimating unknown 
regression coefficients and describing the maintenance data 
with a low coefficient of determination was proposed [9]. Also, 
Dev and Sasha [10] used the method of least squares to estimate 
the regression coefficients for the model of a multiple linear 
regression, describing the function of ship data with respect to 
age, deadweight, hull coating, piping, structural steel, and tank 
coating, to estimate a ship repair duration time. The authors 
concluded that the adequacy of the model was low. In other 
words, a significant amount of variation in the response of 
the dependent variable (maintenance duration) is due to high 
differences in the independent variables. Terełko [11] presented 
a control model for the maintenance level of the main marine 
engines, with the use of regression analysis. Factors influencing 
the level of maintenance were: component weight, number 
of joints, component temperature, staff attitude. Regression 
functions were also achieved for the fuel system, cooling 
system, lubrication system, supercharging system, starting 
system, piston and crankshaft system, and cylinder and frame 
units, with very high coefficients of multiple determination 
(0.57-0.97). Bouayed et al. [12] proposed a parametric regression 
model to estimate maintenance costs based on historical data 
from Royal Canadian Navy ships. The cost of maintenance is 
the natural logarithm of the ship’s annual maintenance cost, 
the class of the ship and the sea-going days recorded for the 
ship in the current year. The cost of maintenance depends 
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on physical factors (weight, length), performance factors 
(maximum speed), demand (frequency of use of the system), 
and qualitative factors (system condition).

The literature review showed that only a few articles dealt 
with the problem of estimating the average ship repair time by 
observing the relationship between the data on the duration 
of dry dock works and the actual duration of the repair. This 
paper presents a new approach to estimating the average ship 
repair time for managers, to assist in advanced planning in 
a shipyard.

GOALS AND APPROACHES 

The original value of this paper is the application of a genetic 
algorithm (GA) for estimation of the values of regression 
coefficients in the multiple linear regression model. The aim 
is to develop a method of estimating the average ship repair 
time that achieves the trend function with good compliance 
with historical data, i.e. the function with the highest value 
of multiple determination coefficients and the lowest value of 
standard deviation. 

For the estimation of the average ship repair time problem, 
GA is proposed. GA is a popular approach for solving different 
optimisation problems [13, 14, 15] and is a meta-heuristic 
method that gives a satisfying solution, but not an optimal one, in 
a reasonable amount of time. In the conditions of a competitive 
market, managers do not need the optimal solution, they need it 
to be good enough that fulfil the given constraints and criteria. 
In the paper by [16], GA is compared with the Multi-Objective 
Immune Algorithm (MOIA) and Clonal Selection Algorithm 
(CSA) when investigating the influence of basic schedules on 
the obtainment of stable and robust schedules, in the case of 
disturbance occurrence. The GA turns out to be a better method 
for generating predictive schedules. 

This paper continues the problem of searching for a good 
enough solution for the problem of the average ship repair 
time estimation using GA. The proposed genetic algorithm 
uses mutation and selection mechanisms to explore and exploit 
a solution space; in other words, to search a set of regression 
coefficients. The regression coefficients describe relationships 
between data on maintenance duration time and data on 
maintenance works. The chromosome encodes a solution that 
is a set of values for the regression coefficients. The weighted 
function of the standard deviation and the multiple coefficient 
of determination assess the affinity of the chromosome for 
environmental conditions. Necessary analysis and simulations 
are performed on the data collected for oil and chemical or 
product tankers.

The paper is organised as follows: the next section presents 
a model for estimating the duration of a repair. Regression 
coefficients estimation, using the Solver appendix in Microsoft 
Office Excel, is presented in Section 3. The genetic algorithm for 
estimation of the regression coefficients is described in Section 
4. Section 5 contains the necessary analyses and experimental 
test results related to the research on the application of the 
GA. The paper concludes with a brief summary of the results 
(Section 6).

THE MODEL OF REPAIR 
TIME ESTIMATION

The problem of estimating the duration of the maintenance 
takes into account the following planned works: hull repair 
(Hr), painting (Pa), structure renovation (Sr), panel renovation 
(Pl), pipe repair (Pr) in resources: dock (docking duration) and 
quayside (quaytime). In addition to the type of repair tasks, 
the age of the ship (As) also affects maintenance duration (RT) 
(both docking and quayside times). Data were collected from 
the Constanta Shipyard in Romania.

A shipyard usually carries out simultaneous construction 
and/or repair works for several ongoing projects. Therefore, 
it optimized human and technical resources in the scope of 
implemented processes and loading activities. When deciding 
to apply for a project, a shipyard knows its production capacity 
very well, which consists of human resources and technical 
equipment, which is approximately constant as a numerical 
value. In emergency situations, only the yard mobilses workers 
and equipment from one project to another, as doing so would 
disrupt the yard’s flow of activities and generate unacceptable 
delays for the beneficiaries.

The shipyard is interested in estimating the docking time 
of ships for repair works. in order to plan the loading of the 
pine/floating docks. The authors of this study assume that this 
estimate depends on the content of the technical specification 
of the works received from the beneficiary/owner of the 
ship, and not on the human and technical capabilities of the 
shipyard. The construction of the database from the Constana 
Shipyard’s portfolio of works, and the simulation presented 
in this paper, was carried out on the basis of the hypothesis 
that the yard has the optimal (considered to be a constant) 
number of employees and equipment for repair works. The 
variable that the shipyard takes into account, in the analyses 
carried out in order to assess the possibility of repair works, 
is the content of the technical specification for Repair Works 
received by the shipyard (expressed in square metres, cubic 
metres, running metres, tonnes, etc.).

To summarise, knowing its human resources and technical 
equipment, and considering them to be constant for a given 
project, the yard is interested in estimating the time of docking 
and stopping the ship for repair works, depending on the 
content of the technical specification for Repair Works (this 
content is a variable of interest to the shipyard). The authors 
try to answer this question in the body of the paper.

In order to establish the relationship between modes and 
repair time, historical data is collected both for dependent 
(repair duration) and independent variables (ship repair works, 
age). Multiple linear regression analysis is adopted from [10], 
to identify the mathematical relationship between modes and 
repair duration.

The multiple linear regression model is based on the 
equation:

b0 + b1 · Hri + b2 · Pai + b3 · Sri + b4 · Pli + 

b5 · Pri + b6 · Asi = RTi        (1)
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where:
b0, b1,... ,bk – regression coefficients, j  [1,2,...,k], 
k – size of independent variables, k = 7,
Hri , Pai, Sri, Pli, Pri, Asi, RTi – variables, i  [1,2,...,n], 
n – sample size, n = 108 for all types of ships, n = 9 for each 
type separately, 
Hri – hull repairing [m2], 
Pai – painting [m2], 
Sri – structure renovation [kg], 
Pli – plates renovation [kg], 
Pri – pipes repairing [m], 
Asi – age of the ship [years], 
RTi – maintenance time [days].

By applying the least squares method [10] the formulas 
are achieved:

n · b0 + b1  Hri + b2  Pai + b3  Sri + b4  Pli + 

b5  Pri + b6  Asi =  RTi      (2)

b0  Hri + b1  Hri
2 + b2  Hri · Pai +

 b3  Hri · Sri + b4  Hri · Pli + b5  Hri · Pri +

 b6  Hri · Asi=  Hri · RTi      (3)

b0  Pai + b1  Pai · Hri + b2  Pai
2 +

 b3  Pai · Sri + b4  Pai · Pli + b5  Pai · Pri +

 b6  Pai · Asi=  Pai · RTi      (4)

b0  Sri + b1  Sri · Hri + b2  Sri · Pai +

 b3  Sri
2 + b4  Sri · Pli + b5  Sri· Pri +

 b6  Sri · Asi=  Sri · RTi      (5)

b0  Pli + b1  Pli · Hri + b2  Pli · Pai +

 b3  Pli · Sri + b4  Pli
2 + b5  Pli · Pri +

 b6  Pli · Asi=  Pli · RTi      (6)

b0  Pri + b1  Pri · Hri + b2  Pri · Pai +

 b3  Pri · Sri + b4  Pri · Pli + b5  Pri
2 +

 b6  Pri · Asi =  Pri · RTi      (7)

b0  Asi + b1  Asi · Hri + b2  Asi · Pai +

 b3  Asi · Sri + b4  Asi · Pli + b5  Asi · Pri +

 b6  Asi
2 =  Asi · RTi      (8)

The historical data on Hri, Pai, Sri, Pli, Pri, Asi, RTi is applied 
in the above equations, simultaneously. Regression coefficients  
b0 + b1, …, bk are estimated using the Genetic Algorithm 
presented in the next section. The presented model assumes 
the selection of variables that have the greatest impact on the 
average repair time. The adequacy of the presented model is 
calculated with:
1) standard deviation 

 i  [1, ... ,n]   (9)

2) coefficient of multiple determination 

, R2  [0,1]      (10)

where: 
yi – actual value of variable Y in period i, 
ŷi – theoretical value of the Y variable resulting from the model 
in period i,
ȳi – mean value of the variable Y in the time series of length n, 
k – number of variables explaining the model, 
k + 1 – number of model parameters.

The multiple determination coefficient measures the 
compliance of the trend function with historical data on 
Hri, Pai, Sri, Pli, Pri, Asi, RTi. To estimate the average docking 
duration, the function with the highest value of the multiple 
determination coefficient (10) and the lowest value of standard 
deviation (9) is assumed.

REGRESSION COEFFICIENTS ESTIMATION 
USING THE SOLVER APPENDIX 
OF MICROSOFT OFFICE EXCEL

The presented model was veriffied with the Solver Appendix 
in Microsoft Office Excel. The following hypotheses were tested:

Hri, Pai, Sri, Pli, Pri, 
Asi, taking into account data collected for all types of ships,

Hri, Pai, Sri, Pli, 
Pri, Asi, taking into account data collected for Crude Oil 
Tankers and for Chemical/Products Tankers.

into account data collected for Crude Oil Tankers.
Taking into account the historical observations of Hri, Pai, 

Sri, Pli, Pri, and Asi, for n = 108 ships, the Solver Appendix 
estimates values of regression coefficient b0 + b1, …, bk. The 
achieved regression equation is:
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108 · 15.26804 – 0.00026  Hri + 0.000076557  Pai +

 0.000189  Sri – 0.000036  Pli – 0.00303  Pri + 

0.000178  Asi =   RTi       (11)

Although the multiple determination coefficient R2 equals 
0.42 and the standard deviation is low (s = 2.78), the resulting 
equation cannot be accepted. The high value of parameter  
b0(15.26804) means that the value of repair time is low, related 
with variables: Hri, Pai, Sri, Pli, Pri, and Asi. The average ship 
repair time depends on the pipeline repair (Pri) to a large extent, 
since the value of b5 is the highest (0.00303) compared to the 
values of b1, b1, b1, b2, b3, b4, and b6 (11).

Taking into account the historical observations of Hri, 
Pai, Sri, Pli, Pri, and Asi for the Crude Oil Tanker, the Solver 
Appendix estimates values of regression coefficient b0, b1, …, b6. 
The achieved regression equation is:

9 · 14.99894 – 0.00123  Hri + 0.00096496  Pai –

 0.0000578  Sri – 0.000071  Pli – 0.000386  Pri + 

0.046164  Asi =   RTi       (12)

The achieved equation is more adequate for Crude 
Oil Tankers than for all ships. The coefficient of multiple 
determination is good, R2 = 0.79, but the standard deviation 
is high, s = 9.97. The average repair time equals 15.33 days but 
the time may vary by 10 days. The high value of parameter  
means that the repair duration is low, related with variables:  
Hri, Pai, Sri, Pli, Pri, and Asi. The average repair time depends 
on the age of the ship (As), to the greatest extent.

Taking into account the historical observations of Hri, Pai, 
Sri, Pli, Pri, and Asi for the one type of Chemical/Products 
Tanker, the Solver Appendix estimates values of regression 
coefficient b0, b1, …, b6. The achieved regression equation is:

9 · 19.42467 – 0.00048  Hri + 0.000053258  Pai +

 0.0000903  Sri + 0.0063044  Pli – 0.00006  Pri – 

0.15224  Asi =   RTi       (13)

The achieved equation is more adequate for Chemical/
Products Tankers. The coefficient of multiple determinations is 
R2 = 0.67 and the standard deviation is 3.98. The average repair 
time is 19.55 days, but can vary by 4 days. The average repair 
time depends on the age of the ship (As) to the greatest extent.

Considering only the historical observations regarding 
Hri and Pai, for 9 Crude Oil Tankers, the Solver Appendix 
estimates values of regression coefficient b0, b1, b2. The achieved 
regression equation is:

9 · 0.000701 + 0.000541  Hri +

 0.0000353  Pai =   RTi       (14)

The coefficient of multiple determination is very high, 
R2 = 0.99, and the standard deviation is very low, s = 0.63, 
thus the achieved equation fits the historical data. The average 
ship repair time depends on the hull repair time (Hr) to the 
greatest extent.

REGRESSION COEFFICIENT ESTIMATION 
USING THE GENETIC ALGORITHM

The regression coefficient values are also searched using the 
Genetic Algorithm, for the problem of estimating the average 
repair time for all types of ships. The following hypothesis is 
tested:

Hri, Pai, Sri, 
Pli, Pri, and Asi, taking into account data collected for all 
types of ships.

The GA consists of the following modules: data interface, 
individual encoding, genetic optimisation and selection, and 
individual decoding.

In the GA, an individual represents a vector of regression 
coefficient values for the problem of estimation of the mean 
repair time of a ship, while a fitness function is a measure used 
to assess the adequacy of the presented model in relation to 
historical data. The fitness function of an individual (15) is the 
weighted function of the coefficient of multiple determination 
(9) and standard deviations (10):

    (15)

where: 
s(ρ*

η) – the maximum standard deviation achieved by 
chromosome ρ*

η in iteration 
R(ρ*

η)2 – the maximum coefficient of multiple determination 
achieved by chromosome ρ*

η. 
The objective is to achieve the vector of regression coefficients 
with minimal value (15).

The pseudo code of the GA is presented in Fig. 1. The steps 
of the algorithm are explained in the following subsections.

ENCODING AND DECODING

The complexity of the problem of estimating the average 
repair time for ships requires sophisticated coding practice 
for an individual, including regression coefficient values and 
a positive or negative sign before a coefficient. Each individual ρη 

Fig. 1. Pseudo code of the GA algorithm
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is represented by seven sub-chromosomes, one sub-chromosome 
for each regression coefficient. Each sub-chromosome is created 
by six genes, randomly selected from the DNA Library (Table 1). 
Each individual chromosome represents a binary gene for a sign, 
a floating point gene for the number of zeros after the decimal 
point, and an integer gene for the coefficient before and after 
the decimal point. By scanning the chromosome code from left 
to right, estimated values of regression coefficients b0, b1, …, b6 
are entered into Eq (11).

In order to transform an individual into a workable multiple 
linear regression equation, each sub-chromosome is decoded 
into a regression coefficient. Consider the first row of the matrix  
ρj, η which codes regression coefficient b0 (Table 2). Starting 
from the left to right, the first gene codes sign “+”, second gene 
codes a multiplier for the value before the decimal point, the 
third gene codes the value of the coefficient before the decimal 
point. The following gene (C) codes a multiplier for the value 
after the decimal point, gene E codes a number of zeros after 
the decimal point, and the last gene codes the value after zeros 
for the coefficient. 

Decoding each sub-chromosome involves solving the 
following procedure:

ρj, η = (V) · (D · J + (C · (E · F)))      (16)

Consider the first sub-chromosome, which codes value for b0,

ρj, η = (V) · (D · J + (C · (E · F))) = 

+1 · (1 · 15 +(1 · (0.001 · 289)))

value 15.289 is substituted instead of b0 into Eq. (2).

After decoding all sub-chromosomes, values for the 
parameters b1, b1, b1, b2, b3, b4, b5 and b6 in Eq. (11) are achieved.

INITIALISATION

Genes, stored in the DNA Library, represent signs (+ or –), yes 
or no decisions for a multiplier, a number of zero positions and 
values in the problem of the ship maintenance time estimation. 
An individual’s sub-chromosome consists of the V, D, J, C, E, 
and F genes. A set of randomly generated regression coefficients 
(sub-chromosomes) represents an individual (chromosome) 
in the initial population. 

CHROMOSOME DIFFERENTIATION  
AND SELECTION

The parent pool is created by copying the initial population. 
The two point mutation procedure is proposed in order to 
construct new regression coefficients in the chromosome 
differentiation process. The intensity of the effect of the mutation 
procedure is controlled by defining a series of subchromosomes 
and genes that are subject to the mutation procedure.

The two-point mutation procedure begins by selecting two 
subchromosomes from V, D, J, C, E, and F and one gene for 
each subchromosome. Selected genes are removed from the 
parent’s chromosome. Offspring are produced by copying the 
rest of the genes into their chromosome positions. As a result, 
the genes required to complete offspring are selected randomly 
from the DNA library.

Let us assume that sub-chromosomes b0 and b1 undergo 
the two-point mutation procedure. Two genes were selected: D 
and F. The selected genes were removed from the chromosome 
of the parent. New genes D and F were copied from the DNA 
Library in the corresponding positions of the offspring’s 
chromosome, as presented in Fig. 2. 

Fig. 2. The chromosome of the offspring generation with random selection of two genes, D and F

Tab. 1. The DNA Library for each sub-chromosome

V = [–1,1] ←  random generation of a gene for a sign

D = [0,1] ←  random gene generation for yes or no 
decisions for integer values

J = [1, … ,20] ←  random generation of a gene for 
a coefficient value before the decimal point

C = [0,1] ←  random generation of a gene for yes or no 
decisions for fractional values

E = [0.1, 0.01, 0.001, 
0.0001, 0.00001, 
0.000001, 0.0000001
E = [[0.1, 0.01, 0.001, 
0.0001, 0.00001, 
0.000001, 0.0000001]]

←  random generation of a gene for a number 
of zeros after the decimal point

F = [1, … ,999] ←  random generation of a gene for 
a coefficient value after zeros

Tab. 2. An individual (chromosome) randomly generated from the DNA Library

ρj,η V D J C E F

b0 1 1 15 1 0.001 268

b1 0 0 11 1 0.00001 26

b2 1 0 7 1 0.0000001 765

b3 1 0 9 1 0.00001 189

b4 0 1 3 1 0.000001 36

b5 0 0 2 0.00001 303

b6 1 0 1 1 0.000001 178
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The decoding procedure is then applied and the multiple 
regression equation for each person is calculated. In the elite 
selection, the best individual does not change from a pair: 
parent and offspring. 

After the selection, the parent undergoes the procedure of 
single point mutation. In a single point mutation, the F gene 
from a randomly selected sub-chromosome is replaced with 
a random gene from a DNA library. Due to the use of the single 
point mutation, the emphasis on genetic material loss is low. 
The elite choice is also repeated. The best individuals remain 
unchanged and will survive to the next generation. 

TERMINAL CONDITION

The execution of multiple iterations is a  termination 
condition. The best solution (optimal or close to optimal) is 
in the last generation.

COMPUTER SIMULATION

In this section, the problem of estimating ship maintenance 
time is examined using a genetic algorithm written in Borland 
C++. Historical data on both dependent (repair time) and 
independent variables (type, age of a ship) to establish the 
relationship between modes and repair time was used. 
A multiple linear regression analysis is applied in order to 
identify the mathematical relationship between modes and 
repair time (1-8). The relationship between both dependent and 
independent variables is described by the vector of regression 
coefficients. The fitness function measures the adequacy of the 
presented model to historical data.

Computer experiments are run for alternative values of key 
parameters, such as the size of the initial population (chn), 
number of iterations (in) and number of mutation points (mn). 
The values of the parameters are varied including the initial 
population {100, 150}, number of iterations {50} and number 
of mutation points {1, 2}. Only a small number of instances 
are examined from the set of parameter values to evaluate 
the GA, with the objective of increasing the coefficient of 
multiple determinations. A small number of experiments 
indicate the need to change the coding procedures presented 
in this article.

The general function of the GA is maintained, that is, the 
average quality of population improves from generation to 
generation, as shown in Fig. 3, especially for experiments 
{chn = 100, mn = 1, in = 50} and {chn = 100, mn = 2, in = 50}. 

Two computer simulations (cs = 2) are performed for the 
input data sets: {chn = 100, mn = 1, in = 50} and {chn = 100, 
mn = 2, and n = 50}. Comparing the mean fitness function 
obtained for the simulations (Fig. 3, red and green lines for the 
first data set, grey and blue lines for the second data set), the 
following conclusion can be drawn: each run of the computer 
simulation increases the chances of achieving better solutions. 
The aim of the study is not to fine-tune the parameters of the 
genetic algorithm, therefore only one computer simulation is 
run for each data set for further research.

Table 3 presents the best multiple determination coefficients 
obtained for the regression coefficients (b0, b1,..., b6) in the 
simulation described by the triple: chn, in and mn. The values 
of the multiple determination coefficients should be in the 
range [0, 1]. 

The phenomenon of high values of the multiple determination 
coefficients can be explained by the achieved values of the 

Fig. 3. The average fitness function obtained in iteration 1, 2, 3, ..., 50 for the simulation described by: chn={100,150}, in=50, mn={1,2} and sn={1,2}

Tab. 3. The best multiple determination coefficient obtained for regression coefficients (b0, b1...,b6) in the simulation described by: 
chn={100,150}, in=50, mn={1,2} and sn={1,2}

chn mn in sn R(ρη)2 b0 b1 b2 b3 b4 b5 b6

100 2 50 1 97.6425 -0.9251 0.000986 0.001069 0.001127 0.000274 0.0835 4.0258

100 1 50 1 170.115 -0.99263 0.000784 0.00289 9.2e-05 7.84e-05 0.0305 0.00981

100 1 50 2 223.799 1.0003 8.16e-05 0.000172 0.00255 0.000193 3.5e-05 -7.999

150 1 50 1 196.203 -0.999127 0.000448 0.0024 0.000695 0.000966 0.01064 0.0902

100 2 50 2 134.126 -0.9103 0.000964 0.00258 0.00081 0.000559 0.00615 0.0874

150 2 50 1 153.13 -0.999984 0.00066 0.000551 0.000277 9.64e-05 0.000595 9.00015
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parameters {b0...b6}, which are randomly selected and far from 
the solution achieved by the Solver Appendix. In particular, 
parameter b0 should reach values close to 15 (11), while the 
values achieved by GA are in the range [-0.9103, 1.003].

Based on the observed data for the regressin parameters, 
the following constrains are made for parameter b0: the value 
should be positive and within the range [14, 20] for the initial 
population. 

After applying the knowledge of b0 values, a small number of 
experiments are repeated. Again, computer simulation (cs = 1) 
is run for the values of the key parameters: the initial population 
{100, 150}, the number of iterations {50} and the number of 
mutation points {1, 2, 3, 4}. The results are presented in Fig. 4.

Now, the values of the multiple determination coefficients 
are in the range [0, 1] (except the second result) (Table 4). This 
means that the coding and differentiating procedures have 
been designed correctly. Parameter b0 reaches values in the 
range [0.0482, 0.0756] (Table 4). Due to this phenomenon, 
parameter b0 does not dominate the multiple linear regression 
equation. Unlike the Solver Appendix, the GA predictions are 
more reliable. 

The coefficient of multiple determination is very good, 
R2 = 0.88, thus the achieved equation fits the historical data. 
The average time of repair for a ship depends on the pipeline 
repairing (Pr) [m] to the greatest extent. The regression 
coefficients b0, b1,..., bk are presented in Table 4. The achieved 
regression equation is:

108 · 0.756 + 0.00035  Hri + 0.000393  Pai + 

 0.000207  Sri + 0.000271  Pli + 0.01079  Pri + 

0.00816  Asi =   RTi       (17)

RESULTS AND DISCUSSION

In order to increase the value of the presented method for 
managers, further simulations are run with an emphasis on 
obtaining an accurate forecast. In the steps of the algorithms 
related to the selection, the possibility of replacing the existing 
chromosome (solution) with a new one is taken into account, 
provided that the standard deviation of the obtained forecasts 
is smaller (9). Results presented in the previous section were 
achieved using the coefficient of multiple determination (10) 
for selection pressure.

Computer simulation is run for the values of the key 
parameters: the initial population {100, 50}, the number of 
iterations {50} and the number of mutation points {1, 2, 3, 4}; 
the results are presented in Table 5. The best solution is achieved 
for the multiple linear regression equation:

12.0028 + 1.1e – 06 · Hri + 2.8e – 05 · Pai + 

5.97e – 05 · Sri + 1.15e – 05 · Pli + 

0,00581 · Pri + 0,000305 · Asi = RTi  (18)

Managers of Constanta Shipyard may substitute new data 
on planned works: hull repair (Hr), painting (Pa), structure 
renovation (Sr), panel renovation (Pl), pipe repair (Pr); on 
resources: dock (docking duration) and quayside (quaytime) 
and the age of the ship (As) into the equation (18), in order to 
estimate the future duration of maintenance.

Fig. 4. The average fitness function obtained in iteration 1, 2, 3, ..., 50 for the simulation described by the triple: chn, mn et al. after modifying the range for parameter b0

Tab. 4. The best multiple determination coefficient obtained for regression coefficients (b0, b1...,b6 ) in the simulation described by the triple: chn, mn  
et al. after modifying the range for parameter b0

mn R(ρη)2 b0 b1 b2 b3 b4 b5 b6

1 0.4247 0.0673 1.02e-05 9.67e-05 3.81e-05 3.73e-05 0.00846 0.00054

2 1.01924 0.0482 6.27e-05 0.000189 0.000369 3.89e-05 0.0068 0.000937

3 0.88 0.0756 1.35e-05 1.39e-05 0.000207 0.000271 0.01079 0.00816

4 0.6113 0.0619 0.000276 7.64e-05 2.52e-05 8.2e-06 4.74e-05 4e-06
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The multiple determination coefficient R2 equals 0.42 
and the standard deviation s equals 2.78, for the regression 
coefficient values achieved using EXCEL (11). The solution with 
similar qualities was achieved using the GA with the multiple 
determination coefficient R2 equal to 0.41 and the standard 
deviation s equal to 2.79 (first row, Table 5). An interesting 
solution was achieved using the GA, with a lower value of the 
standard deviation, s = 2.64, and a lower value of the multiple 
determination coefficient, R2 = 0.23(18). The average time of 
repair for a ship depends on the pipeline repairing (Pr) and 
the age of the ship (As), to a large extent (18).

The maintenance times estimated for the regression 
coefficient values described in the fourth row in Table 5, 
using the GA and EXCEL for the regression coefficient values 
described in Eq. (11) and historical data on ships’ repair times, 
are presented in Fig. 5. 

By analysing the achieved results (Fig. 5) the following 
conclusion can be given:
–  the adjustment of the regression line to the empirical data is 

small in both cases (it is of the order of 5%). The GA achieved 
the slightly better adjustment of the regression line to the 
empirical data (R2 = 0.055) compared to EXCEL (R2 = 0.052).

–  it is clear that, in both graphs, the estimated repair time is 
very sensitive to the increase in ‘historical’ time: a relatively 
small increase in ‘historical’ time gives a more pronounced 
increase in the estimated time.

–  as for the difference in the dispersion of points in the case, 
then, in the case of GA, all variability is in the range (12, 16); 
in the case of using analytical calculations in Excel, a small 

percentage ‘protrudes’ beyond this range. This is probably 
related to the fact that the analytical form of the forecast 
in regression gives an average estimation of an unknown 
value (regression estimation is the so-called mean estimate). 
Thus, the scattering of ‘historical’ values (some slight outlier 
values) can affect predictions using the regression function. 
Further investigations are needed in order to increase the 

adequacy of the regression line to the empirical data. 

EFFECT OF THE NUMBER OF ITERATIONS  
ON THE FITNESS FUNCTION

The following hypothesis is set: the number of iterations 
affects the quality of the obtained solutions (15).

First, two computer simulations {1, 2} are performed for the 
values of the key algorithm parameters: the initial population 
{100}, the number of iterations {100} and the number of 
mutation points {3, 4}. The mean population affinity function 
(obtained for each of the iterations) is presented in Fig. 6. 

Observing the mean of the population affinity function 
obtained for the variable values of the mutation parameter {1, 2, 
3, 4}, the constant size of the initial population = 50 (Fig. 4), 
the results obtained for the variable value of the mutation 
parameter {3, 4} and the size of the initial population = 100 
(Fig. 6), the number of mutation points = 3 is selected for 
further computer simulations.

Further computer simulations are run for the values of 
the key parameters: size of the initial population {100}, the 
number of iterations {100, 200, 300, 400, 500, 600, 700} and the 

Tab. 5. The best standard deviation obtained for regression coefficients (b0, b1...,b6) in the simulation described by the triple: chn={50, 100), in=50, mn={1, 2, 3, 4}

Fig. 5. Variation of estimated ship repair time (days) depending on historical repair time. 
Data dispersion and interpolation line for estimated repair time achieved using a) GA; b) EXCEL

a) b)

chn mn R(ρη)2 s(ρη) F(ρη) b0 b1 b2 b3 b4 b5 b6

100 1 0.411959 2.79 0.50 9.00005 3.17e- 05 6.64e- 05 0.000 224 7.71e- 05 0.00856 0.010 57

50 1 2.96448 5.76 0.50089 2.99923 3.79e- 05 0.000 426 0.000 107 2.72e- 05 0.00611 0.001 01

50 2 0.135776 2.767 0.500496 13.0006 3.35e- 05 3.5e- 06 4.1e- 05 3.53e- 05 6.91e- 05 0.003 47

50 3 0.231784 2.64139 0.503403 12.0028 1.1e- 06 2.8e- 05 5.97e- 05 1.15e- 05 0.00581 0.000 305

50 4 1.61047 3.6682 0.501773 12.0006 1.64e- 05 9.18e- 05 0.000 216 3.35e- 05 0.0029 0.000 486
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We can analyse the solution achieved for the key parameters: 
the initial population {100}, the number of iterations {500} and 
the number of mutation points {3} (Fig. 8). The solution (19) was 
achieved for the value of the standard deviation, s = 2.42 and 
the value of the multiple determination coefficient, R2 = 0.19. 

12.00211 + 2.37e – 05 · Hri + 1.05e – 05 · Pai + 

 0.000269 · Sri + 6.1e – 06 · Pli + 0,00451 · Pri + 

8.9e – 0,5 · Asi = RTi       (19)

The average time of repair for a ship depends on the 
pipeline repairing (Pr) and the structure renovation (Sr) to 
a large extent (19). 

number of mutation points {3}. The mean population affinity 
function (obtained for each of the iterations) for each computer 
simulation is presented in Fig. 7. By analysing the achieved 
results, the following conclusions can be given:
–  the average affinity function of the population improves up 

to the number of iterations around 100;
–  the average affinity function of the population depends on 

the maximal standard deviation and the maximal coefficient 
of multiple determination achieved in a population (15).
The effect of the number of iterations on the standard 

deviation value and the multiple determination coefficient 
value is presented in Fig. 8a and 8b, respectively. The standard 
deviation value improves with the number of iterations, from 
100 to 500 (Fig. 8a). The multiple determination coefficient value 
improves with the number of iterations from 100 to 400 (Fig. 8b).

Fig. 8. Effect of the number of GA iterations on a) the standard deviation; b) the coefficient of multiple determination
a) b)

Fig. 6. The average fitness function obtained in iterations for the simulation described by: chn=100, in=100, mn={3,4} and sn={1,2}

Fig .7. The average affinity function obtained by iteration for the simulation described by the triple: chn=100, in={100, 200, 300, 400, 500, 600, 700} and mn=3
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The variation of maintenance times estimated using the GA 
for the regression coefficient values described in equation (19) 
(depending on historical repair times) is presented in Fig. 9. 

By analysing the achieved results, the following conclusion 
can be given:
–  the adjustment of the regression line to the empirical data 

is better (it is of the order of 19%) compared to the solution 
achieved using EXCEL (it is of the order of 5%) (11). 

CONCLUSIONS

The paper presented the problem of reliable estimation 
of the duration of repair works on a ship during docking in 
a shipyard. Two computer programs were used for the problem: 
Microsoft Office Excel and the original genetic algorithm. The 
simulations performed, proved that the parameters achieved by 
the GA for multiple linear regression are more adequate. The 
parameters achieved by GA better described the relationship 
between dependent historical (repair time) and independent 
(ship type, age) data. The presented approach of the estimation 
of the maintenance duration is very promissing. The results 
significantly improved the adequacy of the presented model. 

GA modifications will be the subject of future work to 
find an optimal solution. GAs are effective techniques for 
searching a solution space. However, chromosome diversity 
often decreases before the optimal solution is reached. This 
phenomenon is called premature algorithm convergence. 
Achieving better solutions in the previous population means 
that their clones are placed in the next population more 
frequently. They also tend to match with individuals with 
similar genes. These phenomena result in the loss of a diversity 
of solutions [17, 18]. The way in which old individuals are 
replaced with new ones and a high selection pressure cause 
the algorithm to converge prematurely, therefore, many 
forms of hybridisation with local search algorithms have 
been proposed to improve the local search [19, 20]. For the 
problem of estimating the mean time of ship repair, further 
research is needed on various forms of hybridisation of the 
genetic algorithm.

REFERENCES

1. P. Bzura. ‘Diagnostic model of crankshaft seals’. Polish 
Maritime Research. 2019, Vol. 26, Issue: 3, 39-46.

2. A. Krystosik-Gromadzinska, W. Zenczak. ‘Improvements to 
a fire safety management system’. Polish Maritime Research. 
2019, Vol. 26, Issue 4, 117-123.

3. Ch. Gong, D. M. Frangpol, M. Cheng. ‘Risk-based life-cycle 
optimal dry-docking inspection of corroding ship hull 
tankers’. Engineering Structures. 2019, 195, 559-567.

4. J. Girtler. ‘Limiting distribution of the three-state semi-
markov model of technical state transitions of ship power 
plant machines and its applicability in operational decision-
making’. Polish Maritime Research. 2020, Vol. 27, Issue:  2, 
136-144.

5. S. Wu, Y. Chen, Q. Wu, Z. Wang. ‘Linking component 
importance to optimisation of preventive maintenance 
policy’. Reliability Engineering and System Safety. 2016, 
146, 26-32. 

6. D. Butler. ‘A Guide to Ship Repair Estimates in Man-hours’. 
2012, DOI: 10710.1016/B978-0-08-098262-5.00008-18.

7. S. Muthia, Naffisah, I. Surjandari, A. Rachman, R.W.H. 
Palupi, ‘Estimation of Dry Docking Maintenance Duration 
using Artificial Neural Network’. Int Journal of Computing, 
Communications & Instrumentation Engg. 2014, Vol. 1, 
Issue 1, 2349-1477.

8. I. Surjandari, R. Novita. ‘Estimation Model of Dry Docking 
Duration Using Data Mining’. World Academy of Science, 
Engineering and Technology. 2013, Vol. 7.

9. E. Manea, M-G. Manea, ‘The Influence of the Deadweight 
in the Projection of the Duration of the Maritime Ships 
Mentenancy Works’, Advanced Engineering Forum 2019, 
34, 292-299.

10. K. A. Dev, M. Saha. ‘Modelling and Analysis of Ship 
Repairing Time’. Journal of Ship Production and Design. 
2015, Vol. 31, No. 1, 1-8.

11. W. Tarełko.’Control model of maintainability level’. Reliability 
Engineering and System Safety. 1995, 47, 85-91.

12. Z. Bouayed, Ch.E. Penney, A. Sokri, T. Yazeck, ‘Estimating 
Maintenance Costs for Royal Canadian Navy Ships’, Scientific 
Report DRDC-RDDC-2017-R147.

13. J.E.C. Arroyo, V. A. Armentano. ‘Genetic local search for 
multi-objective flowshop scheduling problems’. European 
journal of operational research. 2005, 167, 717-738.

Fig. 9. Variation of estimated ship repair time (days) depending on historical 
repair time. Data dispersion and interpolation line for estimated repair 

time achieved using GA for the simulation described by the triple: 
chn=100, in= 500 and mn=3



POLISH MARITIME RESEARCH, No 3/2021 99

14. X. Cai, K. N. Li. ‘A genetic algorithm for scheduling staff 
of mixed skills under multi-criteria’. European Journal of 
Operational Research. 2000, 125, 359-369.

15. G. Cavory, R. Dupas, G. Goncalves. ‘A genetic approach to 
solving the problem of cyclic job shop scheduling with linear 
constraints’. European Journal of Operational Research. 2005, 
161, 73-85.

16. I. Paprocka, C. Grabowik, W.M. Kempa, D. Krenczyk, K. 
Kalinowski. ‘The influence of algorithms for basic-schedule 
generation on the performance of predictive and reactive 
schedules’. Conf. Series: Materials Science and Engineering. 
2018, 400, 1757-8981, DOI:10.1088/1757-899X/400/2/022042.

17. S. Bertel, J.-C. Billaut. ‘A genetic algorithm for an industrial 
multiprocessor flow shop scheduling problem with 
recirculation’. European Journal of Operational Research. 
2004, 159, 651-662.

18. [18] M.E. Kurz, R.G. Askin. ‘Scheduling flexible flow lines 
with sequence-dependent setup times’. European Journal of 
Operational Research. 2004, 159, 66-82.

19. R. Cheng, M. Gen, Y. Tsujimura. ‘A tutorial survey of job-
shop scheduling problems using genetic algorithms, part 
II: hybrid genetic search strategies’, Computers & Industrial 
Engineering. 1999, 36, 343-346.

20. J. F. Goncalves, J. J. de M. Mendes, M. G. C. Resende. 
‘A hybrid genetic algorithm for the job shop scheduling 
problem’. European Journal of Operational Research. 2005, 
167, 77-95.

CONTACT WITH THE AUTHORS

Remus Zagan
e-mail: zagan.remus@cmu-edu.eu
Constanta Maritime University

Faculty of Navigation and Naval Transport
104 Mircea cel Batran Street, 900663 Constanta

Romania

Iwona Paprocka
e-mail: iwona.paprocka@polsl.pl

Silesian University of Technology
Faculty of Mechanical Engineering

Konarskiego 18A str., 44-100 Gliwice
Poland


