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ABSTRACT

The design of lifting blade shapes is a key engineering application, especially in domains such as those of marine 
propellers, hydrofoils, and tidal energy converters. In particular, the excitation frequency must be different from that 
of the structure to avoid resonance. The natural frequency in the cases where the fluid–structure interaction (FSI) is  
considerably different if considering the coupling added mass (AM) of the water. In this study, vibration experiments 
were performed using a real propeller in air and water. The modal parameters, natural frequencies, and mode shapes 
were determined. Validations were performed using 3D solid and acoustic elements in a direct coupling finite element 
format. The modal results and AM ratios were in agreement with the experimental results. Convenient application and 
high efficiency are basic requirements for an engineering application. Therefore, an empirical formula was established 
for the first-order FSI natural frequency to enable rapid estimation, thereby satisfying this requirement. 
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INTRODUCTION

As a key component of ship propulsion systems, the 
propeller represents a valuable technological advancement 
to supply the propulsion power. When a propeller rotates, it 
acts as a reactive thruster and pushes a mass of fluid astern. 
Several key technical aspects of propellers have been described 
by Carlton [1], pertaining to energy-saving, propulsion, 
centrifugal force and hydrodynamic force, cavitation, and 
noise and vibrations, among others. Recently, Król [2] 
reviewed the topics of rotor–stator propulsor system design 
and operation, described the current state of the art and 
summarised various researchers’ results from installing 
energy-saving devices. The analysis has proved very useful, 
giving the expected trend of a higher efficiency gain due 

to the ESD installation for a higher propeller loading. Our 
present work is focused on the fluid–structure interaction 
(FSI) vibrations of an actual propeller obtained from an 
inland river ship, with emphasis on the modal parameters 
and reduction coefficients of the frequencies. 

When the excitation frequency coincides with the natural 
frequency of the structure, the structure may exhibit a high 
level of vibrations that may lead to structural fatigue and 
failure. When a propeller immersed in a fluid oscillates, 
the surrounding fluid may cause the natural frequencies 
to be lower than those in air. The current propeller design 
is improving with novel designs that are different from the 
conventional processes. Therefore, we consider whether 
assigning a reasonable approximation can avoid the vibration 
resonance of the blade in a water medium, particularly in the 
initial design stage. 
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Academics have attempted to examine the FSI through 
experimental, theoretical, and numerical simulation 
approaches. For instance, the original tests were performed 
during World War II [3], considering approximately 50 
models of the 3-bladed KCA series and several models of 
the KCC and KCD series. The most extensive data correspond 
to a collection of propeller models that were tested at King’s 
College 60 years ago [4]. Parsons et al. [5] used the 3D lifting 
line method coupled with the 2D unsteady thin foil theory to 
examine four-blade Wageningen B-Series propellers vibrating 
because of unit heave or unit pitch oscillations. Hyloarides 
and Van Gent [6] tested B-series propellers using the lifting 
surface method. Zhao et al. have performed independent 
studies in the field of FSI vibration analysis since the 1990s 
([7], [8], [9]), with their contributions covering the theory, 
experiments, and numerical algorithms. 

The concept of the added mass (AM) was generalised by 
Korotkin [10], and this aspect was considered to reduce the 
frequencies of free oscillations. Eq. (1) was used to determine 
the added mass coefficients analytically, with reference to 
the fluid density and total kinetic energy outside of the 
surface. Thereafter, Ghassemi and Yari [11] applied Eq. (1) to 
numerically examine the FSI sphere, ellipsoid, and propeller. 
However, the derived AM coefficient matrix corresponded 
only to the first-order natural frequencies. 

��� � �� �	
�
	� 
� � (1)

More advanced equipment has been used to measure 
underwater propeller vibration, such as the laser Doppler 
vibrometer (LDV), scanning LDV, and tracking LDV. 
Castellini and Santolini [12] performed LDV testing on 
a naval propeller rotating underwater and compared the 
time histories of various rotational speeds during operation in 

water and air. Abbas et al. [13] obtained LDV measurements 
to perform an underwater propeller vibration analysis. 
Guangnian [14] used particle image velocimetry technology 
to study the characteristics of the tip flow field of a DTMB-
P4119 propeller in a large cavitation tunnel. 

Numerical analyses and experiments are often conducted 
in a synchronous manner. For instance, as described by 
Vaz et al. [15], several institutions have used eight different 
codes, specifically, ANSYS CFX®, ANSYS Fluent®, Excalibur, 
FINETM/Marine, OpenFOAM, PROCAL, ReFRESCO, and 
Star CCM+®, to simulate the propeller cavitation dynamics. 
Computations for the DTMB-P4119 model were carried out 
by Nouroozi and Zeraatgar [16] in symmetric flow using 
FLUENT, and validated by the available experimental data. 
Nadery and Ghassemi [17] used STAR-CCM+ to calculate the 
hydrodynamic coefficients of the propeller NACA0006, and 
discussed the propeller in oscillating flows with and without 
a stator. Zhang et al. [18] applied RANS onto geometrically 
similar propellers in cavitation predication, and discussed the 
influences of the mesh density and time steps. A meaningful 
numerical solution may be achieved by combining the error 
estimates in simulations with the uncertainty quantification 
realised in the experiments. Furthermore, when experimental 
data are not available, numerical simulations may be a worthy 
alternative choice. 

The simulation of FSI is a highly specific topic in 
computational mechanics, as reported by Sigrist [19], and 
can provide a general framework to classify various coupling 
phenomena. For this FSI vibration problem, two approaches 
can be recognised in the numerical simulation, as shown in 
Fig. 1: the direct method (using fluid–structure coupling 
codes) and the indirect method (coupling fluid and structure 
codes). 

The governing equations of FSI are formulated as a unique 
coupled system in the direct method. The structural deflections 
of the propeller and resulting hydrodynamic forces lead to 

Fig. 1. Numerical simulation: coupled fluid–structure and fluid and structure code coupling [19]
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changes in the structural response, which are described as 
a set of coupled equations. Suo and Guo [20] applied the 
3D hydroelasticity theory for propeller vibrations in water 
and incorporated the fi ndings into fi nite element codes to 
determine the natural frequencies. Lin and Lin [21] performed 
the hydroelastic analysis of propellers based on a coupled 3D 
non-linear FEM and non-cavitating lift ing surface method. 
In general, the fi nite element (FEM) and boundary element 
(BEM) methods can be combined as a promising numerical 
technique to address vibro-acoustic coupling. Zou et al. [22] 
extended the coupled FEM/BEM, taking into account the 
eff ect of the shaft . Li et al. [23] investigated the eff ects of 
the excitation frequency and infl ow velocity on the added 
mass and damping of elastic marine propellers, by using the 
coupled FEM/BEM method. 

In the indirect method, the simulations are primarily 
based on an iterative procedure. Th e governing equations 
of the fl uids and structures are solved separately. Coupling 
helps realise the exchanges between two codes. The 
hydrodynamic forces are computed and added onto the 
blade surface, and are subsequently aff ected by the structural 
responses. Th e iterative procedures are implemented for the 
fl uid pressures and structural responses sequentially until 
convergence. Using ABAQUS®, Young [24], [25] examined 
fl exible composite propellers with large deformations and 
determined the hydroelastic pressure by using the BEM 
algorithm. Subsequently, the iterations were implemented 
until convergence was attained between the BEM and FEM 
solvers. He et al. [26] developed a 3D FEM/computational 
fl uid dynamics (CFD) coupling algorithm to investigate 
the natural frequencies, mode shapes, and hydrodynamic 
load coeffi  cients of a highly skewed propeller. Lee et al. 
[27] introduced a BEM-FEM (ABAQUS)-based algorithm 
to predict the unsteady thrust and torque coeffi  cients for 
fl exible propellers. Neugebauer et al. [28] analysed the FSI of 
propellers by using a CFD-based method. Kapuria and Das 
[29] analysed and optimised the hydrodynamic performance 
of a composite propeller through FEM/CFD coupling. 

Several basic mode shapes are illustrated in Fig. 2. Th e 
existing reports [1] indicated that the vibration modes are 
usually dominated by whipping and torsion, and no lateral 
deformation occurs. In this scenario, the structure exhibits 
a strong anti-lateral inertia, and the fundamental mode 
corresponds to the fi rst-order whipping case. 

a) 1st whipping b) 1st torsion c) 2nd whipping d) 2nd torsion

 Fig. 2. FSI propeller blade modes [1]

Th e FSI phenomenon is not only of academic interest, but 
also has practical signifi cance. For instance, in the case of 
emerging marine propellers, there are few numerical codes in 
wide use and many aspects have not been suffi  ciently clarifi ed. 
Th e change in the natural frequency in diff erent media (air 
and water) is of particular signifi cance. It is unclear whether 
the frequency reduction can be considered as a set of numbers 
characterising the intensity of the coupling or if certain laws 
exist for simple applications, as reported by MacPherson et 
al. [30] in a semi-empirical fashion. 

In contrast to these studies, in the present work, an actual 
propeller was considered. In particular, experiments provide 
meaningful practical data for physical insight and code 
verifi cation. Th ree main categories of FSI research challenges 
were considered in this work. In the theoretical context, the 
mathematical formulation of the coupling was established 
in a unique fi nite element format. A transfer function was 
used to defi ne the impulse response relationship of a physical 
system, and this frequency response function (FRF) was 
explained to enhance the basis of the experiments. Th e 
measurements conducted in the experiment helped defi ne 
the device characteristics and system settings. Th e natural 
frequencies and mode shapes of a real propeller were identifi ed 
through impact hammer testing. Th e physics of FSI oscillation 
coupling eff ects has been fully understood by the existing 
soft ware tool, which can corroborate the experimental results. 
Finally, an empirical qualitative expression was presented for 
the FSI fi rst-order natural frequency estimation.  By using 
this formula, an engineer can predict the FSI vibration. Th e 
expression can probably be used to promptly determine 
whether the excitation frequency has fallen into the resonance 
frequencies or not, during the concept design stage. 

FOUNDATION AND ALGORITHM OF FSI

PHYSICAL MODEL AND ASSUMPTIONS

Th e FSI is recognised as an inter-fi eld relationship, the basic 
mechanism of which can be described as follows: the fl ow 
may induce a fl uctuation in the pressure and/or deformation 
and velocity of the structure. Moreover, the structural motion 
may change the fl ow condition at the interface with the fl uid. 

The f luid momentum 
(Navier–Stokes) and 
continuity equations can 
be simplifi ed to obtain the 
convective wave equation 
by considering the 
following assumptions: 

(1) The f luid is 
c ompre s s i b le  a nd 
irrotational, and the 
pressure disturbance of 
the fl uid is small. 
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(2) No body force or viscous stresses exist. 
(3) The components of the hydrodynamic forces and 

inertial torques act on a propeller placed arbitrarily in 
an immovable fluid. 

(4) The propeller is immersed sufficiently deep in water; thus, 
the influence of the water surface can be excluded. 

In the existing studies, two code combinations (such 
as the FVM-FEM, BEM-FEM, and SPH-FEM) have often 
been used to examine the FSI. However, when considering 
the convenience of mesh grids, seamless transformation of 
the physical information on the interface, and availability 
of commercial code resources, the FEM may be the most 
suitable choice. Accepting a unique coupling grid introduces 
smaller errors, and the transformation may be sufficiently 
accurate. The FEM can be used to compute the pressure 
and velocity fields at arbitrary interior/exterior points. The 
following section describes the mathematical algorithm. 
For conciseness, only the key equations and matrices are 
presented. 

GENERAL FEM ALGORITHM FOR THE FSI COUPLING 
SYSTEM 

The motion of an ideal compressible fluid can be described 
as a wave equation. If the density indicates the balance of the 
mass flow entering and leaving, and an infinitesimal control 
volume equals the rate of the change in the density, the mass 
conservation can be described as in Eq. (2). 

��
�� � �� � ��� � �, where i = 1, 2, 3 (2)

The governing equation of the momentum conservation 
can be expressed as in Eq. (3). 
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We assume a small compressibility, taking into account 
that the density changes owing to the elastic deformability 
related to the pressure changes, and obtain the following 
state equation: 

�� � ��� � �� (4)

where 
ρ is the density of the fluid; 
vi is the curl of the perturbation velocity; 
p and p denote the density and pressure; 
c0 is the sound velocity in the fluid, assuming a constant 
entropy. 

By substituting Eqs. (3) and (4), the governing equation 
can be obtained. Consequently, Eq. (2) can be rewritten in a 
general form as Eq. (5): 
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where 
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and p is the potential of the fluid pressures, owing to which the 
potential flow problem satisfies the superposition principle. 

Typically, in stationary solid conditions, both the normal 
and tangential velocities reduce to zero. The fluid viscosity 
is neglected; and the no-slip boundary condition cannot be 
enforced on a structure–fluid boundary. Therefore, as the 
boundary limit, the normal component of the velocity is 
continuous, as indicated in Eq. (7), and the pressures and 
stresses are continuous on the surface, as indicated in Eq. (8). 
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The boundary conditions must be specified on the surfaces 
and infinity. Therefore, the wave equation of Eq. (5) is 
supplemented as follows: 

(1) Impenetrability of the infinite boundary condition. 

	�
	� 

� � (9)

(2) Free surface condition: The disturbance caused by the 
body moving through a fluid that is initially at rest decays 
to zero. This condition is also known as the Sommerfeld 
boundary condition [31]. 
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The theorem of the ‘variational principle’ can be used to 
match the conditions of the geometry relation and continuous 
boundary conditions of the normal velocity and stress. 
According to the Galerkin principle, an identical form can 
be generated to that obtained by minimising the variational 
principle. Therefore, there exists a weak form in Eq. (11), in 
which the stabilising terms are integrated by parts, along with 
the boundary integral. In other words, for equilibrium to be 
ensured, the total potential energy must be zero for variants 
of the admissible displacement. 
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The weighted integral formulation of the structure can be 
expressed as in Eq. (12) [32]: 

��0
	�/
	�� � � �!%/&1%*/& � � �*/%� � � & �� � � (12)

The integral equations are simply statements of this 
variation with respect to certain variables. The variational 
principle specifies a scalar quantity such as p (pressure). 
Subsequently, the displacement can be approximated using 
the differential operators. 

�%�2 �2 �2 �& 3 45�%�2 �2 �& ��%�& � 678
 

/%�2 �2 �2 �& 3 459�%�2 �2 �& /�%�& � 69:8
 

(13)

where N and 69  denote the shape functions of the pressure and 
displacement, respectively; p denotes a set of pressures of the 
fluid; and u denotes the displacement at the structural node. 

We substitute the approximation presented in Eq. (13) 
into Eq. (11) and differentiate with respect to the stationary 
equilibrium. The approximation allows the use of the integral 
forms obtained elementwise and final form generation. 
Therefore, the FSI structure vibrations can be represented 
as a hypothetical set of displacement and pressure variables 
(u, p) in Eq. (14), for an undamped system [33], [34]. 
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where Q is the FSI matrix, with the element matrix being 
>8 � J��5K5�; Mf and Kf denote the mass and stiffness 
matrices of the f luid, with their element matrices 
< 8 � L M

NOP
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�T

�R
�T �,, 

 

respectively; and Ms and Ks denote the mass and stiffness 
matrices of the structure, with <=8 � L�"5KUUUU59 �, 

and E=8 � LVKWV �,,  respectively. 

The equation of motion for free vibration leads to the 
solution of the natural modes, for which the right side of the 
coupling functions is zero. Thus, Eq. (14) can be converted 
to Eq. (15). 
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The mass and stiffness matrices in an FSI system are 
asymmetrical and full, respectively: The stiffness matrix 
remains sparse with a limited bandwidth, whereas the mass 

matrix is densely populated. 
In general, Eq. (15) can be 
made symmetrical by using 
the subspace method or 
Lanczos iterative approaches, 
as described in handbooks 
[32], [33]. The coupled dynamic 
equation can be converted into 
a generalised eigen solution of 
Eq. (16). 

Y<Z[Y\[Y][ � YE=[Y\[ (16)

where [Ψ]is the eigen-vector 
matrix, that is, the mode shape, 
Y\[ � Y^_M`2 ^_�`a ^_b`[, and 
[Λ] represents the eigenvalues, 
that is, the natural frequencies. 

From the theoretica l 
standpoint [33], the condensed 
(u, p) formulation can describe 
the physical nature of the 
vibro-acoustic coupling. After 
solving this formulation, the 
hydro pressure and induced 
structural deformation owing to 
the pressure can be obtained in 
one step. Moreover, a computer 
program employing the same 
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standard operations can enable an evaluation of the quantities 
analogous to the calculations. 

ALGORITHM OF THE ACCELERATION FRF

The FRF reflects the data transforms between the input 
excitation and output response in the frequency domain. The 
FRF is composed of the sum of motions of all the modes of 
vibration that have been excited, as the system is assumed to 
behave in a linear manner. A ‘perfect’ impact has an infinitely 
short duration, resulting in a rich spectrum. The ‘impulse’ 
input is considered commonly as a δ function, as indicated 
in Eq. (17). 

*%� � c& � Gd2 � � c
�2 � � �

e *%� � c&�� � �
f

gf

 
(17)

The duration is directly linked to the frequency content 
of the force excited. The transfer operation is defined as the 
Fourier transform of the time-domain differential equation 
to the equivalent frequency domain algebraic equations. The 
input function f(t) satisfies the Dirichlet condition, and thus 
F(ω) can be computed using Eq. (18). 

I%X& � he �
ij k%�&lg�m���

f

gf
 (18)

The transform matrix is defined as Yn%X&[TB   in Eq. (19), 
representing the appropriate FRF between a unit force and 
the response acceleration. 

Yn%X&[TB � opB %X&q
^I%X&` (19)

where opB %X&q is the acceleration response and ^I%X&`  is the 
excited force. 

The frequency domain parameter estimation uses data 
directly in the frequency domain. The impulse response 
function can match the multi-DOF free vibration physically. 

Yn%X&[TB � 4 �
E�

X�^_�`^_�`K
� � %X X�r &�

R

�sM
 (20)

The weighting, often known as the modal participation 
factor, is a function of the excitation and mode shape 
coefficients at the input and output degrees of freedom. 

Yn%X&[TB � 4 �
E�

X�t�ut�v
� � %X X�r &�

R

�sM
 (21)

where ψi (and ψj) denote the normalised phase associated with 
the order of the points, which is the ith mode; ω and ωi are 
the circular frequencies; Ki is the generalised stiffness matrix; 
and t�u and t�v  denote the amplitude of the phase shift {ψi} at 
the point r and l, respectively. 

In this manner, a large amount of modal information 
is contained in the transfer function, and it can be used to 
realise the mode recognition. This aspect is the principle of 
the ‘impact hammer test’ for the resonances. 

Fig. 4. Mechanical system for the modal testing of a real propeller

MODAL TESTING OF THE PROPELLER

Successful testing depends on several factors, and the 
hardware and equipment represent a key aspect, pertaining 
to the operator’s communication link to the analyser. Fig. 4 
shows a schematic of the construction of our test system. 
The approximate natural frequencies and a rough estimate 
of the corresponding mode shapes were first determined by 
measuring a series of FRFs. A multi-input and single-output 
approach was used. If n points are struck, the normalisation 
is based on the ith largest point through the transfer functions, 
and the normalised results are connected in the order of 
the points, corresponding to the ith mode. In the approach, 
a frequency domain model of the structure was used in 
conjunction with the FRF measurements. 

To implement suitable rectifications, the following steps 
were performed: the first step involved signal generation. 
After the shaker trigger was armed, the force by the impact 
was recorded by the acceleration sensor. The analyser 
was initialised, and it acquired the signal once the force 
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transducer operated. The acceleration response corresponded 
to the externally mounted stores, when the accelerometer 
measurements at a single point within the store were available. 
The output voltage, external electric load resistance, and 
excitation frequency were measured and recorded. 

The second step involved data acquisition and signal 
processing operations. The signal source supplied for signal 
conditioning was an alternating current voltage, converted 
from the mechanical vibration energy. The signal amplifiers 
converted the outputs to analogue voltages. The end of 
the charger amplifier was connected to a data acquisition 
equipment. The Data Auto Sample and Process System (DASP) 
software was used to perform the signal analysis and data 
acquisition at the interpolated points. Finally, the modal 
parameter identification was performed. The measurement 
functions for the averages and the frequency response analysis 
or spectrum analysis were realised using the analyser. In 
general, the DASP software includes the built-in FFT codes 
to determine the natural frequencies and display the mode 
shapes, and it can calculate the corresponding least squares 
error. 

To implement these advanced experiments, state-of-the-
art testing technologies were required, along with expensive 
equipment. The cost of these aspects can easily be justified 
because the impact hammer test is the most cost-efficient 
and effective experimental approach. 

PROPELLER SPECIMEN

It is more meaningful to use a real propeller, because 
not only can the practical appearance help discover the 
physical phenomena, it can also provide a reference for the 
virtual digital world. The propeller geometry and material 
characteristics are listed in Table 1. 
Tab. 1. Propeller data

Propeller type MAU 4-40

Number of blades 4

Material Ni-Al-Bronze Cu-3

Weight 77.30 kg

Propeller diameter, D 0.562 m

Hub diameter, Φ 0.11 m

Hub depth, h 113.0 mm

Diameter of hub hole, r 30.0 mm

Propeller pitch ratio 0.688

Expanded area ratio (EAR) 0.54

Skew angle 10˚

A symmetrical structure was employed to simplify the test, 
as the modes would also be symmetric. As shown in Fig. 5, 
a quartered propeller was selected and labelled. The testing 
propeller is a real propeller obtained from an inland river 
ship, which can ensure authentic measurements. Moreover, it 
was challenging to access certain locations and determine the 
thickness of the blade. Therefore, it was necessary to scratch 

the grids and perform factory laser equipment measurements 
during the test preparation, which was expensive and tedious. 
The measured points corresponded to the intersections of 
the grid to be input into ANSYS® to provide an accurate 
representation of the propeller shape. 

Excitation points

Thickness 

measuring grids

Experimental cell

Cell geometry

Fig. 5. Distribution and labelling of the test points on the propeller blade

INPUT AND SIGNAL COLLECTION EQUIPMENT

In general, a shaker is used to trigger the propeller with 
broadband random noise. Triggering can be performed 
for automatic re-arming after each trigger to ensure that 
several hammer impacts can be realised sequentially and 
averaged without the need to interact with the signal 
analyser. A hammer, MSC-1, was used to excite an impulse 
signal, and its details are presented in Table 2. The shaker 
generated a voltage signal proportional to the exciting force. 
A transducer was fixed at the end of the shaker. The shaker 
amplifier gain was linearly proportional to the excitation 
acceleration amplitude. 

Impact tips with different hardness values were selected 
to be used with the hammer for the considered measurement 
frequency range. When low frequency measurements were 
required, a soft rubber tip was used, and when high frequency 
measurements were required, a hard metal tip was used. 
Tab. 2. Technical specifications and details of the hammer

Type MSC – 1

Force measurement, (N) 0–500

Sensitivity, (mV/N) 10.0

Resonant frequency, (Hz) 20 k

Impedance, (Ω) < 100

Dimensions of hammer, (mm) 18 × 40

Weight, (g) 50
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The accelerometer was the proximal signal gain equipment, 
which measured and recorded the accelerations. After the 
trigger was armed, the accelerometer waited for the impact 
to occur and started acquiring the signal data. The entire 
impact waveform was captured in one timeframe. INV9822 
was the piezoresistive accelerometer, coated at the blade tip 
position. In general, accelerometers work on a principle of the 
inertia force of the mass acting upon an actual spring element, 
the acceleration of which is measured using strain gauges 
made of semiconductor material, and the device requires 
a low voltage supply. INV9822 has a diameter of 30 mm, and 
height of 50 mm, and the additional technical specifications 
are presented in Table 3. 
Tab. 3. Types and technical specifications of the accelerometer

Type INV 9822

Charge sensitivity, (mV/g) 100

Weight, (g) 50

Resolution ratio, (m/s2) 0.0005

Frequency response, (Hz) 0.5–8.0 k

Resp. freq., (Hz) > 25 k

Impedance, (Ω) < 100

TEST CONTROL STRATEGIES

A more sensitive measuring system is better to acquire 
the signal. However, in certain cases, the results may be 
unsatisfactory, resulting in the vibration levels at certain 
frequencies being excessively high or low. Note that an 
experiment is affected not only by the properties of the 
equipment, but also by the measurement system itself. 
The features must be considered in terms of the aliasing, 
leakage, windowing, filtering, zooming, and averaging. The 
accuracy of the measurements can be controlled to a large 
extent by the time spent in analysis, and this aspect must be 
considered during testing. For instance, a pre-trigger should 
be set correctly to ensure that the impulse on the points is 
captured immediately before the trigger is activated. A nearly 
perfect measuring system must be used when the charge 
amplifiers match well with the accelerometers and recording/
displaying instruments. 

In this work, the electrical devices were connected in series. 
The essential characteristic for the charge amplifiers (7021) is 
that they must have an extremely high input impedance. The 
dynamic signal analyser can automatically read the DOF and 
apply to the numbers with the correct directions. A charge 
amplifier was used at low frequencies, and the overall gain 
or sensitivity was thus independent of the transducer cable. 
Type 7021 and INV9822 require a low voltage power supply 
to be fed to the transducer; however, notable advantages can 
be attained in terms of a lower sensitivity to cable noise and 
fragility. 

The data were supplied in analogue form; however, 
the digital instrument enabled signal processing through 
the analogue-to-digital conversion. The closed-loop system 
involved a four-channel digital signal processor, 306DF, which 
supported automatic active channel detection for the one-
man calibration functionality. In general, the processor is 
a stand-alone unit with a frequency of 0–20 kHz. Because the 
system was assumed to behave in a linear manner, the FRF 
was composed of the sums of the resonance curves for each 
vibration mode. The processor could process the quantities in 
the form of a string of discrete values. Modal analysis transfers 
were intuitive to perceive. The common frequency response 
function analyser could be implemented through a tuneable 
narrow-band filter. Three impact events were performed at 
a point to perform averaging; nevertheless, the process was 
rapid. 

The analysis software included a pre-process tool to assign 
the geometry data to points on the structure. The software 
could be configured with various levels of memory, displays, 
and data storage, and the measurement system was ensured 
to have sufficient channels to simultaneously record all the 
responses. The propeller resonances could be determined 
in this manner. 

MEASUREMENT AND RESULTS

The aforementioned experiment strategy was used to 
obtain the natural frequency of the propeller in air and water. 
The presence of turbulence was ignored. The modal parameter 
estimation was based on the assumptions that the system was 
linear and stationary. The following steps were performed to 
configure the measurement system. 

FREQUENCY RESPONSE MEASUREMENTS IN AIR

An accelerometer was placed at a certain position to 
capture the responses, specifically, point no. 45 at the tip 
of the blade. The accelerometer was attached with a stud 
adhesive. A total of 77 excitation points were selected from 
the scratched points on the propeller surface (shown in Fig. 5). 
These points were also input into the DASP. 

For the vibration experiment in air, the entire process was 
performed at room temperature, as shown in Fig. 6. Note that 
it is difficult to fix the structure to the ground in real life. As 
shown in Fig. 6, this problem was overcome by physically 
fixing the hub between a steady disc and steel platform. In 
this manner, the displacements and rotations were set to 
nearly zero. 
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Accelerometer

Shaker

Charger amplifier

Data acquisition system 

Test points

Steady disc

Steel platform

Fig. 6. Propeller ‘hammer impact’ vibration experiment under laboratory 
condition

Various modes of oscillation were captured simultaneously. 
Fig. 7 illustrates the experimental frequency: the measured 
response amplitude values were plotted as the solid curves, 
and the natural frequencies were determined using the 
scattered scanning research, indicated by the dashed lines. 
The geometry input allowed the generation of the wireframe. 
Typically, the model is created such that all points on the 
model correspond to the structure. Full 3D visualisation of 
the test is shown in Fig. 11. 

232.84 Hz 

500.5 Hz 

712.9 Hz 

988.8 Hz 

1120.7 Hz 

Fig. 7. Magnitude of the propeller response of the natural frequencies in air

FREQUENCY RESPONSE MEASUREMENTS IN WATER

The experiments in water were performed, as shown in 
Fig. 8, in a water body with sufficient dimensions. The hammer 
could not be used to realise point-by-point excitation, as in 

air. Single-point excitation and single-point response were 
recorded. Triggering was implemented for the analyser to 
start capturing data until an event occurred, such as the 
impact of the impact hammer. The mode shape in water was 
assumed to be identical to that in air. The sensor signals were 
protected against electromagnetic interferences by connecting 
the signal amplifier through shielded cables. 

 

Accelerometer

Heavy suspension

Fig. 8. Single-point excitation and single-point response experiment in water

In water, the structure was suspended and thus could not 
be regarded as being fully rigid. Nevertheless, as shown in 
Fig. 8, we could realise a sufficiently heavy suspension to 
approximate the necessary grounded condition. 

The natural frequencies obtained through the DASP are 
shown in Fig. 9. 

Fig. 9. Magnitude of the propeller response of the natural frequencies in water

The natural frequency of the FSI is lower than that in air, 
and the vibration of the blade is transmitted to the water, 
which increases the mass of water due to the dynamic 
behaviour. λ (%) in Eq. (5) reflects the frequency reduction 
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due to the FSI. Moreover, λ is often used to represent the FSI 
added water mass. 

�h%w& � � � kxy�8u
ky�u

 (22)

After obtaining the signals of the dynamic characteristics 
in air and fluid, the vibration frequency was tabulated as in 
Table 4. 
Tab. 4. Natural frequency of the tested propeller blade in air and water

Modes, n Freq. in air 
(Hz)

Freq. in still 
water (Hz)

Reduction 
ratio λ%

1:  1st whipping 232.03 146.48 36.87%

2:  2nd whipping 500.49 419.92 16.10%

3:  1st torsional 712.89 576.12 19.19%

4:  1st flexural 988.79 732.42 25.93%

5:  2nd torsional 1120.6 957.8 14.53%

As demonstrated by the experiments of the propeller blades, 
the influence of the mass on the eigenvalues is dominant when 
the frequencies of free oscillations and those of their fields 
are reasonably close (the reduction does not exceed 40% but 
is no less than 25%). It was observed that the fluid notably 
influenced the reduction coefficients. When the resonance 
frequency of the system increased, the mass of water around 
the blade probably decreased. It is thus reasonable that the 
propeller is considered to be stationary. When the propeller 
rotates at a low speed, the frequency is not considered to be 
notably influenced [23]. 

VALIDATION AND DISCUSSION

Although coupled simulations can attain reasonable 
levels of accuracy and reliability for industrial and academic 
purposes, for the sake of robustness, the multi-physics 
algorithms offered by general-purpose codes are often 
adopted considering the coupling strategies presented 
earlier. Nevertheless, the code user must perform a practical 
validation to validate the coupling procedures. The validation 
generally requires a dedicated code to be developed, which 
may be extremely expensive. Therefore, in this work, the 
numerical validation was performed using ANSYS® through 
the APDL, and the existing element format was configured to 
add the user-defined parameters. The advantages of this aspect 
are obvious: low cost and high accuracy, high universality, 
and convenient analysis. 

The propeller blades were considered to be a set of 
symmetrical blades, with the thickness changes taken into 
account. The blade root was thick, with the maximum thickness 
at the middle of the blade neck. The thickness decreased from 
the root of the blade to the tip. Fig. 10 illustrates the built FEM 
model and the real one, which are nearly identical. SOLID 
185 elements were employed to discretise the propeller. The 

material had a density of 8.6×103 kg/m3, Young’s modulus of 
120.0 GPa, and Poisson’s ratio of 0.34. 

Bottle cap placed for 

size comparison 

Fig. 10. Propeller structure and FEM model

The frequency obtained through the 4-blade isotropic 
structural computation was compared with that obtained 
considering the FSI of a single blade. The finite element 
model of a single blade was considered and assumed to fully 
emerge into the air medium. The speed of sound in air was 
defined to be 313.3 m/s, and ρo, which denotes the air density, 
was set as 1.29 kg/m3. FLUID30 acoustic body elements in 
ANSYS® were used to simulate the air around the propeller. 
The governing equations for acoustics have been provided in 
Section 2. The FSI can be mapped automatically if the acoustic 
elements are adjacent to the solid structural elements. When 
using the coupled FLUID30, the displacement degrees of 
freedom were set as KEYOPT(2) = 0 on the interface to avoid 
zero-pivot warnings. It was necessary to define all the nodes 
on the interfaces. Thus, except for the nodes that lie on the 
interface and move with the structure, all the other nodes were 
established in space. The acoustic element on the interface 
was shared with the velocities or accelerations to realise direct 
coupling. The coupling matrices were discretised taking into 
account the acoustic pressure and structural displacement 
at the interface. We have tested that this arrangement of 
elements is sufficient for the observation of the global modal 
shapes, and fine division has been considered along the 
leading and trailing edges. 

The effects of fluid around the propeller and structure itself 
were clarified, and the variables could be solved in a single 
time step by using the PCG Lanczos method in ANSYS®. 
The natural frequency results are presented in Table 5. The 
frequencies of the full model (not considering the FSI) 
were λ1 = 234.87 Hz and λ2 = 682.6 Hz. The solution of the 
model determined the free vibration of the propeller blade, 
taking into account their interaction and the influence of the 
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surrounding fluid: λ1 = 232.67 Hz, and λ2 = 686.12 Hz. The 
shape of the propeller oscillations in air was similar to that 
obtained through the structure simulation. The comparison 
in the last column clearly demonstrates a high agreement (see 
column 4 vs. column 6). 
Tab. 5. Comparisons of propeller blade natural frequency between structural 

FE, FSI FE, and experimental results.

Modes, n Experimental, f/Hz Full model vibration, 
f (Hz) Diff. % Quarter model in air 

FSI, f (Hz) Diff. %

1:  1st whipping 232.03 234.87 1.21% 232.67 0.28%

2:  2nd whipping 500.49 682.61 26.68% 686.12 27.06%

3:  1st torsional 712.89 756.79 5.80% 777.57 8.32%

4:  1st flexural 988.79 1275.57 22.48% 1248.38 20.79%

5:  2nd torsional 1120.6 1385.87 19.14% 1460.39 23.27%

The preceding mode shapes of the first five frequencies are illustrated in Fig. 11. The computation accuracy of the natural 
frequency of the FSI single blade exhibited the accuracy of the coupling analysis. 

(a).1 experimental mode shape of f1 = 232.03 Hz (a).2 numerical result of f1 = 232.67 Hz

(b).1 experimental mode shape of f2 = 500.49 Hz (b).2 numerical result of f2 = 686.12 Hz
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(c).1 experimental mode shape of f3 = 712.89 Hz (c).2 numerical result of f3 = 777.57 Hz

(d).1 experimental mode shape of f4 = 988.77 Hz (d).2 numerical result of f4 = 1248.38 Hz

(e).1 experimental mode shape of f5 = 1120.6 Hz (e).2 numerical result of f5 = 1460.39 Hz

Fig. 11. First five natural frequencies in air and their mode shapes: (a-e).1 show the experimental results, and (a-e).2 results obtained using ANSYS®

When comparing the results, considering the computation 
cost, error, accuracy and research priority, the single blade 
propeller could be applied for the water FSI FEM verifications. 
The fluid density of the water acoustic element was 1.03×103 

kg/m3, and the sound velocity c0 in water was 1500 m/s. The 
vibration response analyses were limited to relatively large 
medium variations, and thus the changes in the harmonic 
response were large. 

Under the assumptions that were validated numerically, 
the mode shapes were noted to be the same in air and water. 
For the convenience of comparison, the numerical results 

of the natural frequency in water and relative differences 
between these values with those obtained in the experiments 
are presented in Table 6. The added mass is recognised as an 
exclusive function of the body geometry, and its coefficient 
is incomparably affecting the reduction of the vibration 
natural frequency. The added masses effects (λi) of the FSI 
are presented in Table 7. Both these data points are illustrated 
in Fig. 12. The numerical modal analysis helped to identify 
the problem and generated an effective solution. 
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Tab. 6. Coupling frequencies of the numerical analyses and experiments in water

Modes, n Numerical,  
f/Hz

Experimental, 
f/Hz

Differences,  
%

1:  1st whipping 143.63 146.48 1.95%

2:  2nd whipping 496.15 419.92 -18.15%

3:  1st torsional 567.44 576.12 1.51%

4:  1st flexural 1021.19 732.42 -39.43%

5:  2nd torsional 1141.09 957.8 -19.14%

Tab. 7. Results of the added mass related reduction factors and their absolute errors

Modes, n Numerical λ, % Experimental 
λ, %

Absolute 
errors, %

1:  1st whipping 38.27% 36.87% 1.40%

2:  2nd whipping 27.69% 16.10% 11.59%

3:  1st torsional 27.02% 19.19% 7.83%

4:  1st flexural 18.20% 25.93% 7.73%

5:  2nd torsional 21.86% 14.53% 7.33%

When the excitation force is known to coincide with 
one of the natural frequencies found in the modal analysis, 
the structure can be redesigned or modified to shift the 
natural frequency away from the excitation frequency. The 
explanation is analogous to that which explains the changes 
in the oscillation frequencies of the blades, when taking into 
account their interaction. 

  
(a)                                                              (b)

Fig. 12 (a) Natural frequencies and (b) relative frequency reduction factor 
obtained using numerical calculations and experimental approaches.

After simplification, λ1 was 38.0%, which satisfied the 
engineering practice values and approximately matched the 
conclusion presented by Carlton [1]. Some empirical formulas 
in inch units for the fundamental vibration natural frequency 
of propeller blades in air have been proposed by Carlton 
[1] and MacPherson et al. [30]. Modifying the formulas to 
international SI units, and considering our modal analysis 
in the experiment and FEM computation, the first-order 
natural frequency in water can be summarised using Eq. 
(23), in units of kg-mm-Hz. 

kxy�8u � �z�{|{
%} � ~�&� �%' � �

� & � %����& � �� � �� (23)

where R is the propeller diameter, rh is the blade root diameter, 
g is the acceleration due to gravity, E is the modulus of 
elasticity, ρ is the material density, %��& is the average thickness 
of the blade, �� is the average chord length of the blade, th is 
the blade root thickness, and ch is the chord length of the 
blade root.. 

CONCLUSIONS

In this paper, a modal experiment and coupling FEM were 
combined to analyse the vibration characteristics of a real 
propeller in air and water, to identify the vibration mode, 
and to obtain the natural frequency of the structure. After 
comparative and error analyses, the following conclusions 
could be derived. 

1) The trends obtained using the existing numerical 
technology and experimental equipment were consistent. 
By comparing the results, it was confirmed that the direct 
coupling method employed could be used to realise 
the numerical computation of the vibration of complex 
underwater structures. Using the existing finite element tool, 
the results obtained exhibited not only high accuracy, but low 
resource consumption. 

2) When the propeller vibrates at a low frequency in water, 
the influence of the surrounding fluid on the frequency of 
the propeller cannot be ignored. According to the results, 
the relevant data were retained, and an approximation was 
summarised in Eq. (23). The approximation has the advantage 
of being simple to use and does not require extensive 
computational resources and facilities. 

3) The mode with the most obvious frequency reduction 
and the largest added water mass is the first-order mode. 
Most of the added water is generated by low frequency 
excitation. With the increase in the frequency and decrease 
in the excitation energy, the added water mass also decreases, 
resulting in the decrease in λ (in other words, less water mass 
will be coupled with the structure vibration). 

4) Limited by the experimental conditions, errors 
were introduced during the experimental process: (1) 
the experimental constraint conditions were not entirely 
consistent with those in the FEM simulation. Especially 
for the test in water, a base or foundation on which the test 
structure can be attached is challenging. (2) The contact 
frequency between the knocking hammer and blade surface 
may cause the fluctuation of the power spectrum. (3) An 
accelerometer placed at the tip of the blade may change the 
mass distribution, which notably affects the 2nd whipping 
vibration shapes. All these aspects can affect the accurate 
recording of the test frequency. However, FEM simulations 
can overcome these physical limitations. 

In addition, we demonstrated that the propeller design 
depends not only on the development of technology, but 
also on the feasibility of the engineering application. After 
comparing the numerical calculations and experimental 
results, the estimation requirements were noted to be satisfied; 
these findings are practical and can provide reference for the 
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propeller design. These data may help engineers design new 
structures without using advanced computing devices to 
determine the fundamental frequency λ1 promptly. 
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