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ABSTRACT

Abstract: In this paper, two analysis models for tension leg platform (TLP) are proposed based on different simulation 
methods of the tendons for studying the TLP motion responses in waves. In the uncoupled analysis model, the tendon 
is simplified as a spring, and the restoring forces matrix is derived with the consideration of the influence of the 
coupled effect of horizontal offset and vertical setdown of the platform. In the coupled model, the axial and transverse 
vibration’s coupled effect has been considered for the establishment of the vibration equations for the tendons, and 
the finite difference method is used to solve the vibration equations. The time-domain coupled motion model of the 
platform and the mooring system is established based on the interaction forces between the tendons and the platform. 
The coupled and uncoupled TLP models are compared and analysed to determine their applicability. Compared with 
the uncoupled TLP model, the coupled TLP model has greater accuracy and a wider application range, and the effects 
of second-order wave force on the platform responses, horizontal offset, and vertical subsidence are analysed.
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INTRODUCTION

The tension leg platform (TLP) models can be calculated 
using the frequency domain method or the time domain 
method. The International Conference on Ship Structure (ISSC) 
and the American Petroleum Institute (API) [1] divided the 
time domain model for TLP into two categories: the uncoupled 
TLP model and the coupled TLP model.

At first, Paulling [2, 3] proposed two uncoupled TLP models 
which were used to calculate the motions of the platform 
with three degrees of freedom and six degrees of freedom, 
respectively. The Morrison equation is used to calculate the wave 
forces. The wave forces act on the platform, and tendons need 
to be predicted accurately to design a robust mooring system. 

A method for predicting the motions of and forces on the 
platform in regular or random waves was developed based on 
the linearised hydrodynamic method. The experimental results 
were in good agreement with the predicted results. Angelides [4] 
proposed a similar computational model that simplifies tendons 
as linear springs. Malaeb [5] introduced a set of 6x6 stiffness 
matrices for the calculation of TLP, in which the tendons were 
also simplified as linear springs. Although Malaeb’s stiffness 
matrix representation method was proposed nearly 30 years 
ago, it is still widely used for analysing the uncoupled TLP 
model. Chandrasekaran [6] calculated the dynamic responses 
of the triangular TLP in the random waves based on the 
uncoupled model in which the influence of diffraction effect 
and second-order wave force was ignored. Kawanishi [7] studied 
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the responses between TLP and pile foundation under the 
seismic excitation based on the uncoupled model. The results 
showed that the uplift capacity of the pile foundation must be 
more than twice the initial net buoyancy. Zhai [8] used the 
uncoupled model to calculate hydrodynamic parameters in the 
frequency domain, such as the transfer function, added mass, 
and damping coefficient. The motion responses of the platform 
under the action of wind and waves were calculated using the 
non-linear time-domain analytical method. According to the 
time series of the motion responses, the influence of Jonswap 
spectrum’s parameters (including wave height and peak factors) 
on the heave responses of the platform was analysed.

Chandrasekaran [9] compared the triangle and four columns 
of TLP and analysed them using the Mathieu equation. The 
analysis results showed that the platform motion becomes 
unstable as the tendon length increases but increasing the 
pretension of the tendon can improve the stability of the 
platform. Low [10] linearised the non-linear stiffness matrix 
and analysed the motion responses of the traditional TLP. He 
also achieved the coupling between degrees of freedom through 
linearization techniques. Senjanović [11] proposed a consistent 
formulation of the stiffness matrix, derived from the general 
solution established for hydroelastic analysis of ship structures, 
as a specific case. The stiffness was compared to the known ones, 
and discrepancies were analysed and discussed.

The coupled TLP model is achieved by replacing the linear 
spring system with tethers and their material properties 
and mass. Because the distributed mass of tethers and the 
influence of resistance and additional mass are considered 
in the coupled TLP model, the accuracy of the calculated 
results will be improved significantly. At the same time, these 
factors may cause the transverse and axial excitation of tethers, 
affecting the platform’s movements. In addition, it should be 
noted that considering the mass of tethers will also affect the 
static deformation of the structure due to its own gravity [12]. 
Jameel [13] studied the TLP motion and its tether tension 
under extreme sea conditions.2 The wave-surface elevation 
is calculated by using the theory of small amplitude waves. 
Jain [14] considered the coupling effect between the six degrees 
of freedom of the platform and analysed the nonlinearity of the 
platform’s motion caused by the change of tether tension and 
wave dragging force.

Faltinsen [15] aimed to provide a physical understanding 
through simplified mathematical models and introduced linear-
wave induced motions, loads on floating structures, numerical 
methods for ascertaining wave-induced motions and loads, 
viscous wave loads and damping, stationkeeping, and water 
impact and entry. Chatterjee [16] considered the elasticity of 
the platform decks and columns when calculating the coupled 
motion of TLP. Choi [17] conducted experiments and numerical 
analysis on the coupling characteristics of TLP and flexible semi-
submersible floating structures. The free damping tests of TLP 
and semi-submerged platforms showed that they had complex 
coupling characteristics and multiple natural modal frequency 
components. Ran [18] used WINPOST FEA software to model 
tethers and developed a coupled Spar model. At the same time, 
wave forces were evaluated using the WINPOST&WINTCOL 

project. Mazarakos [19] introduced a coupled analysis method 
for the mean second-order loads of a floating structure, which 
was suitable for offshore wind energy sources exploitation.

The time domain numerical calculation methods for TLP 
under the combined action of waves and currents often involve 
the problems of calculating the hydrodynamic performance of 
the platform, the non-linear vibration problem of the tethers, 
and the coupled motions of the platform and the tethers. For 
the research methods of the mooring system, most scholars 
have simplified the tethers into a massless spring structure. The 
coupled mathematical model in this paper fully considers the 
coupled effect of the axial and transverse vibration of the tethers. 
For the research methods of wave forces on the TLP, most 
scholars have adopted the Morison formula to direct estimation. 
In this paper, a combination of the potential flow theory and 
Morison formula is used to calculate the wave forces, which 
can effectively consider the effect of the diffraction potential on 
TLP. Based on the previous studies on TLP from the different 
scholars, the two TLP analytical models are further improved 
through the whole work. In the uncoupled TLP model, the 
coupled effects of horizontal offset and vertical setdown of the 
platform are considered in the restoring force coefficient matrix. 
In the coupled model, the coupled effects of axial and transverse 
vibrations of the tethers are considered. The two models are 
compared and analysed, and the applicable conditions are given.

MATHEMATICAL MODEL 
OF THE UNCOUPLED TLP

When TLP moves in real sea conditions, it will show wave-
frequency movement and present horizontal offset and vertical 
setdown under the action of external loads such as wind load, 
current load, and mean second-order drift force. Moreover, 
because the riser system of TLP is arranged in a cluster manner, 
the horizontal deviation of the platform may cause interference 
between the risers of serial arrangement. Therefore, it is 
necessary to study the influence of horizontal deviation and 
vertical subsidence on TLP. Fig. 1 shows the structure diagram 
of the uncoupled TLP model in this case. The model simplifies 
the tether into a linear spring structure and is used to analyse 
the motion responses of TLP when considering the coupled 
effects of horizontal offset and vertical setdown of the platform.

In this paper, the platform is regarded as a rigid body, and the 
movement of the tethers is regarded as the elastic movement of 
the spring along with the movement of the platform. Therefore, 
the uncoupled TLP motion equation under the influence of 
tethers is given by:

(Mij+ μij) j(t) + Kij j(t) + ij xj(t) = FiW(t) + FiD(t)  (1)

where xj( j=1,2…,6) is the movement of the TLP;  
Mij (i, j =1, 2…,6) is the sum of the mass of the floating structure 
and the vertical pipe considering the pretension force; μij is the 
added mass of floating structure; Kij is the damping matrix; 

ij is the coefficient of restoring force matrix considering the 
effect of tethers; FiW is the sum forces of Froude-Krylov force 
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and diffraction force; FiD is the drag force. The methods of 
the hydrodynamic coefficients of the platform can be found 
in Appendix A.

When TLP is subjected to lateral force, the platform will 
have a horizontal offset. At the same time, the tether is in an 
inclined state. Because the tension leg has a narrow range of 
elasticity, the elongation of the tether is ignored when the 
stiffness matrix under the influence of the tendon is derived. The 
relationship satisfied by the platform’s horizontal deviation and 
the vertical setdown phenomenon is shown in Fig. 2. Suppose 
that the horizontal offset of the platform has a component x 
on the X-axis and a component y on the Y-axis, the vertical 
subsidence of the platform is .  
Thus, the stiffness matrix coefficients of the platform under 
the influence of horizontal offset and vertical setdown are 
given, respectively.

As shown in Fig. 3, assuming that the displacement of the 
platform’s longitudinal motion is x1, the variation ΔT1 of TLP is:

ΔT1 = (  – l)AE0/l     (2)

where ΔT1 is the axial force increment of the tether caused by 
the horizontal offset and surge motion of the platform; l is the 
length of the tether; A is the cross-sectional area of the tether;  
E0 is the elastic modulus of the tether.

Affected by the horizontal offset of the platform, the 
phenomenon of vertical setdown occurs in TLP and is 
expressed by z.

FV + ρдAwz = FG + (T0 + Δt)(l – z)/l    (3)

Here, FV is the force due to buoyancy; FG is the force due 
to gravity. Aw is the waterline surface area of the platform 
columns. T0 is the pretension of the single tether. Δt is the axial 
force increment of the tether caused by the vertical sinking 
of the platform.

By simplifying Eq. (3), the variation of tether caused by the 
vertical sinking of the platform can be obtained as follows:

Δt = (T0 + ρдAwl) z/(l – z)      (4)

In general, because Δt is relatively small, it can be ignored 
when the analysis of a TLP mooring system is simulated.

The equilibrium forces of the platform in the X direction are:

11x1 = nt(T0 + ΔT1 + Δt)sin γx    (5)

where nt is the number of tethers (as shown in Fig. 3), and 
γx is the angle between the position of the tensile tether and 
the initial position when the platform has surge motion. 
Additionally, the sine of γx is defined as:

sin γx =          (6)

Substituting equation γx into Eq. (5), the restoring force 
coefficient of TLP surge motion can be obtained as follows:

11 =       (7)

The equilibrium forces of the platform in the Z direction are:

31x1 = nt(T0 + ΔT1 + Δt)cos γx + FG   (8)

Similarly, the equilibrium equation of the moments along 
the Y-axis can be obtained as follows:

51 = –  sin γx·    (9)

Fig. 1. Structure diagram of uncoupled TLP model

Fig. 3. Displacement in surge degree of freedom

Fig. 2. Relationship between offset and setdown
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where  is the height of gravity.
As shown in Fig. 4, assuming that the displacement of the 

platform’s sway motion is x2, then the change in tension of the 
tether caused by the combined action of the horizontal offset 
and the platform’s swaying motion is:

ΔT2 = (  – l)AE0/l     (10)

Similarly, the equilibrium equation of forces on the Y-axis 
is as follows:

22x2 = nt(T0 + ΔT2 + Δt)sin γy    (11)

where ΔT2 is the axial force increment of the tether caused 
by the horizontal offset and sway motion of the platform. 
Meanwhile, γy (shown in Fig. 4), is the angle between the 
position of the tensile tether and the initial position when 
the platform incurs sway motion. Taking the sine of γy yields:

sin γy =          (12)

The restoring force coefficient of sway motion is:

22 =       (13)

In the same way, we can obtain the expressions shown as 
below:

32x2 = nt(T0 + ΔT2 + Δt)cos γy + FG   (14)

42 =  22        (15)

Assuming that the displacement of heave motion is x3, then 
the restoring force coefficient is:

33 = (nt  + Aw)      (16)

When the platform is in roll/pitch motion, the angle is 
assumed to be x4. The compositions of roll/pitch motion consist 
of four parts: (1) stiffness due to static water surface; (2) stiffness 

due to changes in buoyancy and weight; (3) equivalent stiffness of 
the tethers; (4) stiffness due to vertical setdown of the platform. 
The restoring force coefficient of the roll/pitch motion is:

44 =  + FV(zB – zE) – FG(zG – zE) +

 cos2x4 + ρдAw (zB – zE)z     (17)

55 =  + FV(zB – zE) – FG(zG – zE) +

 cos2x5 + ρдAw (zB – zE)z     (18)

where Ix is the moment of inertia of the platform’s waterplane 
in the X-axis; Ixx is the cross-section moment of inertia of 
the platform in the X-axis; Iy is the moment of inertia of the 
platform’s waterplane in the Y-axis; Iyy is the cross-section 
moment of inertia of the platform in the Y-axis; zB is the vertical 
coordinate of the buoyancy centre of the platform; zE is the 
vertical coordinate of the top of the tether; zG is the vertical 
coordinate of the centre of gravity of the platform.

When the platform incurs yaw motion, its angle is assumed 
to be x6. The displacement of the tether in the horizontal plane 
is given in Fig. 5, which is mainly composed of two parts. The 
first part is the displacement caused by the horizontal offset of 
the platform, and the second part is the displacement caused 
by the yaw movement of the platform. Then, the elongation 
of the tether is:

l1 =      (19)

where a and b are half of the distance between the centre points 
of the columns, shown in Fig. 5.

Based on Eq. (19), when the platform incurs simultaneous 
horizontal offset and yaw motion, the variation of the tether 
is as follows:

ΔT6 =  (l1 – l)        (20)

The balance forces of the platform in the vertical plane are:

36x6 = nt(T0 + ΔT6 + Δt) + FG – FV    (21)

By establishing the balance equation of the moments in the 
Z-axis of the platform, the restoring force coefficient of sway 
motion can be obtained:

66 = nt(T0 + ΔT6 + Δt) ·    (22)

By calculating the TLP restoring force coefficient matrix and 
applying the Runge-Kutta method to the differential motion 
equation of the platform, the motion equation of TLP under 
wave action can be obtained. Fig. 6 shows the flow chart of 
the uncoupled TLP model.

Fig. 4. Displacement in sway degree of freedom
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MATHEMATICAL COUPLED TLP MODEL

Fig. 7 illustrates the structure of the uncoupled TLP model. 
In order to study the TLP time-domain motion responses, the 
coupled condition of the tether vibration and platform motion 
is considered, and the coupled TLP model is used to conduct 
numerical prediction research. In the research process, the 
following two factors are mainly considered in the analysis 
of the TLP motion responses:
1)  The coupled effect between axial and transverse vibration 

of the tether;
2)  The influence of the coupled effect of the platform motion.

TIME DOMAIN MOTION EQUATION OF TLP

When the time domain numerical simulation of TLP is 
carried out in this paper, the platform is regarded as a rigid 

body, and the coupled motion Eqs.  (20) and (21) of TLP 
considering the tether vibration influence is given.

(Mij+ μij) j(t) + Kij xj(t) + Cij xj(t) =

FiWave(t) + Fi + FV – FG       (23)

In Eq. (23), ij is the coefficient of restoring force matrix;  
FiWave is the force exerted by the waves on the platform; Fi is the 
force exerted by the tethers on the platform; FV is the buoyancy 
of the platform; FG is the gravity of the platform.

The tether is attached to the platform at z = L and the 
seabed at z = 0; the function w3(z, t) is used to express the 
axial vibration of the tether. The axial vibration of the tether is:

Fig. 5. Displacement in yaw degree of freedom

Fig. 7. Structure diagram of coupled TLP model

Fig. 6. Flowchart of uncoupled TLP model
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ρA0ẅ3(z, t) – (EA0(w 3ʹ(z, t) +  wrʹ(z, t)2)) = f3(z, t) (24)

where ρ is the material density of the tether; wr(z, t) is the 
radial motion; f3(z, t) is the distributed force-per-unit-length 
along the axial direction of the tether, and its expression is:

      –ρдA0 + ρf дAf 0 < z < d
f0 (z, t) =                (25)

      ρдA0     d < z < l

There is no displacement at z  =  0, and its boundary 
condition is:

w3(0, t) = 0, w 3ʹ(0, t) = 0       (26)

At z = L, the force of the tether on the platform is

FL3(l, t) = –nt(T0 + EA0w3 (l, t))     (27)

Taking the platform itself as the research object, the external 
forces acting on the platform mainly include gravity, buoyancy, 
wave forces, and tether forces, and combined with Eq. (23), the 
differential equation of heave motion is obtained:

(M33+ μ33) ẅ3(l, t) + C3i wi(t) =

F3Wave(t) + FL3 (l, t) + FV – FG      (28)

In conclusion, the numerical solution of heave motion is 
achieved by combining Eqs. (24), (27), and (28). Considering 
the fact that the coupled TLP model takes the influence of 
axial and transverse vibrations of the tethers into account, it 
is necessary to solve the governing equations of the platform’s 
surge and sway motions before solving the governing equation 
of TLP heave motion.

The equation of radial vibration of the tether in the 
x-direction is:

ρAẅ1(z, t) – (EA0(w 3ʹ(z, t) +  w 1ʹ(z, t)2)) + 

(EI0wʹʹ1(z, t))ʹʹ – ρI0ẅʹʹ1(z, t) = f1(z, t)    (29)

The transverse force f1(z, t) is mainly produced by the action 
of waves and currents and formulated using the Morison 
equation. Suppose the angle between the current and the 
x-direction is θ0 and we get:

f1 = –CAρf Af (–ẅ3wʹʹ1 + ẅ1) + CMρf Af ( 1 – φ3w 1ʹ) +

CDρf router ( 1 – φ3w 1ʹ + 3φ 1ʹ – 1 + Uccosθ0)

| 1 – φ3w 1ʹ + 3φ 1ʹ – 1 + Uccosθ0|   (30)

where Uc is the current velocity, CA is the added mass coefficient,  
CD is the drag coefficient, and CM is the inertia coefficient. φ1 
and φ3 are velocities of fluid particles caused by waves in the 

x-axis and z-axis, respectively, given by:

φ1 =  cos(kr – ωt) cosθ0     (31)

φ3 =  sin(kz – ωt)         (32)

where H is the wave height; T is the wave period; k is the wave 
number; ω is the wave frequency; d is the depth of water. The 
boundary condition of the tether is:

w1 (0, t) = 0, w 1ʹ(0, t) = 0      (33)

The force of tether on the platform at x = L is:

FL1(l, t) = ntEA0(w 3ʹ +  w 1ʹ
2)w 1ʹ – ntEI0wʹʹ 1ʹ  (34)

The differential equation of surge motion is:

(M11+ μ11)ẅ1(l, t) + C1i wi(l, t) = F1Wave(t) + FL1(l, t) (35)

In conclusion, the numerical simulation of TLP surge 
motion can be solved by combining Eqs. (29), (34), and (35).

The vibration equation of radial motion of the tether in 
the y-direction is:

ρAẅ2(z, t) – (EA0(w 3ʹ(z, t) +  w 2ʹ(z, t)2)w 2ʹ(z, t)) + 

(EI0wʹʹ2(z, t))ʹʹ – ρI0ẅʹʹ2(z, t) = f2(z, t)    (36)

The transverse force in the y-direction is:

f2 = –CAρf Af (–ẅ3w 2ʹ + ẅ2) + CMρf Af ( 2 – φ3w 2ʹ) +

CDρf router ( 2 – φ3w 2ʹ + 3φ 2ʹ – 2 + Ucsinθ0)

| 2 – φ3w 2ʹ + 3φ 2ʹ – 2 + Ucsinθ0|   (37)

where φ2 is the velocity of fluid particles caused by waves in 
the y-axis, given by:

φ2 =  cos(kr – ωt) sinθ0     (38)

The boundary condition of the tether is:

w2 (0, t) = 0, w 2ʹ(0, t) = 0      (39)

The force of tether on the platform at x = L is:

FL2(l, t) = ntEA0(w 3ʹ +  w 2ʹ
2)w 2ʹ – ntEI0wʹʹ 2ʹ  (40)

The differential equation of sway motion is:

(M22+ μ22)ẅ2(l, t) + C2i wi(l, t) = F2Wave(t) + FL2(l, t) (41)

In conclusion, the numerical simulation of the sway motion 
can be solved by combining Eqs. (36), (40), and (41).

Longitudinal tether excitations will impart disturbances 
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in the pitch (θ) degree of freedom. Pitch motion is defined as 
an angular displacement occurring about the y-axis, shown 
in Fig. 8a. The equation describing the pitch displacement is 
written as:

(M55+ μ55)ẅ5(l, t) + C5i wi(l, t) = 

F5Wave(t) + FL5(l, t) + FVe5      (42)

where F5Wave is the moment of a wave to the platform in the 
y-axis; FL5 is the moment of tether to the platform in the y-axis;  
FV is the buoyancy of the platform; e5 is the perpendicular 
distance of the new centre of buoyancy from the axis passing 
through theCG(centre of gravity); e5 =   sin w5, where  is 
the height of the centre of gravity.

Longitudinal tether excitations will also impart disturbances 
in the roll (φ) degree of freedom. Roll motion is defined as 
an angular displacement occurring about the x-axis, shown 
in Fig. 8a. The equation describing the roll displacement is 
written as:

(M44+ μ44)ẅ4(l, t) + C4i wi(l, t) = 

F4Wave(t) + FL4(l, t) + FVe4      (43)

where F4Wave is the moment of a wave to the platform in the 
x-axis; FL4 is the moment of the tether to the platform in the 
x-axis; e4 is the perpendicular distance of the new centre 
of buoyancy from the x-axis passing through the CG, with 
equation e4 =   sin w4.

The yaw motion of TLP is mainly caused by the wave 
moment and the moment acted upon the tethers in the z-axis 
direction, shown in Fig. 8b. The differential equation of motion 
satisfied by the angular displacement of the platform under 
the action of the moments in the z-axis direction is:

(M66+ μ66)ẅ6(l, t) + C6i wi(l, t) = F6Wave(t) + FL6(l, t) (44)

where F6Wave is the moment of a wave to the platform in the 
z-axis; FL6 is the moment of the tether to the platform in the 
z-axis.

CALCULATION METHOD  
OF THE COUPLED TLP MODEL

Taking surge motion as an example, the boundary 
conditions of the tether are:

At z = 0,
w1 (0, t) = 0, w 1ʹ(0, t) = 0      (45)

At z = L,
  FL1(l, t) = ntEA0N(l)w 1ʹ(l, t) – ntEI0wʹʹ 1ʹ(l, t)

  FL2(l, t) = ntEA0N(l)w 2ʹ(l, t) – ntEI0wʹʹ 1ʹ(l, t)

  FL3(l, t) = –nt(T0 + EA0w3 (l, t))

  FL4(l, t) = –nt(hT0w4 (l, t) + aEA0w1(l, t))

  FL5(l, t) = –nt(hT0w5 (l, t) + aEA0w2(l, t))

  FL6(l, t) = – ntaT0w1(l, t)            (46)

where FLi(i=1,…,6) are the forces of the tethers on the platform 
with six degrees of freedom. N(z) is the axial force of the beam, 
given by N(z) = EA0(w 3ʹ (z, t) +  w 1ʹ(z, t)2).

If the system is vibrating in its ith mode, then the response 
of the system would be as

w(z, t) = φi(z)exp(Iωi t)       (47)

where I is the imaginary unit, ωi is the ith normalised natural 
frequency, and φi(x) is the ith normalised transverse mode 
shape of the beam.

By dropping the axial, damping, non-linear, and non-
homogenous terms in the governing PDE and boundary 
conditions of the transverse motion, and using Eq. (29), one 
would get:

EI0φi
(4)(z) – (N(z)φiʹ(z))  ʹ– ρA0ω2

i φi(z) = 0   (48)

Fig. 8a. The motions diagram of TLP: pitch/roll motion Fig. 8b. The motions diagram of TLP: yaw motion
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and φi satisfies the boundary conditions of φi(0) = 0, φiʹ(0) = 0.
Eq. (48) is rewritten into the form of first-order equations, 

namely:
 = [A](z, ωi ) i(z)     (49)

where i(z) = [φi(z) φiʹ(z) φʹʹi(z) φʹʹ iʹ(z)]T.

The matrix 

According to the definition of the first derivative, the 
approximate expression of Eq.  is:

 =        (50)

where Δz is the increment of the tether at the position z. 
Substitute Eq. (50) into Eq. (49) and one gets:

i(z + Δz) = [[A](z, ωi )
Δz + I4×4]i (z)   (51)

The tether is dispersed into n equal parts, as shown in Fig. 9. 
The nodes are numbered from 0 to N.

By applying the above tether discrete method, the motion 
equation at node k can be expressed as:

i(kΔz) = Πk
j =1[[A](k–j,ωi )

Δz + I4×4]i (0)  (52)

When k = n, the expression of the end node of the tether is:

i(l) = Πn
j =1[[A](n–j,ωi )

Δz + I4×4]i (0)   (53)

Namely,

where φʹʹi(l) can be obtained by the force of the tether on the 
platform, and:

FL4(l, t) = ntEI0wʹʹ1(l, t) = ntEI0φʹʹi(l)exp(Iωi t)  (54)

Similarly, φʹʹ iʹ(l) can be obtained by the force FL1(l, t) 
exerted by the tether on the platform. Thus, φʹʹi(l) and φʹʹ iʹ(l) 

can be expressed by the interaction forces FL1(l, t) and FL4(l, t), 
respectively. Then, the expression of Eq. (51) is:

(55)
According to the axial motion Eq. (24) of the tether, we 

can obtain:
ρA0ẅ3(l, t) – N (ʹl) = f3(l, t)      (56)

The governing Eqs. (55) and (56) of the tethers are solved 
together with the surge motion Eq. (28) and the heave motion 
Eq. (35), and the time history curves of the surge motion and 
heave motion of TLP can be obtained. Similarly, the solution 
of sway motion is similar to the surge motion. After the time 
history curves of TLP’s surge, sway, and heave motions are 
obtained, the interaction forces between the tethers and the 
platform, as shown in Eq. (46), are inserted into Eqs. (42), 
(43), and (44), and solved in parallel. The time history curves 
of pitch, roll, and yaw motions are obtained.

The calculation flow chart of the coupled TLP model is 
shown in Fig. 10.

COMPARATIVE ANALYSIS 
OF THE COUPLED TLP MODEL 

AND THE UNCOUPLED TLP MODEL
The four corners of the platform are connected by four 

groups of tethers, and each group is composed of two tethers, 
as shown in Fig. 11. The calculation parameters of the platform 
are shown in Table 1; the number of surface elements of TLP is 
3105, and the time step is 0.05 s. Table 2 shows the parameters 
of the tether. The flow parameters of the regular waves are 
shown in Table 3. We will use the uncoupled TLP numerical 

Fig. 9. Nodes of tether numbering scheme

Fig. 10. Time domain coupled motion flow chart of TLP
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program and the coupled TLP numerical program, respectively, 
to calculate the mathematical model in this paper.

In order to verify the accuracy of the calculation results, 
the uncoupled TLP model and the coupled TLP model are 
respectively used to calculate the RAO motion response of the 
ISSC TLP platform, and the calculated results are compared 
with the experimental results of Tan [20]. Tan’s model test was 
carried out in a seakeeping basin with a water depth of 450 m. 
The experimental simulation of the RAO test was carried out 
for the model respectively. By comparison, it can be concluded 
that the coupled TLP model is closer to the experimental results 
than the uncoupled TLP model. The main reasons for the error 
between the theoretical analysis results and the experimental 
results include: the average wet surface theory is applied to 
the wet surface of the floating body when the plane element 
method is used for model analysis, but the actual wet surface 
changes with time.

Fig. 13 shows the comparative results of the motion 
responses in the regular waves using different methods. 
Among them, the dotted line represents the uncoupled TLP 
model, which assumes the tether as a massless spring structure. 
The solid line stands for the coupled TLP model calculation 
method, in which the current velocity is 0 m/s, and the wave 
direction angle is 60°. By studying the statistical results in 
Table 4, it can be concluded that the vibration frequency of 
the uncoupled TLP model is similar to that of the coupled TLP 
model, and the vibration amplitude of the coupled TLP model 

Fig. 11. The mesh of tension leg platform

Fig. 12a. RAO for TLP: surge motion

Fig. 12b. RAO for TLP: yaw motion

Tab. 1. ISSC TLP calculation parameters

Tab. 3. Flowfield parameters

Tab. 2. Tether parameters

Parameters Values

Depth of column (m) 31.3

Length of pontoon (m) 60.0

Diameter of side column (m) 16.0

Total platform mass (including vertical tension) (kg) 3.466e7

Number of tethers 8

The moment of inertia in the X direction (kg · m2) 8.45e10

The moment of inertia in the Y direction (kg · m2) 8.45e10

The moment of inertia in the Z direction (kg · m2) 1.02e11

Parameters Values

Wave length (m) 156

Wave height (m) 10

Wave period (s) 10

Coefficient of inertia force 2

Coefficient of mass 1

Coefficient of drag force 1

Depth (m) 430

Angle (degrees) 60°

Parameters Values

Tether length (m) 600

Inner diameter of tether (m) 0.2501

Outer diameter of tether (m) 0.9

Total pretension (N) 1e8

Material density (kg · m–3) 6000

Elasticity modulus (GPa) 200
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Fig. 13. Comparison of motion responses of TLP under different calculation methods
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is slightly smaller than that of the uncoupled TLP model. 
Among them, the relative errors of amplitude and frequency 
of surge, sway, and yaw motions of the two calculation models 
are relatively small; the average relative errors of amplitude 
and frequency are about 7.46% and 0.591%, respectively. 
The relative errors of amplitude and frequency of roll, pitch, 
and heave motions are large, and the average relative errors 
of amplitude and frequency are about 24.16% and 5.728%, 
respectively. The vibration of the tether in the uncoupled 
model is linear, and the vibration of the coupled model is 
non-linear. The influence of the tethers on the movements of 
the TLP is mainly reflected in the movement of the platform 
on the vertical plane, so the results of the platform motions 
on the vertical plane (heave, pitch, and roll) calculated by 
the two methods are quite different, while the results of the 
platform motions on the horizontal plane (surge, sway, and 
yaw) are less different.

Combined with the motion response results of TLP under 
the regular waves, the most obvious distinguishing feature 
of these two models is the platform’s motion in the vertical 
plane (roll, pitch, and heave). Compared with the coupled 
TLP model, the uncoupled TLP model has higher oscillation 
frequencies and amplitudes. The main reason is that the mass 
of the tether is not taken into account in the uncoupled TLP 
model, and the tether is simplified as a spring structure with 
stiffness, ignoring the coupled effect of axial and transverse 
vibrations of the tethers. The consistency of the coupled and 
uncoupled TLP models is also noteworthy and demonstrates 
that the simpler system (the uncoupled TLP models) can be 
used to predict the surge/sway and sway motions. However, 
when calculating and studying the heave and roll/pitch 
motions of TLP or the motions of the tethers, the coupled 
TLP model is more suitable. In addition, the coupled TLP 
model considers both the coupled effect of the tether vibration 
and the coupled effect of platform motions. In contrast, the 
uncoupled TLP model only considers the coupled effect of 
platform motions, which also affects the movement of the 
platform in the vertical plane. To sum up, compared with 
the uncoupled TLP model, the coupled TLP model has the 
characteristics of higher precision of calculation results and 
wider application range.

THE EFFECTS OF SECOND-ORDER 
IRREGULAR WAVE ON THE TETHER

To study the influence of second-order wave forces acting 
on tether motion using the coupled TLP model, the motion 
responses of four design schemes are calculated in Table 5. 

Fig. 14 shows the comparative results of the surge motion 
responses of TLP under the second-order wave forces. As 
shown in Table 5, case1 only considers the influence of first-
order wave force, case2 considers both first-order wave force 
and mean drift force, case3 considers both first-order wave 
force and second-order differential frequency force, and case4 
considers both first-order wave force and second-order sum-
frequency force. As shown in Fig. 14a, the four design schemes 
have similar motion trajectories and different platform offset 
distances. Since the wave direction angle is 0°, the offset of 
the transverse vibration can be regarded as the offset of the 
platform.

The offsets of the four design schemes are calculated in 
Fig. 14b. Among them, the offsets of case2 and case3 are 
obviously large, while case4 and case1 have little change, and 
their values are relatively close. It is verified that both the mean 
drift force and the second-order differential frequency force 
will cause low-frequency slow drift motion of the platform, 
resulting in the increase of the horizontal offset of the platform. 
Meanwhile, the second-order sum-frequency forces have little 
influence on it.

Filtering is performed on the history curve of the transverse 
vibration in Fig. 14a, and the filtering threshold is set as 
0.157 rad/s (40 s) to obtain the high-frequency curve and low-
frequency curve of the surge motion as shown in Fig. 14-d and 

Tab. 4. Statistical table of motion responses of TLP

Tab. 5. Design scheme of the irregular waves

Coupled TLP model Uncoupled TLP model Relative errors

Amplitude (m) Freqency (rad/s) Amplitude (m) Freqency (rad/s) Amplitude (%) Freqency (%)

Surge 0.5302 0.637 0.5726 0.634 7.997 0.591

Sway 0.91924 0.638 0.9821 0.634 6.838 0.689

Heave 0.0313 0.599 0.0357 0.634 14.863 5.654

Amplitude (rad) Freqency (rad/s) Amplitude (rad) Freqency (rad/s) Amplitude (%) Freqency (%)

Roll 0.0086 0.599 0.0109 0.634 26.744 5.654

Pitch 0.0136 0.598 0.0178 0.634 30.882 5.876

Yaw 0.2439 0.637 0.2623 0.634 7.544 0.591

First-order 
wave force

Mean drift 
force

Second-
order 

differential 
frequency 

force

Second-order 
sum-

frequency 
force

case1 × × ×

case2 × ×

case3 × ×

case4 × ×

Note: “ ” means to consider, and “×” means not to consider.
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Fig. 14. Comparison results of surge motion responses of TLP

Fig. 15. Comparison results of heave motion responses of TLP
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Fig. 14e. The low-frequency curve shows that both the mean 
offset force (case2) and the second-order sum-frequency force 
(case3) will cause the surge motion of the platform to occur 
in the long-period low-frequency floating motion, while the 
second-order high-frequency force (case4) has little effect on 
the surge motion of the platform.

Fig. 15 shows the heave motion responses of TLP under the 
second-order wave forces. The setdown of the platform has 
occurred in different degrees under the four different design 
schemes by observing Fig. 15b. The setdown of case2 (mean 
drift force) and case3 (second-order differential frequency 
force) are large, similar to the platform’s offset.

The time-history curve of the axial vibration in Fig. 15a is 
filtered, and the filtering threshold is 0.628 (10 s). By observing 
the local magnification of the low-frequency curve of axial 
vibration, there is no obvious change in the amplitude and 
vibration frequency of the tether, indicating that the second-
order wave force is not directly related to the setdown of the 
platform. The setdown of the platform is mainly caused by 
the coupled effect of surge/pitch motion and heave motion.

By observing the local magnification of the high-frequency 
curve of the axial vibration, the time history curve of case4 
(second-order sum-frequency force) moves at high frequency 
in the local time period, which shows that the second-order 
sum-frequency force will cause the high-frequency motion 
of the platform.

To sum up, Table 6 illustrates the influence of wave forces 
on platform motions. Both the mean wave drift force and 
the second-order differential frequency force will cause the 
offset of the platform. Additionally, the axial vibration will 
also produce the setdown phenomenon due to the influence 
of the platform motion coupled effect. The second-order drift 
force causes the axial vibration to move at a high frequency.

CONCLUSION

This paper has established two TLP models: the uncoupled 
TLP model and the coupled TLP model. In the uncoupled TLP 
model, the effects of horizontal offset and vertical setdown 
are considered in the restoring force coefficient matrix. In 
the coupled TLP model, the finite difference method is used 
to solve the non-linear tether vibration equation numerically.

By comparing the results of the TLP motion responses 
calculated by the two models, the conclusions are as follows: 

the average error between the results and the coupled TLP 
model is less than 10% when the platform’s surge, sway, and 
yaw motions are calculated by the uncoupled TLP model. 
However, the model is simple and easy to implement. When 
studying the heave, roll, and pitch motions of TLP, the average 
error between the uncoupled TLP model and the coupled 
TLP model is greater than 15%, and the coupled TLP model 
is more suitable.

Under the action of second-order wave force: 
a)  the second-order differential frequency force and the average 

drift force cause the horizontal offset of the platform. 
b)  The second-order sum-frequency forces have little influence 

on the movement in the horizontal plane but produce high-
frequency movement in the vertical plane.

c)  The average drift force and the second-order difference 
frequency force make the platform drift slowly. 

This work was financially supported by National Natural 
Science Foundation of China (No. 52075469).

APPENDIX A: HYDRODYNAMIC 
COEFFICIENT OF THE PLATFORM

BEM (boundary element method) determines the 
hydrodynamic coefficient of the platform under the action 
of waves. Since the platform is a slender structure, the effect 
of wave viscosity on the slender structure cannot be ignored. 
Then, the drag force on the floating structure is determined by 
the Morison equation. Therefore, the hydrodynamic coefficient 
of the platform is calculated by the methods of BEM and the 
Morison equation.

Added mass and memory function
The added mass and memory function can be determined 

by calculating the radiation potential of the platform. The 
integral equation of the radiation potential is calculated by 
using the boundary element method. The expression [21, 22] 
is shown as follows:

 
(57)

where Φk is the velocity potential that needs to be evaluated. 
The coordinates of field point p and source point qare (x, y, z) 
and (ξ, η, ζ), respectively, with both lying in the water (z ≤ 0). 

, , and  
represent the horizontal or the three-dimensional distance 
between field point p and source point q or the ’ q s image 
about the still water surface. sb is the wet surface of the floating 
structure. nq is the unit normal vector of any source point 
on the wet surface. (p, t; q, τ) is the memory term of the 
corresponding time-domain Green function. Its expression 

Table 6. The influence of wave force on platform motions

First-order 
wave force

Mean drift 
force

Second-
order 

differential 
frequency 

force

Second-order 
sum-

frequency 
force

Surge 
motion

Wave 
frequency 

motion
Offset Offset /

Heave 
motion

Wave 
frequency 

motion
Setdown Setdown

High-
frequency 

motion
“/” represents wave forces have no influence on platform motions.
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[23] is:

(p, q; t) = 2 dk  sin( )ek(z+ζ)J0(kR)  (58)

where J0 is the Bessel function of the first kind with order 0.
The calculation method of the Green function is based on 

Clement [8]. The memory of the Green function is transformed 
into a fourth-order ordinary differential equation, and then the 
Runge-Kutta method is adopted to calculate the differential 
equation.

According to the method of Fual [9], Eq. (57)is decomposed 
into instantaneous part and memory part. The expressions 
of them are:

(59)

(60)

Eqs. (59)and (60) are numerically discrete. A series of 
quadrilateral grids use the wet surface of the 3D object to 
approximate. In each quadrilateral grid, the velocity potential 
is taken as a constant, and then the algebraic equation sets of 
instantaneous part and memory part are:

 Aij(ψk)j = Bi   i = 1, 2, … , M  (61)

 Aij[χ
k(tN)]j = B(tN)i  i = 1, 2, … , M  (62)

where M is the number of quadrilateral elements; N is the 
current time steps; (ψk)j is the instantaneous part of the j 
element; [χk(tN)]j is the memory part of the j element in the 
time of tN; Aij, Bi, and B(tN)i are the coefficient matrixes, and 
the expressions are:

(63)

(64)

(65)
where Δt is the time step; tN = NΔt; tn = nΔt.

By the calculation of algebraic equation sets, the integral 
equations of added mass and memory function are:

μik = ρ ψk(q)njdSq        (66)

jk(t) = ρ  χk(q, t)dSq       (67)

Ajk(ω) = μik – Kjk(τ)sin(ωτ)dτ    (68)

Bjk(ω) = Kjk(τ)cos(ωτ)dτ      (69)

where jk(t) is the memory function; Ajk(ω) is the added mass; 
Bjk(ω) is the damping coefficient.

The damping matrix 
The damping matrix assumption is related to the mass 

matrix and the restoring force matrix, which can be expressed 
as follows:

ΦT[K]Φ = [2ζiωimi]        (70)

where Φ is the shape matrix ωi is the structure natural frequency 
K is the damping matrix mi is the modal mass mi = ΦT[M]Φ, ζi is 
the dimensionless damping ratio of each mode, generally 0.05.

The solution of Φ and ωi is presented below.
For the undamped vibration:

M  + KY = 0          (71)

The characteristic determinant is:

|T – λM| = 0          (72)

The characteristic vector [Φ1, Φ2 … ΦN] and characteristic 
 
value  are obtained,

λi = ωi
2   ωi =       (73)

The modal mass is

 = [Φ]T[M][Φ]        (74)

The K matrix can be obtained by solving the following 
matrix equation:

ΦT[c]Φ = 2ξi      (75)

WAVE FORCE

Froude-Krylov force
Froude-Krylov force is caused by the incident potential, 

and its expression is:
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FjI(t) = p (q, t)njdSq      (76)

where FjI is the Froude-Krylov force in the j(j = 1, 2, … ,6) mode 
of motions. nj is the unit surface normal vector.

The expression [10] of the dynamic pressure acting on the 
floating structure by the incident waves is:

p(p, t) = (p, t – τ)ζ0(τ)dτ     (77)

where (p, t) is the impulse response function of pressure. 
The expression is:

(p, t) = Re{ ek(z–iα)eiωtdω}     (78)

When the incident wave is a  regular wave per unit 
wavelength, ζ0(t) = eiωt.

Diffraction force
The diffraction force is mainly caused by the diffraction 

potential, and its expression is:

(79)

where the impulse response function (p, t) is:

(80)

The calculation method of diffraction potential is the same 
as that of radiation potential. By solving the integral equation of 
the diffraction potential, the expression of diffraction force is:

Fj7= ζ0(τ)dτ[–ρ  7(q,t–τ)njdSq]   (81)

Drag force
For slender columns, the influence of the drag force on the 

platform can be calculated by the Morison equation, and the 
drag force per unit length of column is:

fD= ρCDD(wx – )|(wx – )|     (82)

where D is the diameter of the column; CD is the coefficient 
of drag force; wx is the horizontal component of the velocity 
of the fluid particle;  is the velocity of a floating structure.

The determination method of drag force coefficient [11] is: 

     60.566 – 5.93 Re   Re ≤ 10
CD =  1.25      10 < Re ≤ 5 × 105  (83)

     0.7           Re > 5 × 105

where: Re is the Reynolds number, that is, Re = UD/v. U is 

the relative velocity of the fluid. D is characteristic length. In 
this paper,  is the diameter of the column. v is the coefficient 
of kinematic viscosity, which is 1.346eE-6 m2/s when the 
temperature of seawater is 10°C.

The velocity of a fluid particle is calculated by the Airy linear 
wave theory. The velocity of water particles (x-direction) is:

Wxʹ =  sin(kz – ωt)      (84)

The velocity of water particles (y-direction) is:

Wyʹ = 0             (85)

The velocity of water particles (z-direction) is:

Wzʹ =  cos(kz – ωt)      (86)

where WH is the wave height; WT is the wave period; k is the 
wave number; ω is the wave frequency; d is the water depth.

According to the method of the coordinate transformation, 
it transforms the particle velocity in the wave coordinate system  
OʹXʹYʹZʹ to the static coordinate system OXYZ:

        Wx = Wxʹ cos α
 Wy = Wyʹ cos α            (87)

        Wz = Wzʹ

α is the angle between the coordinate system OʹXʹYʹZʹ and the 
static coordinate system OXYZ.

The relative velocity between water particle and floating 
structure in the static coordinate system OXYZ is:

 = ( 1 + 2 + 3 ) +  ×      (88)

= x1 + x2 + x3          (89)

where:  ×  = , and substitute it into Eq. (88). Then 
 
the relative velocity is: 

r = wrx + wry + wrz  = [wx – ( 5x3 – 6x2 + 1)] +

[wy –(– 4x3 – 6x1 + 2)] +[wz – ( 4x2 – 5x1 + 3)]  (90)

The wet surface of the platform is separated into a series of 
differential rings, and the centres of the circles are taken as 
discrete points. Based on the Morison equation, the drag force 
calculating formula in the case of the ith discrete element is:

 = ρCDD       (91)

The calculation formula of the drag forces of the platform 
in waves is:
          FDx    FDxi
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 FDy =   FDyi          (92)
          FDz    FDzi

where N is the number of discrete elements on the platform.
The calculation formula of the drag moments of the platform 

in waves is:

          MDx = FDzy – FDyz
 MDy = FDxz – FDzx       (92)

          MDz = FDyx – FDxy

When the relative velocities are calculated, the velocities 
of the platform are required. Therefore, the formulas of wave 
drag forces are linked with the differential motion equations of 
the floating structure, and the time iteration of the differential 
equations is carried out. Then the drag forces of waves on the 
platform can be calculated.

Second-order wave forces
The wave force on the platform includes not only the first-

order wave force calculated above but also the second-order 
wave force. The second-order wave forces consist mainly of 
the mean drift force, the sum-frequency wave force, and the 
differential frequency wave force [20].

There are two methods of calculating the mean drift force, 
including the near-field method and the far-field method. 
The near-field method is based on the direct solution of the 
waterline surface and object area components to obtain the 
average drift force for the six degrees of freedom of the platform. 
The far-field method is achieved mainly through the law of 
conservation of energy. In contrast, the far-field method can 
only result in the calculation of the platform’s component in 
the horizontal plane. The near-field and far-field formulations 
of the mean drift force are given separately [21, 22].

The near-field equation for mean drift force is:

   (94)

   (95)

while the far-field equation for mean drift force is:

     (96)

     (97)

As the near-field formulation of the mean drift force can 
calculate the motion of the platform in six degrees of freedom, 
the far-field formulation can only calculate the surge, sway, 
and yaw motions, this paper focuses on the effect of the mean 

drift force calculated by the near-field method on the motion 
response of the TLP.

The expression for the second-order force [21, 22] can be 
expressed as:

F (2) = ρд η(1)2ndΓ – ρ (ϕt
(2) + ( ϕ(1))2)ndS (98)

The above equation is bounded using second-order 
bypassing-radiation theory, and the standard form of the 
second-order force calculation equation: 

F (2)(t) = A2
1  fd(ω1) + h{A2

1  f+
(2)(ω1, ω1)e–2iω1t + 

A2
2  f+

(2)(ω2, ω2)e–2iω2t + 2A1A2   f–
(2)(ω1, ω2)e–2i(ω1–ω2)t + 

2A1A2   f+
(2)(ω1, ω2)e–2i(ω1+ω2)t} + A2

2  fd(ω2)   (99)

where fd is the normalised mean drift force; f+
(2) is the second-

order transfer function (QTF) of the normalised sum-frequency 
force; f–

(2) is the second-order transfer function (QTF) of the 
normalised difference frequency force; ω1 and are the ω2 wave 
frequencies of the two incident waves; A1 and A2 are the wave 
amplitudes of the two incident waves respectively.

In this paper, the frequency domain solution of the second-
order force is calculated based on the HydroD module, including 
the average drift force fd and the second-order transfer function 
(QTF) of the sum-frequency force and differential-frequency 
force, respectively, and embedded in the coupled TLP model 
compiled in this paper to obtain the TLP motion responses 
under the influence of the second-order wave forces.
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