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INTRODUCTION
Most structures arc complex systems generally made of (or 

modelled as composed of) members connected together in a particu­
lar way. The sub-division of a structure into the parts is a necessary 
stage for undertaking any stress analysis. It usually requires conside­
rable simplification and idealization of the structure. In this paper it 
is assumed that the so obtained model includes beam elements sub­
jected to random dynamic loads.

In general, complex loads can generate combined bending, tor­
sion and tension-compression of a beam. Hence fatigue assessment 
of beams under such loading is considered. The aim of this paper is to 
elaborate a spectral fatigue criterion for beams under assumption that 
the loads represent stationary stochastic processes of zero mean val­
ues and known power spectral densities, as the multiaxial fatigue 
models exist almost exclusively in the time domain and the use of the 
frequency domain methods can lead to substantial computer time sav­
ings [1], For this purpose the theory of energy transformation sys­
tems [2] and distortion-energy strength hypothesis [3] are employed.

APPLICATION OF THE DISTORTION- 
-ENERGY STRENGTH HYPOTHESIS

In the general state of static stress in beams the strain energy 
of distortion per unit volume, tj). is given by :

where :
E- Young modulus 
v- Poisson's ratio
CTa - normal stress due to axial force 
Oh - normal stress due to bending load 
c, - shear stress due to torsion load.

According to the distortion-energy hypothesis 
the equivalent normal stress oc satisfies the equation :

<t>e = ( t>

where : <)>c - the strain energy of distortion per unit volume 
in the equivalent stress state.

This paper deals with fatigue assessment 
of metal beams under complex loading. Com­
bined axial, bending and torsion loads are ta­
ken into account under assumption that the 
material complies with the Kelvin-Voigt’s mo­
del and has a fatigue limit, and the stress com­
ponents are stationary stochastic processes 
which are stationary correlated and differen­
tiable in the mean-square sense.

By taking the power spectral densities of 
the stress components for known the crite­
rion of infinite fatigue life of beams is formula­
ted in the frequency domain. For this purpose 
the distortion-energy strength hypothesis and 
the theory of energy transformation systems 
are used.

that is :

Hence :

0c:= ( o a + a b)2+ 3ar (3)
Adaptation of the distortion-energy hypothesis to the stochastic 

stress is based on the assumption that (3) can be also utilised for the 
time-variable stress components [1,8],

a a = ° a ( t )  ° b = ° b ( 0  o t = O t ( 0

This hypothesis is valid for ductile materials. The energy dissi­
pated by such materials under dynamic loads below the yield point 
can be calculated by means of the Kelvin-Voigt’s model [3^5],
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For the sake of simplicity, the uniaxial Kelvin-Voigt’s model :

o = Ee + r|e (4)

(instead of the biaxial one [5]) is here applied 
to the stress components Oa, Ob and to the equivalent stress; 

and the analogous model :

X = Gy+A,y (5)

is used for the stress component a , ,

where :
C, e - normal stress and strain, respectively 
T, y - shear stress and strain, respectively 
G - shear modulus
q, X - coefficients of internal viscous damping 

of the material.

Equations (1) through (5) yield :

(Eee + r|e e)2 = (E e a + r je a + E eb + r|£ b)2 +3 (G e t + Xt t)2

(6)
where :

£e - the equivalent normal strain
Ej - the strain associated with Cj (i = a, b, t).

In uniaxial problems the following approximate expressions 
arc commonly accepted :

e (0 = - ^ o ( t )
E

y ( t ) = 7 7 ^ ( t )
G

(7)

( n ■ 12 f
o,, + — =

V E J l

so that (6) becomes :

ri . H .
a a + ~ a a + a b +  ~ a b + 3

/
< 7 .+ T 7 °t

V G  J

X . f
t

(8)

The time domain relationship (8) is not convenient for evalua­
tion of parameters of the equivalent stress from spectral data. There­
fore (8) should be transformed into the frequency domain.

FORMULATION OF THE PROBLEM
It is assumed that the stress components are stationary (in the 

wide sense) stochastic processes which are stationary correlated and 
differentiable in the mean-square sense [6,7]. Accordingly, 2nd order 
time derivatives of the correlation functions :

K ai (x) = \ CT*(tl )o i ( t2)) X = t2 - t ,  

K 0.0vW =(C T*(t,)ok ( t2 )) i.k  = a,b, t i * k

exist, where :
(•) - denotes the expected value and 
. - stands for the complex conjugate,

the following relationships hold :

K d,0i W = (a*(ti k  (t2 )) = “  K a, to

(9)

K 0|d, t o  =  0 1 k  ( t2 )) =  —  K 0 . ( l )  (10)

2

K o, t o  = (o- (tj )o, ( t2 )) = -  K o; t o

and :

Kd,ok ( x ) = k  k  k ) )  = -  ̂  Ko,ok (x)
(11)

K Oidk (x) K 0j0k (x) K didk (T) ^ 2  K °i°k to

For the equivalent stress Oc the same assumptions are valid. How­
ever in this case, to facilitate the formulation of the fatigue criterion, gc 
is defined as a periodic (in the mean-square sense) process [8] :

a e(t) = a sin (coet + tp)= a] exp(jcoet)+ a _ |e xp (- jcoet)
( 12)

where :
a - random amplitude phase angle
tp - random phase angle
00c - constant circular frequency

and [7] :

\a ! / = \a_,y = \a ia _, 

a

a_ja, ) = 0

a i — exp (j cp) a _ ,= i 
2 j

(13)

In order to obtain the frequency domain formulation of (8) it is 
rewritten in terms of correlation functions of the processes involved 
therein as follows :

^ ( t i ) + 5 < ( t , ) + o ; ( t , ) + ^ 6 * b( t , )
r\

o ak ) + ? ^ a(t2) + a b(t2) + 5 c b(t2) +

+ 3
u o t k ) + p o tk )G

(14)

By using (9) through (13), the following is obtained from (14) :

'  - 2  
l +  \ c o 2 

E 2 7
,2 .2

'a 2)[exp(jcoex)+exp(-jcoex)] =

2 2

+  K oaab t o -  ̂ 2  ^ 2  K °a°b t o  +

+ K ob. a Kabaa (x )+3K C| ( x ) - 3 ^ ^  K Ct (x)

(15)

where k ) ' s the mean-square value of the equivalent stress 
amplitude. Fourier transformation of (15) yields as follows :

4 POLISH MARITIME RESEARCH, No 2/2002



(  *,2
l + i y co;

2  ̂
l + \ c o 2 

E 2

a 2 ̂ )[5(co -  coe)+ 8(co+ coe )] =

[s Ca (®)+SCb (co)+Saa0b (co)+S0b0a (co)] 

Sa , (to)

+

+ 3 1 ^  2 1 + — o r
G'

V /
where :

8 - Dirac's delta function
Sa  , SCTb, Saj - power spectral densities of the processes 

<3a, Gb and c„ respectively 
S© o • Sa CT ■ cross power spectral densities

of the processes oa and ob, respectively, 
which satisfy the relation [7] :

(16)

So 0 (cd) =  S* (co)°h°n V 7 oaOb V 7
(17)

The quantities (a2) andcoe cannot be determined from (16) with­
out additional assumptions. This problem is below solved by means 
of the theory of energy transformation systems.

APPLICATION
OF THE THEORY OF ENERGY 
TRANSFORMATION SYSTEMS

According to the theory of energy transformation systems [2], 
a uniaxial stress and multiaxial stress can be regarded as equivalent in 
terms of fatigue lifetime of the material if during service life the inter­
nally and externally dissipated energies per unit volume in these states 
are respectively equal [8].

For stationary stochastic processes the frequency domain for­
mulation of those conditions can be expressed as follows.

A one-dimensional stress process and vector stress process can 
be regarded as equivalent in terms of fatigue lifetime of the material if 
over the whole frequency range the internally and externally dissi­
pated powers per unit volume in these stress states are respectively 
equal.

So, considering the internally dissipated powers, 
one gets from (16):

n
4E

oo

v co2^a2  ̂ J[8(co-coe)+5(co+coe)]dco =

T
oo  oo

J  o rS 0 (oo)dco + J  co2S0b (co)dco + (18)

+ 3 Jco2S0i (co)dcoJ “ 2Saaab M d“  + J “ 2Sabaa (<o)d<0
—OO —oo

Equations (16) and (18) imply th a t:

1 00
-^ a 2  ̂J[5(co-coe)+8(co+coe)]dco =

— oo

o o  oo

= J s Oa(co)dco + J s 0aOb(co)dco +

oo oo  oo

+ JS<jhoa (co)dco + JSab (co)dco+ 3 JSC| (co)dco

Equations (17) through (19) give the following equivalence 
conditions between the considered stress and that equivalent:

(19)

-C 02(a 2) =

JCO2S0a (co)d(t)+ 2 JC02Sa,ob (co)dco + (20 )

+
“  / i p  \ 2 00
JarS 0b(co)da)+3 —  J  co2S0t (co)d

— oo  \  J  — oo

00

- \ a / =  JS0 (co)dco+2 JSaaob(co)dco +
— o o  — oo

o o  oo

+ J  S0b (co)dco+3 J  S0( (a))dco
(21)

where the bar over Sc Cb denotes its real part, namely :

SaaCb( c o ) = R e [ s o .i0h(co)] (22)

Hence :

a ) = 2 JS 0a(co)dCO+2jSOaab(co)dCO +

(23)

“ e =

+ j s 0b(co)dco+3js0t(co)dco

JCO2S0a (co)dCO+ 2jC02Saaob (co)dco +
— oo  — oo

oo oo

JS0a (co)doo+ 2jSoaab (co)dco+

(24)

+ J  co2S0b (co)dco+ 31 J  co2S0( (co)dco
r)G

1/2

+ j s 0b(co)dco+3js0( (co)dco

It should be pointed out that in the case of a single stress cra or ob, 
(24) is reduced to the Rice’s formula for the mean frequency of 
a stationary Gaussian process [7], However, the assumption of norma­
lity of the stress processes was avoided in this paper.

CRITERION
OF INFINITE FATIGUE LIFE

The problem to be faced in this section is the use of (23) in 
designing for infinite fatigue life if the material capacity is characte­
rized by its fatigue limit F under fully reversed tension-compression. 
In this case the simplest criteria are as follows [9] :
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(m)>0

and

I-*) -  0

(25)

(26)

where p and p are the relative fatigue safety margins defined as :

I  f  = f
f  a

1

f = -  (27)
a

, 1
H = 1-----7  (28)

f -

By regarding F as a deterministic quantity (25) and (27) give :

(a ) < F  (29)

whereas (26) and (28) lead to :

a 2 < F 2 (30)

Of course, the criterion (30) is more conservative than (29) 
because :

(a ) ' =  ^a2^ -V a r (a )  (31)

where Var (a) is the variance of the equivalent stress amplitude.

Having determined the mean-square value of the equivalent stress 
amplitude one can obtain the criterion (30) in the following form :

J Sc (co)dco +  2 J S0ao b (co)dco + J S0b (co)dco +

(32)
1

+ 3 j S 0i ( c o ) d c o < - F 2

The problem of estimation of the relevant probability 
of infinite fatigue life requires further analysis.

In view of the scatter inherent in fatigue tests, it is advisable 
to assume F to be a random variable, and to replace (32) by :

Jsa (co)dco+2 J S aaa b (co)d(fl +  J SCh((t))dco +

(33)

ico < — (F‘ 
2

+ 3 j s „ » d c

where(F2)is the mean-square value of the fatigue limit F.

EXAMPLE
Task

Determine the criterion of infinite fatigue life based on (30) if 
a beam is subjected to a random axial force and bending moment 
which generate, at a given point, the stationary (in the wide sense) 
and stationary correlated stress components :

Oi ( t ) = X ( A i p COSMPt +  B ips in(0Pt ) i =  a ’ b (34)
p=l

where Aip and Bip are random variables.

Solution
Applying Euler formulae : 

cos (Opt =  ^  [exp (jcopt) +  ex p  ( -  jcopt)]

sin (Opt =  '^ j[e x p ( j(O p t) - e x p (-jc O p t )]

one gets :

( t ) =  £  [Cip exp  (j(Opt)+ D jp ex p  ( -  jcopt)] (35)
p=i

where :

C jD =  — A jD H-----Bj Djp =  — A :d -------BjD
ip 2  *p 2 j "  2 2 j

Denoting - cop = co.p equation (35) can be rewritten into the form :

<7i(0=  X H ip e x p O “ Pt ) (36)
p=-n

where :

H ip= C ip fo r  p =  l,2 ,. . . ,n  and

Hip= D ip for p = -1,-2,.,.,-n

The correlation functions of the stress components become :

Ka,(t i-t2) = ( l X pexp( - jC0pt,) ^ H imexp(jcomt2))
\P=-n

(37)

K aaob(tiA 2) =  (  S H * p exp(-jcO p t,) X H bmexp(jcomt 2)J
\P=-n

Hence :

K 0 i( t „ t 2 ) = £ £ e x p [ j(comt 2 - c o pti)](H *pH im)
p=-n m=-n

(38)
n n

•aaob ( t l . t 2 ) =  X I e x P [j(®mt2 — ® pl| )](H apH bm^
p=-n m=—n
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Stationarity in the wide sense implies that : So, the criterion (30) takes the form :

R jpfo rp  = m 

0 for p *  m

( ^ a p ^ b m
R abpf o r P =  m

0 for p *  m

X (  A ap +  Bap) +  2 X (  A apA bp +  BapB bp) +  X (  A hp +  Bbp) -  F" 
P=l P=l P=1

(43)

CONCLUSIONS

where

R - - / a 2 + CD it
J

■p 4 \  T ‘ /

1
abp ~ ~ ( A ap A bp +  BapB bp) T ( A apB

r
- A bp

In this paper a criterion of infinite fatigue life of metal beams in 
the frequency domain was formulated. For this purpose the distor­
tion-energy strength hypothesis and theory of energy transformation 
systems, were applied. Moreover, it was assumed that the material is 
ductile and has a fatigue limit, and that the stress components repre­
sent stationary (in the wide sense) and stationary correlated stochastic 
processes differentiable in the mean-square sense. By taking the power 
spectral densities of individual stress components for known an equiva­
lent stress was defined.

Thus :

Ko, (t | - 12 ) =  K o, CO =  X  R ip eXP G“ pX)
p=-n

R a , 0 h C l A 2 ) R o.,ab CO ^  R abp e x P Gw px )

(39)

P=-n

Fourier transformation of (39) yields :

n , ,
Sal(« )= X Rip5 l(° - (0p)

P=-n
n , v (40)

S a„ob (“ ) = X R abp5 (“ - “ p j
p = -n

The mean-square value of the equivalent stress amplitude is found 
by substituting (40) into (23), which gives :

n n _ n

X R ap +  2 X  R a h P + X R bp
p=-n P=-n P=-n

where :

(41)

R  ahp —' A apA bp B apB bp

Appraised by Marek Sperski, Assoc.Prof,D.Sc.

NOMENCLATURE

a
E
f
F
G

K«,
Ka,c,
V
S°„oh
So.oh

Y
6

e.
n

X _  
M-M

a

o,
T

0 . 0c

0)
(Dc
(... .)

O'

a.h.t

equivalent stress amplitude 
Young modulus 
fatigue safety factor
fatigue limit under fully reversed tension-compression 
shear modulus 
imaginary unity
auto-correlation function of the process o  (i = a.b.t) 
cross-correlation function of the processes o a and 
power spectral density o f the process a, (i = a.b.t) 
cross power spectral density o f the processes o a and 
real part o f Sc CT 
time
shear strain
Dirac’s delta function
normal strain
equivalent strain
i-th strain component (i = a.b.t)
coefficient of internal viscous damping o f the material in tension- 
-compression
coefficient o f internal viscous damping of the material in torsion
relative margins o f the fatigue safety
Poisson's ratio
normal stress
equivalent stress
i-th stress component (i = a.b.t)
time interval, shear stress
strain energies o f distortion per unit volume in the general static
and equivalent stress states, respectively
circular frequency
equivalent circular frequency
expected value

complex conjugate.

Indices

quantities associated with axial, bending and torsion loads, respectively.
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p=-n
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4 ^
P=-n
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P=1 P=1 P=1
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