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Theoretical 
problems of the 
motion stability 
of turbine rotors

The theoretical motion stability problems 
of the rotors of great output turbosets are con­
sidered in the paper. The rotor motion equa­
tions are solved by using the transfer matrix 
method and applying complex variables. The 
motion stability is introduced according to the 
Lapunow idea. The theoretical results are 
applied to motion stability investigation of 
a 200 MW energy-plant turboset.
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INTRODUCTION
For the dynamical analysis problems of the complex mechani­

cal systems the division into relatively simple subsystems like: 
dimensionless (concentrated) inertial elements, rigid finite elements, 
massless elastic elements, damped deflection elements etc. have been 
applied. Those simple systems are known as modelling subsystems 
because a physical model of the whole system is defined by physical 
models of the simplest subsystems.

Mathematical model of the mechanical system consists of equa­
tions of motion for the modelling subsystems, equations describing 
mutual influence between those systems (the equation of balance of 
the influence forces, equations of the displacement compatibility of 
the subsystems), and the equations describing influence of the „envi- 
ronment” on the considered system (the equation of the constraints 
and external forces). The characteristic feature of the mechanical sys­
tem is that all physical parameters of each simple modelling subsys­
tem are simultaneously the model parameters.

In majority of cases the analysis of the big mechanical systems 
is accomplished by using the linear mathematical models having the 
constant parameters with respect to time. However in the case of vi­
bration analysis of the mechanical systems their mathematical mo­
dels contain the parameters dependent on vibration frequency or am­
plitude of the system elements, which conduct to a great number of 
the necessary variables describing the motion of the complex system.

Inconveniences are increasing when the algorithm requires 
multiple solution of the system model. Such situation occurs when 
the iteration methods are used to solve the problem. In such cases the 
necessary computation time to solve vibration problems of the me­
chanical systems may be considerably abbreviated. The realization of 
that target is achieved by applying another way, than the usual, of 
forming and solving the complex model of mechanical system.

PARTIAL
MACHINE SUBSYSTEMS

The machine which is a complex mechanical system has been 
divided into subsystems, however not the simple modelling subsys­
tems mentioned before. Introduced subsystems can be relatively com­
plex mechanical systems themselves and they are known as the par­
tial subsystems. The next step is the definition of mutual influence 
between them. Those influences can be defined by adequate dynamic 
characteristics - the dynamical influence numbers or coefficients. The 
theory and the applications of those variables can be found in litera­
ture [1,2, 3],

The dynamical influence numbers are not the variables which 
describe the features of the partial system arbitrarily, but they depend 
on the kind of movement of the system. Most frequently the dynami­
cal influence numbers are used when the system is under stationary 
forced vibration. Then the numbers depend on the forced vibration 
frequency. More complicated case is when the free motion of the sys­
tem is considered. In that case the dynamical influence numbers de­
pend on two parameters: the vibration frequency, and damping decre­
ment [1], The result of the further consideration is that the damping 
of the partial system can be modelled without using two-parameter 
influence numbers. Hence each of the partial subsystems of the mathe­
matical model can be represented by the appropriate set of dynami­
cal influence numbers. In an extreme case, the model of the system 
can only consist of the dynamical influence numbers of the intro­
duced partial subsystems. Then the characteristic equation (the equa­
tion of the system frequency) contains only dynamical influence num­
bers of the partial systems without any other physical and geometri­
cal parameters of the system.



THE TRANSFER MATRIX METHOD 
IN MODELLING 

OF THE ROTOR ELEMENTS
Forming the physical model of the rotor by the one-dimension 

element method may be combined with the transfer matrix method 
used to the appropriate mathematical rotor model. In the ease when 
flexural vibrations are considered the components of the rotor cross- 
-section state vector are: rotor deflection G, slope of the rotor axis (p, 
internal bending moment 'J.K, and shearing force 3. Each of those 
quantities can be expressed as a complex variable :

G (z ,t)=G x (z,t)+ jG v (z.t) 

<t>(z.t)=(t>x (z,t)+j<t>y (z,t) 
9)1 (z,t)=9Kx (z,t)+j9Ky (z.t) 
'  (m )= V  (z ,t)+ j V  (z.t)

M 0 } k = X e V  M k ( h ) (4)

where for the considered free vibrations of the system the complex 
eigenvalues are applied :

= Y h + j “ h h =  1, 2 , . . . ,  hs (5)

For each rotor span the following relationship can be obtained :

k1 1 
k'(<5)

( 6 )

where :

Dk " 1
k' (o) =

P=k1'1 -l
(7)

The above specified variables are the components of the state 
vectors of the rotor cross-sections which are the basic quantities of 
the transfer matrix method. In the considered case they obtained the 
following form :

is the transfer matrix for entire span of the rotor, and :

q = k'~' -2  p = q + l

U k '(a )  “  ^  n ° p ( c ) { V U )  +  { V K , ( 0 , (X )
q = k' p=k '*l - l

{w(z,t)}=col{G(z.t). <()(z,t), sJJ((z,t), 3 (z,t)} (2)

Then the motion equation of each k-th rotor element is as fol­
lows :

M O L  =  D k{ w (t)} (+ { v (t) )k (3)

where : Dk - the rotor element transfer matrix (Fig. 1).

In the frame of the linear theory of system vibration the state 
vectors can be expressed in the form :

where: o  = ± h

One should notice that using the transfer matrix for the rotor 
span leads to particular influence on increasing the errors of the nu­
merical rounding because some of the elements of the transfer matrix 
are big (support stiffness values). The using of the transfer matrix 
method can limit the modelling of the construction supporting the 
rotor, namely, the model with mutual coupling of the supports thought 
as the foundation of the machine, cannot be used.

In the presented paper the transfer matrix method is limited only 
to the respective rotor spans. In that way the dynamical properties of

the rotor are described by the (N+1) 
transfer matrix of the rotor spans 
for every harmonic component of 
the movement separately. This ap­
proach removes the traditional con­
ception of the transfer matrix method 
errors. The transfer matrix of the ro­
tor spans is the result of the multi­
plication of relatively small number 
of transfer matrices for the particu­
lar elements of the rotor. In addition, 
it is possible to use full model of the 
supporting construction involving 
the coupling between supports.

MODELLING 
OF THE OIL FILM 

BEARING
With neglecting of the inertia 

forces of the bearing oil film, the 
bearing reaction forces depend on 
mutual position of the bearing jour­
nals in the bushings. Then the re­
action which acts on the bearing 
journal and the reaction on the bear­
ing bushing are the opposite forces 
(without the phase delay). Very im­
portant are the co-ordinates of bear­
ing journals being in the steady- 
-state position. Components of the 

whole bearing oil film reaction can be expanded into the Taylor’s 
series in the neighbourhood of the point of journal steady-state :
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MODELLING OF THE BEARING 
SUPPORTS AND MACHINE FOUNDATION

The hearing reactions 35 cause the displacement of the bearing 
supports, C, . which can be expressed (within the frame of the linear 
vibration theory ) as follows :

U ' ) =  i  T v  A ( ' )  "■’>
k'-k

where : k‘ = k1. k:........ kN are indices of supports.

In the above given expressions the complex dynamic influence 
numbers are applied which can be obtained by using the real dynamic 
influence coefficients :

The co-ordinates of the linear parts of the expansion (9) are the 
dynamic characteristics of the oil film :

elasticity characteristic

C" = (  d  >K'  1 y - (3>K' ]

d xV >0 i 1

C "  =
f l l C

C "  =
f r l . lv '

f ly

( 10)

damping characteristic

A" = f l i c

1 x
A.'-' - l i e

f ly

A" = 1 1 C

1 x
Ayy = l i e

f ly

(ID

+  Ay f s ) + j f e  - A ”  )] ̂ kV k k

- A y; \ ̂ k k kV )+ i t e  + a 'f , . ) l

( 14)

FREE VIBRATIONS
AND MOTION STABILITY OF THE ROTOR

Finding the complex eigenvalue X = y + jo) is equivalent to the 
necessity of computing two real variables (/.. to) for which the cha­
racteristic determinant is zero. There are two methods to deal with 
that problem. One of them is the adaptation of the Muller's square ap­
proximation to determine zeros of the determinant of the complex ma­
trix of the final simultaneous equations of free vibrations of the rotor.

In this paper the Muller's method has been successfully used to 
determine the complex roots of the complex characteristic determi­
nant. In this case, the square approximation function is the complex 
function of the complex argument.

In the case of the rotor free vibration the movement trajectories 
of the rotor axial points which are placed at the cross-sections intro­
duced to the analysis, are as follows :

G k,0)(t) =  G k(n) c '" '1 + G k( n) e '" '1 (1?)

The constant parts of the extensions (9) are the component of 
the statical reaction of the bearing, dependent on the steady-state point 
co-ordinates (x„.yu) : G k i n ) =  e /n [G k ( o )  1

„,I<'>„1 + G M-o)1 (16)

R x =  R '( x  ,, y (l)
( 12)

R y =  R > ( x  „  - y ( l )

The above mentioned dependences are highly non-linear.
It should be taken into consideration, that the names of the co- 

-ordinate groups are derived more from the tradition of using them 
than from the physical interpretation. Only the C "  and C- - co-ordi­
nates are the actual elastic coefficients, and X"  and X" are actual 
damping coefficients. The characteristics with mixed upper indices 
express coupling of the bearings motions in two mutually perpen­
dicular directions. They have an essential influence on the mechani­
cal energy balance of the bearing (oil film).

For the particular bearings the coupling characteristics deter­
mine the additional reason of using the non-conservative properties 
of the oil film, revealed by increased dispersion of the mechanical 
energy or cumulating of the energy, which can conduct to self-excited 
vibrations, flic computation of the hydrodynamic characteristics is 
performed on the basis of an appropriate physical model of the oil 
film. At present the adiabatic or diathermic model of the oil film are 
used. In the diathermic model the heat exchange between oil film and 
bearing journal as well as bushing is taken into account. The elastic 
and damping characteristics of the bearing oil film are dependent on 
the journal bearing rotation velocity (2. but independent of the vibra­
tion frequency 0).

f o r k -  1,2,...,n and cte Ff = | h | ,h2,_ĥ  J
where :

H - set of harmonic component numbers 
n - total number of rotor elements.

The expression represents spiral ellipsoidal trajectories whose 
dimensions increase when y„ > 0, or decrease when yn < 0 (Fig.2).

Fig. 2. Free - vibration movement trajeetorv 
S - centre of vibration, S, - centre o f  rotor cross-section area 

lF - trajectory axis angular co-ordinate related to x-axis 
G(, G( , -forward and backward component o f rotor cross-section motion, respectively
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The problem of the eigenvalue of free motion is very often con­
nected with the problems of the motion stability. I lere, a few general 
remarks are offered about the motion stability of the dynamic systems 
in order to precisely characterise the way of the solution finding.

The motion stability idea depends on the adopted definition. 
The most often used definitions of the motion stability are the classic 
definition proposed by Lapunow, Lagrange or Poincare. On the basis 
of these definitions the dynamical systems were investigated in two 
situations: how the system would behave when the initial conditions 
are insignificantly changed, and what influence the ..small” distur­
bances would have during all the movement.

flic motion stability in Lapunow’s meaning is the mathematical 
idea due to two reasons. First of all. it is defined for the solutions of 
the system motion equations, which means that this definition is on 
the mathematical level of the established model of the system. Sec­
ondly, in the definition the infinitely small quantities (infinitely small 
variable increments) and the infinitely large quantities (infinite incre­
ment of time) are introduced. Only such motion stability is identified 
with the stability of the physical model or real dynamical systems. It 
is significant that Lapunow's motion stability can not be examined in 
practice because it is impossible to run a dynamical system twice at 
the same conditions. Moreover it is practically impossible to realize 
the infinitely small and large quantities used in that motion stability 
concept, namely to obtain the technical steadiness. In the definition 
in question finite increments of solutions and flow of time are as­
sumed. Investigation of the motion stability, according to its different 
definitions can even lead to opposite results. Hence it results that the 
stability is not the natural physical feature of dynamical systems but it 
depends on the way in which investigations of the system stability are 
performed.

The estimation of the rotating system stability is a difficult prob­
lem. especially when the models with the distributed parameters are 
used, like in this paper. Such research is continued for many years. As 
a good example of the newest achievements are some chapters of the 
work [4] , in w hich the Lapunow-Mowcan’s idea of motion stability 
is used together with the second Lapunow's method applied to the 
discrete systems.

For investigation of the continuous systems the solution distance 
(metrics) of the integral type was used. The approach was successfully 
applied to simple continuous systems. However, its application to the 
complex system such as that considered in this paper, is difficult. First 
of all, it is very difficult to find the Lapunow’s functional for the inves­
tigated system of the complex boundary conditions. Such functional 
should be given in an analytical form to be able to investigate their 
features.

The attempt to adapt the first Lapunow method to investigate 
a linear continuous system motion by using the one distance (or norm) 
[5] gave only partial results unsuitable for solving the rotor motion prob­
lem. On the other hand, a discrete method for the continuous systems 
(rotors) was tested, based on using the finite differences to investigate 
the motion stability. It was used to solve the generalized problem of the 
matrix eigenvalues. The obtained experience showed that this method 
can be practically applied only to the rotors with two supports. With 
a view of that, it was concluded that the motion stability of the rotor 
should be investigated by using a little different definition of stability in 
relation to the systems in question, called the stability in the limited range.

The investigation of the stability is limited to a few first forms 
of the rotor vibration. The limitation causes that the analysed con­
tinuous system may be treated as the discrete system (of a limited 
degree of freedom) and therefore the idea of the first Lapunow method

can be used [6], Rotor motion is stable if all the eigenvalues of the 
free motion equations, adequate to the vibration forms taken into con­
sideration, have the negative real parts. Moreover the rotating sys­
tems described by the beam models obtained the feature of having 
one eigenvalue for every form of vibration.

The second kind of methods which allow to efficiently analyse 
free vibration of the rotors are those based on the finite elements: 
rigid or deformable FEs. Application of the FF method is equvalent 
to using the discrete model (linear in general) with the finite number 
of degrees of freedom. The theoretical solution of the Lapunow sta­
bility problem by using discrete model exists and it is reduced to 
solving the generalized problem of the matrix eigenvalues. One can 
say that the FE method used in solving the motion stability problem 
theoretically is a ..complete” method, which means that after estab­
lishing the physical and mathematical model of a considered system, 
it is also possible to solve the problem according to the theory of the 
motion stability. However, the way proposed in the paper of solving 
the motion stability problem in a limited range by using the transfer 
matrix method can be called an ..incomplete” method, because not all 
the eigenvalues can be determined (as the continuous systems have 
infinite number of eigenvalues). Those differences of both methods 
disappear in practice. Most often, for the complex dynamical system 
of the large number of degrees of freedom, solved by FE method, 
only a few eigenvalues (less than the number of freedom degrees) are 
usually determined. Therefore, both proposed methods of solving the 
motion stability problem of the rotors differ from each other only in 
the used models, but in both eases the motion stability is investigated 
on the basis of the incomplete number of eigenvalues. The method of 
solving the general problem with the eigenvalues, used in FE method 
and giving all the eigenvalues, is efficacious only for relative simple 
physical model subsystems of the machine (in particular with the re­
spect to the supporting construction of the rotor).

Theoretically, in the transfer matrix method the possibility of 
determination of the large number of eigenvalues (like in FE method) 
exists. For the complex physical model o f the rotor, the difficulties of 
the numerical processing would be comparable in both eases, but the 
computing cost will be large.

In the used physical model of the machine the follow ing desta­
bilizing factors were taken into consideration :

cn

r  internal material and structural damping in rotors 
r hydrodynamic forces of the bearing oil film 
V parametric excitations of the rotors 

with asymmetrical shaft 
'.r steam seals of the turbine.

THE MOTION STABILITY 
OF 200 MW TURBOSET ROTOR

The rotor line of the turboset was div ided into 148 elements 
(defined bv 139 rotor cross-sections) and supported on N -  7 bear­
ings (Fig.3).

The problem of motion stability was solved by using the 
ROTSTAB computer program.

During calculations the influences of the following factors were 
taken into account :

O internal and external damping
O bearing oil film

1 4 20 29 35 40 51 56 66 75 S5 9 I9 2  96 97 107 117 122 126 127 128 129 130 136 139

Fig.3. Sham- o f200 MW twhose! rotor
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■=> elasticity and damping of bearing supports and foundation 
■=> rotational inertia, gyroscopic effect and shearing displacement 

of rotor element (according to the Timoshenko idea)
■=> rotor rotational speed £2
O temperature influences on material modulus of elasticity 
■=> geodetic height of bearings (two variants - Table)

Some results of the calculations are shown in Fig.4 6.

Table. Initial geodetic height o f turboset bearings

Bearing No 1 2 3 4 5 6 7

[mm]

Variant I
r 0 0 0 0 0 0 0

C" -8.25 -3.05 -1.23 -0.69 0 0 -2.0

Variant 2
■ p 0 0 0 0 0 0 0

r -8.25 -3.05 -2.23 -0.69 -2.0 0 -2.0

Tig. 4. Rotor vibration spectral diagram for Variant l (without accounting for influence o f foundation and support damping) 
Note Rotor speed Q [rad/s] is plotted as the parameter 

- Vibration mode number is given in Q

Var.I to j [rd/s]
- 200

Fig. 5. Rotor vibration spectral diagrams : 
for'Variant 2 (with accounting for influence o f foundation and support damping) 
for Variant l (without accounting for influence o f  foundation and support damping) 

Note : - Rotor speed £2 f  rad/sf is plotted as the parameter 
- Vibration mode number is given in | |

Fig. 6. Spectral diagrams o f Ist mode rotor vibrations for Variant I:
a) -  influence o f external damping .damping coefficient bl’x =  /  kNs/m- ,  for case l

bex = l kNs/m-, for case 2
b) - influence o f internal damping .damping coefficient b'" =  /  kNs/m-, for case 1

bin = j kN s/m fo r case 2
Note : - Rotor speed £2 [rad/s] is plotted as the parameter 

- Vibration mode number is given in [ ^ ]

CONCLUSIONS
♦  Increasing of the rotor speed is a source of the decrease of mo­

tion stability reserve for almost all vibration modes (sec Fig.4) 
and it can even conduct to an unstable motion of the rotor (first 
vibration mode of Var.I-Fig.4).

♦  However, when the foundation damping (Var.2) is taken into 
consideration then the first mode of vibration is stable in a wide 
range of rotor speed (Fig.5b).

♦  Lifting the bearing Nr 5 (2 mm up) involves that the rotor mo­
tion is unquiet (several first modes of vibrations have very small

stability reserve - Fig.5a).This phenomenon is known when the 
slide bearing is statically unloaded (lifting the bearing Nr 5 cau­
ses unloading of the bearing Nr 6 - Table and Fig.3).

♦  External damping acting on the rotor heightens the rotor motion 
stability (Fig.6a) but internal damping has opposite influence 
and it reduces the motion stability reserve (Fig.6b).

♦  The obtained calculation results are known in rotor dynamics, 
however in this paper the new aspects were given of the rotating 
machine modelling and the rotor motion stability.
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N O M E N C L A T U R E

bc* - external damping coefficient
b'n - internal (material) dumping coefficient
C - bearing oil film rigidity
I) - transfer matrix
c - natural logarithm base
( i - rotor delle ction
h - harmonic component number
j - V-i
3  - shearing force
k - rotor element index
k1 - rotor support index
m - bending moment intensity
SJK - bending moment
n - total number o f rotor elements
N - total number o f support bearings
o - steady-state point
q - continuous transverse load intensity
R. 9\ - static and dynamic support reactions, respectively
t - time
u - bearing oil film displacement
U - vector o f exciting forses o f the rotor span
v - vector o f exciting forces
J w | - state vector o f rotor cross-section
x.y.z - horizontal, vertical and axial Cartesian co-ordinate, respectively 
y - damping parameter |y Re(X.)]
A - coefficient o f rotor support (dynamical influence number)
£ - bearing support displacement
q.q - rotating co-ordinate system
X - complex eigenv alue
A - bearing oil film damping
a  - harmonic component number
0 - angle o f rotor axis slope 12 - rotor rotational speed
(0 - free v ibration frequency [to -  lm(X)| ( ) - conjugate complex number

Miscellanea

GDYNIA MARITIME ACADEMY 

A MEMBER OF IAMU AND IMLA
IAMU is the acronym of the International Association of 

Maritime Universities located in Istambul. Several tens of mari­
time universities of the world are its members. Among them 
Gdynia Maritime Academy, Poland is one of its active mem­
bers. Under IAMU patronage common undertakings arc arranged 
dealing with scientific and didactic cooperation between part­
ners. The Polish university maintains especially fruitful con­
tacts with Istambul Technical University.Turkey.

IMLA is the acronym of the International Maritime Lec­
turers Association placed in Malmoe, which associates many 
lecturers of maritme universities worlwide. Under its auspices 
scientific conferences and workshops are cyclically organized 
in which scientific workers of Gdynia Maritime Academy regu­
larly take part. Their papers are published in proceedings of the 
conferences and IMLA journals.

PRADS 2001
From 16 to 21 September 2001 in Shanghai, China, it was 

held 8lh International Symposium on :

Practical Design of Ships 
and Other Floating Structures (PRADS)

Arranging those cyclic conferences was initiated in To­
kyo in 1977, and six years later the next conference was simulta­
neously organized in Tokyo and Seul. The successive meetings 
had place : in Trondheim (1987), Varna (1989), Newcastle 
(1992), Seul (1995) and The Hague (1998).

PRADS Standing Committee is the international elective 
body which fulfils the role of programming and steering the aim 
and topics of the current meeting. One out of 14 S.C. members 
is Dr. Tadeusz Borzgcki, the representative of Faculty of Ocean 
engineering and Ship Technology, Technical University of 
Gdansk.

In PRADS 2001 over 260 participants from 25 countries 
all over the world took part among which representatives from 
China, Japan, Korea, Germany, Norway, Denmark and Great 
Britain prevailed.

169 papers were approved for presentation during the meet­
ing. One of the papers titled :

Influence of journal bearing modelling method 
on shaftline alingment and whirling vibrations

was prepared by Lech Murawski, D.Sc. from the Institute of 
Fluid Flow Machinery, Polish Academy of Sciences, Gdansk.

The next participant of the meeting. Dr. T. Borzgcki was 
the chairman of the topical session on Design Optimization.

NATO
Advance Research Workshop

On 24^26 October 2001 the University of Tras-os-Montes 
and Alto Douro w Vila Real (Portugal) was the venue of NATO 
Advanced Research Workshop on :

Systematic Organization 
of Information in Fuzzy Systems

37 participants took part in the workshop who represented 
scientific research centres of 14 countries. Two Polish scientists 
were among 15 special guests invited by the workshop organi­
zers, who presented the following papers :

<• Certainly and sharpness o f information -  by Prof. Walen-
ty Ostasiewicz from Wroclaw University of Economics 

❖  A method f or incorporating human factors in fuzzy -  pro­
babilistic modelling and risk analysis o f  industrial systems 
- by Prof. Miroslaw Kwiesiclcwicz from Technical Uni­
versity of Gdansk.
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