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Integrated 
safety factors 

in design 
for infinite 

and finite fatigue 
lives of steel 

elements 
at multiaxial 

static and 
periodic loadings

The paper deals with strength calculations 
of steel elements under combined static and 
periodic loadings. Two design criteria, (i) and 
(ii), are presented which ensure that not only 
the multiaxial stress does not exceed the ulti
mate (or yield) strength of the material but also 
that the combination of multiaxial mean stress 
and multiaxial periodic stress does not lead 
to fatigue failure in design (i) for an infinite fa
tigue life and (ii) for a finite fatigue life. It is 
assumed that the stress components are phy
sically independent of each other and that for 
each of them the corresponding o-N  curve is 
given. The load modes and material anisotro
py are taken into account.
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INTRODUCTION
If an engineering component is exposed to static and dynamic 

loadings both the time-independent and time-varying components of 
the stress tensor must be taken into account in strength calculations. 
For example, when a structural element subject to combined in-phase 
bending and torsion is considered, the resulting stress has the follow
ing components :

C7t (?) = (7, + , sin cot
M  -  ■ 0 )f f 1-vV)=CTJ.V + Tv sin 0)1

where :
o x, <T„ - mean values
a t ,a „  - amplitudes of the stress components
co - circular frequency.

For calculation purposes in design for infinite fatigue life it is con
venient to distinguish :

♦ partial safety factors, /  a n d , related to time-independent and 
time-varying parts of the stress components, respectively

♦ fatigue safety factor, 8 , relating to fatigue performance under 
static-dynamic loading conditions

♦ integrated safety factor,/, which combines/, and f t .

According to [ 1-̂ -3] at the stress (1) these factors are :
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where :
S, (i=x.xy) 
Ft
A
£,
Vt

- ultimate or yield strength at i-th static load
- fatigue limit at i-th zero mean loading
- notch sensitivity index at i-th loading
- size factor at i-th loading
- asymmetry sensitivity index at i-th loading.

Satisfaction of the condition :

/ >  1 (6)

ensures that not only the stress does not exceed the ultimate or yield 
strength of the material but also the combination of mean stress and 
time-varying stress components docs not lead to fatigue failure.

Similarly, for ductile materials in the three-dimensional state 
of stress with in-phase components of mean values tr, and ampli
tudes a , :



cr(/)= a; +a: sin (Ot 

i = x,y,z,xy,yz,zx
(7)

the use can be made of (5) and of the modified factors based on the 
reduced stress [2,4] :

where :

( -1/2

f ,l = 1-cT'I-cT'i

V '
( \ -1/2

fs = X cr V r c.vc: - cA
V '■ 7

b -  P 'a ‘ C, = *L
' e,F, s ,

(8)

(9)

tigue life to the sinusoidal terms in (11), Consequently, (5) can be 
used also in the case if in (8) the amplitudes a, are replaced by

Of course, (3) (6) and (8) cannot be utilized in design for
a finite fatigue life. Therefore in that case the a  -  N  curves (Wohler 
curves) are taken into account. The stress components are assumed 
physically independent of each other and the corresponding a  -  N 
curve is given for each of them.
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INTEGRATED SAFETY FACTOR 
IN DESIGN FOR FINITE FATIGUE LIFE

Let us consider the stress :

a{t) = a  + a sin cof (14)

In the general case of periodic stress its components :
produced by an axial force. In design for a finite fatigue life, the fol
lowing relations arc frequently used [5] :

cr,(f)= cr, (f + 7;,) i = x,y,...,zx (10)

can be expanded into Fourier series :

(0 = O; + | > , (/,)s in t< /y  + a,(,,)) (11}
p=i

and modelled with in-phase components [4] :

v)(0 = <T, + sin CO^t (12)

where :

(o = ku>() k = Round (/c) <u(l = 2n / T()

ll^U'Y T 1/2
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(acc. to Goodman) (15)

(acc. to Soderberg) (16)

(acc. to Gerber) (17)

where :
<7V - amplitude of the zero mean normal stress at a given 

number, N, of cycles to fatigue failure 
a - amplitude of the stress (14) which will lead to that 

fatigue life
Su - ultimate tensile strength 
Sv - tensile yield strength.

In the high-cycle regime, the most widespread relationship between 
<JN and N  is :

Na'Z = K

for

(18)

,(«/) -  .
k  T.,

• iiI/>=!
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dt

ajr\ a Ir)

E,

k
T‘n
n,

amplitude and phase angle of p-th sinusoidal term 
in Fourier expansion of i-th stress component, 
respectively
Young modulus or shear modulus, associated with 
i-th stress component
natural number obtained by rounding the number K 
common period of the stress components 
internal damping coefficient in Kelvin-Voigt’s 
model of the material, associated with i-th stress 
component.

F < a N <L (19)

where :
F - fatigue limit at fully reversed tension-compression 
K - fatigue strength coefficient
L - the maximum stress amplimdc satisfying (18), above which 

low-cycle fatigue may occur [6] 
m - fatigue strength exponent.

Denoting :

Ntt = Ka

Nr - number of stress cycles required to achieve a given
design life

na = N/Nr - integrated safety factor in design for a finite 
fatigue life

naci = Na/ N r , f as = SuM / a  - partial safety factors 

one obtains from (15), (16) and (18) :

The mean values a , in (11) and (12) arc the same, and a, are 
the amplitudes of the stress components equivalent in terms of fa- na ( ' - / J ' ) ’ (20)
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and from (17) and (18) :

> h , = n J - C ) ’" (2D

In the case of multiaxial stress with the in-phase components 
(7) the conventional strength theories (e.g., Hubcr-Mises theory) can 
be used [7], Therefore in this paper it is suggested to model complex 
stress patterns under static and periodic loading by the equivalent 
stress with the in-phase components (12). Then the Hubcr-Mises theory 
can be adopted which leads to the reduced stress [4] :

obviously represent the ratio of the number of cycles to failure at the 
equivalent zero mean stress to the number of equivalent stress cycles 
required to achieve a given design life.

When the inequalities (25) are not fulfdled the presented calcu
lation procedure cannot be applied. Should it happen that / < 1 the 
low-cycle fatigue is possible. As stated earlier a t /  > 1 infinite fatigue 
life may be expected.

Surface finish, details of the geometry etc. are accounted for by 
proper choice of the a  - A design curve [1,5] for each stress compo
nent.

EXAMPLE

0 V « / ( sin M (22)

where Orrd and aml are its mean value and amplitude, respectively.
Since the reduced stress is referred to as the equivalent tensile 

stress, the integrated safety factor, n, can be expressed similarly to 
(20) as:

(23)

where : 
m - the fatigue strength exponent in the a - N  curve 

equation at symmetrical tension-compression and

_ Nml
Nr

f s  = ^ M  rcj

Calculate the integrated safety factor and fatigue life of an engi
neering component subject to combined bending and torsion if at 
a given point the stress components are :

(a, and «,(,,)[MPal):

crv(t) = -25.2 + 65.2sin 1,5t +11.7 sin 4.5t + 11.7 sin 7.5t 

c7xy(t)= 22.4+ 39.6sin 6t + 19.7sin 12t

The design data are :

Nml = Kar"j - number of cycles to fatigue failure at the reduced 
zero mean stress.

In order to account for various load modes and material 
anisotropy the expressions for nd and / ,  must be modified which re
sults in the formula (9) f o r /  and the following one for nj [4] :

Nr
y  ll~ - U rUv - UM, — U,Ui x y y z z x (24)

valid for : 

/ < ! < /  

where :

(25)

la = X V-2_V A v- VvVz _V A ,  
V '■

(26)

Ex = E = 2.\ • 106MPa E „ =  G = 8.077-104MPa 

Sx = 310 MPa Sxv = 160 MPa 

Fx = 180 MPa Fxy = 110 MPa 

Lx = 300 MPa Lxy = 150 MPa mx = mxy = in = 3

Kx = 106 • Fx Kxy = 106 • Fxy 

(K = 1 -5 =1-3 ex = e xf= 0.8 r], = rln

Solution

Equations (13) give :

a(; q) = 37.7 MPa a{xf  = 55.2 MPa 

k = 4.43 k = 4 coeq = 6 s_l

u, = i - x , y , . . . z x

f dJ ,  ~ quantities given by (8) and (9), respectively 
Kh m, -  parameters in th ee  -  N curve equation at i-th zero 

mean stress
L, -  maximum stress amplitude satisfying this equation.

In order to adopt (23) at multiaxial static and periodic stress the 
amplitudes a i‘q) of the equivalent stress components must be calcu
lated and inserted into (8), (24) and (26) in place of a , . Then iij will

By applying (26) one gets :

/  = PxaM  Y

£ Fx x  y
+

B a{"r'xv  xv
M  Y

£ F
V "  "  )

-1- 1/2

X

—  \
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12 POLISH MARITIME RESEARCH, MARCH 2000



/ = y  . r ^ , v
£,L,

+
£'x\v ' ' y

- 1/2

X

X < 1 -
V

v 5 v

+
V5 «- y

H ence/ = 0.93 < 1, /=  1.3 > 1 which satisfies the condition (25). 

For the equivalent stress one obtains from (23) and (24) :

1 r ( a ,
2

+

2 '

N r K x

/  _  \ 2 ( =  \2" 1/2'

x ■1- +
S SK x / l  J

which yields :

n = 4.6 -106 ■ —
N r

It means that the fatigue life is :

r)'JT
T  = 4.6 106----= 4817 -103 s

to..

CONCLUSIONS
At multiaxial static-dynamic stresses the accurate fatigue assess

ment of structural elements may be complicated especially if the stress 
components are non-proportional to each other and stress cycles have 
to be counted [8]. In the presented method the cycle counting is avoided 
by virtue of the transformation of the actual stress components (10) 
into the equivalent ones (12). The resulting formulae for the inte
grated safety factor n are also based on the experimentally verified 
models (15) and (16); similarly the model (17) can be applied. How
ever, none of the relations (15) (17) are generally valid as they are
grounded on the experimental data obtained under different condi
tions [5],

The amplitudes a, of the equivalent stress components are 
defined by (13) as positive quantities. So, the relevant signs in 
(8), (24) and (26) must be replaced with „+” in order to account for 
the stress in the outer fibres on both sides of the cross-section with 
respect to the neutral axis of an engineering component subject to 
bending moment(s).

For the materials which show no true fatigue limits and those 
at corrosive environmental conditions, equations (3)^(6) and (8) can
not be used ; and the equations in design for a finite fatigue life must 
be modified (e.g., by applying the a - N  design curves without 
marked fatigue limits or with reduced fatigue limits [1,5]).

NOMENCLATURE

E,
f
f j
f,fa
F
F, 
k 
K
K, 
Uj 
L

L,

m
m,
n, n„
"<!• »aJ
N, Na 
Nr 
K-J 
Si
su
sv
Su(v)
t
T 
To 
a<*>

A
£,
n,

K

a
o,
a
<rv

a,

co
co0
COeq

amplitude of the reduced stress
Young modulus or shear modulus associated with i-th stress component 
integrated safety factor in design for infinite fatigue life 
partial safety factor related to time-varying parts of the stress components 
partial safety factors related to mean stress 
fatigue limit at fully reversed tension-compression 
fatigue limit at i-th zero mean stress 
natural number obtained by rounding the number k  

fatigue strength coefficient at fully reversed tension-compression 
fatigue strength coefficient at i-th zero mean stress 
quantities appearing in (26) 
the maximum stress amplitude satisfying equation of the c  -  N  curve at fully 
reversed tension-compression, above which low-cycle fatigue may occur 
the maximum amplitude satisfying equation of the o  - N  curve at i-th zero 
mean stress , above which low-cycle fatigue may occur 
fatigue strength exponent at fully reversed tension-compression 
fatigue strength exponent at i-th zero mean stress 
integrated safety factors in design fora finite fatigue life 
partial safety factors related to time-varying parts of the stress components 
numbers of stress cycles to fatigue failure 
number of stress cycles required to achieve a given design life 
number of cycles to failure at the reduced zero mean stress 
ultimate or yield strength at i-th static load 
ultimate tensile strength 
tensile yield strength 
Su orSv arbitrarily 
time
fatigue life 
stress period
phase angle ofp-th sinusoidal term in Fourier expansion of i-th component 
of periodic stress
notch sensitivity index at i-th stress 
size factor at i-th stress
internal damping coefficient in Kelvin-Voigf s model of the material,
associated with i-th stress component
number apearing in (13)
uniaxial normal stress
i-th stress component
mean value of the uniaxial normal stress
amplitude of the zero mean normal stress at a given number, N, of cycles to 
fatigue failure
mean value of i-th stress component 
reduced stress
mean value of the reduced stress 
asymmetry sensitivity index at i-th stress 
circular frequency
fundamental circular frequency of the periodic stress 
circular frequency of the equivalent stress

co
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