

**OPERATION & ECONOMY** 

JACEK KRZYŻANOWSKI, D.Sc., M.E. KAZIMIERZ WITKOWSKI, D.Sc., M.E. Gdynia Maritime Academy Marine Propulsion Plant Department

# **On possible** lowering of the toxicity of exhaust gas from ship diesel engines by changing their control parameters

SUMMARY

The paper is devoted to problems connected with pollution of the atmosphere by ship engines. Results of the tests are presented on the influence of charging air pressure and injection advance angle on content of exhaust gas from a high-pressure diesel engine working on heavy fuel oil, carried out at the laboratory of Gdynia Maritime Academy.

## **INTRODUCTION**

Nowadays the ship engine is to meet more and more stringent requirements for limitation of emission of toxic combustion products to the atmosphere in view of marine environment protection.

Typical content of the exhaust gas emitted by ship diesel engines is shown in Fig.1.



Fig.1. Balance of substrates and combustion products of the typical ship diesel engine

In 1990 the Marine Environment Protection Committee (MEPC) of the International Maritime Organization (IMO) proposed to lower the then emission level of NO, by 70% and SO, by 50% till 2000 although the share of the engines in the worldwide toxic product emission was only 7% in the case of nitric oxides (NO<sub>2</sub>) and 4 to 5 % of sulphur oxides  $(SO_x)$ . Legal instruments in this area are initiated at three levels :

- \* international (IMO)
- \* national (e.g. Environmental Protection Agency - EPA, USA) \*
  - regional (e.g. California Air Resources Board CARB, USA).

Proposals on limitation of exhaust gas toxic elements have been elaborated at each legislation level. The permissible NO<sub>x</sub> emission level according to IMO provisions is shown in Fig.2 and that of the EPA in Fig.3.



Fig.2. The permissible NO<sub>x</sub> emission level in function of the engine rotational speed n according to IMO

Financial penalty for atmosphere pollution - 10 000\$/t NO,



Fig.3. The permissible  $NO_x$  emission level in function of the engine rotational speed n according to EPA

The increasing requirements for purity of the exhaust gas emitted from ship diesel engines and following legislative activities induce the shipowners to observe them because additional operation cost may appear due to financial penalties for pollution of the atmosphere from ships. Therefore the producers of ship diesel engines carry out investigations on adaptation of the today manufactured engines to fulfil the exhaust gas purity standards. A great number of the diesel engines still in service do not fulfil the standards. It is necessary to search for simple and inexpensive methods applicable to existing ships with a view to effective lowering of the toxic content of exhaust gas from their engines.

As far as the methods of  $NO_x$  content lowering are concerned, new technical solutions applicable to ship power plants are required. A dozen or so methods of lowering  $NO_x$  content are elaborated. They can be divided into two main groups :

- basic methods enabling to limit NO<sub>x</sub> production during combustion process
- additional methods enabling to reduce NO<sub>x</sub> content in exhaust gases by their purification behind the diesel engine.

The basic methods are based on change of combustion process organization and chemical content of the media supplied to the engine cylinders. NO<sub>x</sub> amount generated during combustion process in the diesel engines depends on many parameters. However the most decisive are :

- the combustion temperature and
- oxygen and nitrogen partial pressures as well ascombustion time period.

Today therefore the dominating role will play the methods based on lowering the maximum combustion temperature. Those are the following :

- $\Rightarrow$  supplying the engine with water/fuel oil emulsion
- ⇒ direct injection of water to the cylinder
- ⇒ fuel injection delay
- ⇒ stepwise fuel injection
- $\Rightarrow$  application of special injector tips to optimize combustion process with respect to NO<sub>x</sub> content in exhaust gases
- $\Rightarrow$  moisturing the charging air
- $\Rightarrow$  exhaust gas re-circulation
- $\begin{array}{ll}\Rightarrow & \text{change of compression ratio} \\\Rightarrow & \text{lowering the charging air pressure.} \end{array}$

Supplying the engine with water/fuel oil emulsion is an easy and effective method applicable to ship power plants without any excessive investment cost. All recognized ship engine producers carry out investigations in this area. It was revealed that one percent of water in fuel oil causes lowering  $NO_x$  content in exhaust gases by about one percent too. The possible relative reduction of  $NO_x$  content is plotted against water/fuel oil ratio in Fig.4 [5].



Fig.4. Effectiveness of application of water/fuel oil emulsion for lowering NO<sub>x</sub> content [5]

The obtainable NO<sub>x</sub> content reduction by supplying the emulsion of  $20 \div 30\%$  water content and using the typical engine injection system is about 30%. To this point injection pumps still work correctly. At higher water/fuel oil ratios direct emulsion forming within the engine combustion chamber is usually applied.

Already in the 1980s MAN-B&W carried out extensive investigations on possible application of water/fuel oil emulsion for supplying the engines in order to lower NO<sub>x</sub> emission. In 1984 7L90 GSCA diesel engine of 20 000 kW installed in a land-based electric power plant, Puerto Rico, underwent such tests under supervision and assessement of the EPA which clearly confirmed effectiveness of the method [4]. Results of further investigations performed in this area by MAN-B&W as well as by other diesel engine producers (SULZER, WARTSILA, MaK) also supported the conclusion. In the meantime WARTSILA and MaK made definite progress in designing and applying a special injection system for simultaneous supplying the engine with water and fuel oil to form emulsion directly within the combustion chamber [3].

The direct water injection method if combined with such methods as :

- increase of compression ratio
- application of changeable timing angle system
- exhaust gas re-circulation

is able to reduce  $NO_x$  content by even more than 50%.

As far as the additional methods are concerned the engine producers engaged high financial resources into developing catalytic converters of their own design. The selective catalytic reduction method (SCR) is widely used in the land-based power plants, but the catalyzers applied there are not applicable to ship power plants due to a.o. their large size and flow resistance. MAN-B&W and SULZER developed and tested on full scale engines catalytic installations of very compact designs. WARTSILA tests its original SCR installation on a passenger-cargo ferry ship. A single compact casing of the design contains simultaneously two devices : catalyzer and silencer [2].

# LABORATORY TESTS

Laboratory investigations on a special test stand were initiated by the Ship Power Plant Department, Gdynia Maritime Academy, to better identify phenomena and processes appearing during combustion of heavy fuel oils in view of prevention of atmosphere pollution.

### **Test object**

An one-cylinder, two-stroke, crosshead engine of longitudinal scavenging, charged with the use of Roots blower was the test object. The test stand was equipped with the fuel oil supply installation which made it possible to supply the engine with diesel oil, heavy oil or their mixture. A special oil heating system was provided to heat heavy fuel oil up to 150°C. The stand consisted of the engine and water brake. The laboratory service installations, similar to those applied to ship power plants but also adjusted to land conditions, ensured the engine-brake system to work correctly.

The installed measurement instruments made it possible :

- to measure :
  - torque by using the brake directly or the torsiometer installed on the engine-brake shaft
  - rotational speed by using an electronic system (marker, transducer)
  - to test :
    - combustion and fuel injection processes by using special transducers and computerized recording system
    - exhaust gas content by using Wimmer electronic analyzer.

An additional device was installed on the engine for stepless changing the injection advance angle  $\alpha_{ww}$ . A test stand block diagram is shown in Fig.5.

The stand was used to investigate influence of selected control parameters of the engine on exhaust gas purity.



Fig.5. Test stand block diagram

 1 – L-22 diesel engine, 2 – water brake, 3 – torsiometer, 4- gauge for crankshaft position marking and rotational speed measuring, 5 – combustion pressure transducer, 6 – injection pressure transducer, 7 – computer, 8 – exhaust gas analyzer, 9 – analog/digital converter

### Scope of tests

The aim of the tests was to establish influence of the following factors on exhaust gas content :

- the super charging air pressure at IF30 heavy fuel oil supply and different engine load levels : 50, 60 and 70% M<sub>n</sub>; at each load level the super charging air pressure was changed from 0.02 to 0.1 MPa
- the fuel injection advance angle at IF40 heavy fuel oil supply and different load levels : 25, 40, 50, 60, 70 and 80 %  $M_n$  and at the nominal value of  $\alpha_{ww} = -13^\circ$  of crankshaft rotation, as well as at  $\alpha_{ww} = -10^\circ$  and  $-7^\circ$ .

### Description of the tests and their results

The specified engine loads were applied by means of the water brake. Changing the super charging air pressure was effected by changing the rotational speed of the Roots blower. Changing the injection advance angle was possible due to a special mechanism co-operating with the roller of the injection pump push rod. In effect it was possible to obtain the fuel injection delay of about 3° and 6° in respect of its nominal value.

Results of the tests are presented in Tab.1 and 2 and in Fig.6 to 9.

Tab.1. The exhaust gas content analyzed at different engine load and super charging air pressure values. IF30 heavy oil supply

| Engine<br>load level | Super<br>charging<br>air pressure | Results of exhaust gas analysis |      |     |     |       |     |  |
|----------------------|-----------------------------------|---------------------------------|------|-----|-----|-------|-----|--|
| M/M.                 | р,                                | O2                              | CO   | SO: | NO, | NO,   | CO: |  |
| %                    | MPa                               | %                               | ppm  | ppm | ppm | mg/m' | %   |  |
|                      | 0.02                              | 15.6                            | 638  | 3   | 259 | 355   | 3.9 |  |
| 50                   | 0.04                              | 16.6                            | 498  | 1   | 270 | 370   | 3.2 |  |
|                      | 0.06                              | 17.8                            | 307  | 0   | 248 | 340   | 2.3 |  |
|                      | 0.08                              | 17.9                            | 322  | 0   | 279 | 383   | 2.2 |  |
|                      | 0.10                              | 17.9                            | 272  | 0   | 306 | 420   | 2.2 |  |
| 60                   | 0.02                              | 15.3                            | 1446 | 48  | 241 | 331   | 4.1 |  |
|                      | 0.04                              | 16.3                            | 1136 | 76  | 284 | 390   | 3.4 |  |
|                      | 0.06                              | 16.3                            | 836  | 104 | 330 | 453   | 3.4 |  |
|                      | 0.08                              | 16.8                            | 660  | 93  | 348 | 478   | 3.0 |  |
|                      | 0.10                              | 16.7                            | 450  | 87  | 394 | 541   | 3.1 |  |
| 70                   | 0.02                              | 14.2                            | 4807 | 291 | 220 | 302   | 4.9 |  |
|                      | 0.04                              | 13.7                            | 4873 | 370 | 233 | 320   | 5.3 |  |
|                      | 0.06                              | 14.7                            | 1081 | 249 | 400 | 549   | 4.6 |  |
|                      | 0.08                              | 15.2                            | 825  | 216 | 477 | 655   | 4.2 |  |
|                      | 0.10                              | 14.8                            | 845  | 206 | 601 | 825   | 4.5 |  |

| Tab. 2. | The  | e exhau  | st gas | content | analyze | ed at a | different | engine    | load |
|---------|------|----------|--------|---------|---------|---------|-----------|-----------|------|
| ana     | inje | ection i | advanc | e angle | values. | IF40    | heavy a   | oil suppl | V    |

| Injection<br>advance<br>angle | Engine<br>load level | Results of exhaust gas analysis |      |     |     |       |     |  |
|-------------------------------|----------------------|---------------------------------|------|-----|-----|-------|-----|--|
| α                             | M/M,                 | О,                              | CO   | SO: | NO, | NO,   | CO  |  |
| [°]                           | %                    | %                               | Ppm  | ppm | ppm | mg/m' | %   |  |
|                               | 25                   | 18.5                            | 263  | 0   | 210 | 288   | 1.8 |  |
|                               | 40                   | 18.4                            | 223  | 17  | 246 | 338   | 1.8 |  |
| 12                            | 50                   | 18.1                            | 249  | 47  | 298 | 409   | 2.1 |  |
| -15                           | 60                   | 17.5                            | 281  | 84  | 354 | 486   | 2.5 |  |
|                               | 70                   | 15.8                            | 611  | 155 | 450 | 618   | 3.8 |  |
|                               | 80                   | 13.1                            | 4126 | 330 | 542 | 744   | 5.7 |  |
|                               | 25                   | 18.9                            | 290  | 96  | 190 | 261   | 1.5 |  |
|                               | 40                   | 18.7                            | 263  | 105 | 217 | 298   | 1.6 |  |
| 10                            | 50                   | 18.3                            | 277  | 127 | 262 | 359   | 1.9 |  |
| -10                           | 60                   | 17.9                            | 300  | 166 | 318 | 436   | 2.2 |  |
|                               | 70                   | 16.3                            | 590  | 258 | 415 | 570   | 3.4 |  |
|                               | 80                   | 13.6                            | 3015 | 444 | 498 | 684   | 5.4 |  |
| -7                            | 25                   | 19.0                            | 212  | 73  | 150 | 206   | 1.4 |  |
|                               | 40                   | 18.8                            | 247  | 86  | 169 | 232   | 1.5 |  |
|                               | 50                   | 18.3                            | 293  | 118 | 218 | 299   | 1.9 |  |
|                               | 60                   | 17.8                            | 340  | 165 | 266 | 365   | 2.4 |  |
|                               | 70                   | 15.4                            | 1020 | 287 | 378 | 519   | 4.1 |  |
|                               | 80                   | 13.6                            | 3045 | 416 | 440 | 604   | 5 4 |  |



Fig.6.  $NO_x$  content in the exhaust gas plotted against super charging air pressure at three different engine load levels



Fig.7. CO content in the exhaust gas plotted against super charging air pressure at three different engine load levels



Fig.8.  $NO_x$  content in the exhaust gas plotted against relative engine loading at three different values of injection advance angle



Fig.9. CO content in the exhaust gas plotted against relative engine loading at three different values of injection advance angle

# ANALYSIS OF TEST RESULTS, CONCLUSIONS

- It can be stated from the tests that changing both selected parameters, i.e. the super charging air pressure and injection advance angle, affects the exhaust gas content. Their influence on NO<sub>x</sub> content is especially important in view of the IMO requirements.
- Reducing the super charging air pressure causes lowering NO<sub>x</sub> content in exhaust gas as it can be observed from Tab. 1 and Fig.6. The NO<sub>x</sub> content drops by about 20% on the average at loadings of 50 and 60% M<sub>n</sub>, and even about 65% at 70% M<sub>n</sub>. However the large drop of NO<sub>x</sub> content was obtained due to the large reduction of super charging air pressure: from 0.1 MPa to 0.02 MPa.
- Delaying the fuel injection by 6° in respect to its nominal value causes distinct dropping of NO<sub>x</sub> content at each assumed load level as it can be observed from Tab.2 and Fig.8. It amounts to about 30% at 25 and 40% M<sub>n</sub> and is a little lower at remaining load levels (about 20% on average). The obtained reduction of NO<sub>x</sub> content can be deemed satisfactory and the method very effective. However simultaneous worsening of the power and economy indices of the engine should be taken into account. It was revealed, when performing electronic indication tests of the engine, that the maximum combustion pressure and mean indicated pressure dropped along with the fuel injection delay, within the entire assumed range of engine loading.
- The super charging air pressure reduction from 0.1 MPa to 0.02 MPa causes a small increase of CO content in exhaust gas at load levels of 50 and 60% M<sub>n</sub>, and very large one (about tenfold higher) at 70% M<sub>n</sub> (see Tab.1 and Fig.7).

The fuel injection delay does not influence very much the CO content in exhaust gas. The CO content increases by a large amount at 80% M<sub>n</sub> only, at all assumed values of the injection advance angle  $\alpha_{ww}$ . This resulted rather from a super charging air deficiency than the influence of fuel injection delay.

## **GENERAL REMARKS**

The following general remarks and recommendations are offered to ship operators :

- O The above presented results of the laboratory tests could be directly taken into account by the shipowners as the tests were conducted with the use of IF30 and IF40 heavy fuel oils.
- O The engine control methods used during the tests in question seem appropriate, as such actions are feasible in ship service, especially as far as the earlier built engines are concerned which would not be able to comply with the IMO standards without introducing changes to their construction.
- O Application of the fuel injection delay method to lower exhaust gas toxicity introduces limitations to engine performance, especially to the indicated power. Hence the method should be considered as a substitute remedy, of a limited applicability. However it could be very useful for the ships operating in the waters to which more stringent requirements apply (e.g. the California Bay, Baltic Sea, ports and port roads in general).

Appraised by Jan Kazimierz Włodarski, Prof., D.Sc., M.E.

#### NOMENCLATURE

| Л          | - | torque         |
|------------|---|----------------|
| <b>Л</b> _ | - | nominal torque |

- p<sub>d</sub> super charging air pressure
- $\alpha_{ww}$  fuel injection advance angle

#### BIBLIOGRAPHY

- Krzyżanowski J., Witkowski K., Włodarski J. K.: "Zagadnienia spalania paliw ciężkich w silnikach okrętowych z uwagi na ochronę środowiska przed zanieczyszczeniami". WSM. Gdynia, 1995
- 2. The Wartsila : "Low Emission News". 1996
- 3. Vogt R .: "The MaK emission concept exemplified by the M32". MaK Toplaterne
- No 68, Diesel Engine Journal for our Business Friends. November 1994
  MAN-B&W: "Emission Control of Two-stroke Low-speed Diesel Engines". December 1996
- Vollenweider J.: "Exhaust Emission Control of SULZER Marine Diesel Engines". New Sulzer Diesel Ltd.Winterthur, 1996

