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Assumptions of a physical model, equa
tions describing it, flow diagram of a relevant 
computer calculation program as well as re
sults of the static calculations of the sliding 
radial seals usually applied in ship CP propel
ler systems are presented in the paper. The 
model takes into account the diathermic de
scription of oil flow through the bearing inter
space. The calculation results of an exempla
ry seal are compared with those obtained from 
a simpler, adiabatic oil flow model.

INTRODUCTION
The sliding radial seals whose working principle is shown in 

Fig. 1 are usually applied to ship CP propellers and Kaplan’s water 
turbines. They make it possible to deliver oil under pressure into ro
tating shaft interior in order to change pitch of a propeller or turbine 
hydraulically.

Service experience revealed that even similar bearings in nearly 
the same working conditions were able to behave in a qualitatively 
quite different way. For a long time it was the main reason for apply
ing the oil pressure limit of less than 10 MPa.

Fig. 1. Axial cross-section o f  the sliding radial sleeve

Research works carried out by the team of the Faculty of Ocean 
Engineering and Ship Technology, Technical University of Gdansk, 
made it clear that the inadequate work of the seals of certain design 
parameters was caused by unfavourable dynamic phenomena appear
ing within the oil film between the rotating shaft and bearing sleeve. 
A detail description of the phenomena is presented in [1], Their 
occurence was demonstrated by an unstable work of the seal accom
panied by a dozen or so times higher oil leakage and power consump
tion than that at its stable work. The bearing interspace shape which 
was changing during the seal work in result of elastic and thermal 
deformations of the flexible bearing sleeve (first of all), and also of 
the shaft (to a lower extent), was found the main factor responsible 
for occurrence of the phenomena.

The elastic deformations depend mainly on the distribution of 
the pressure acting on the axial cross-section of the sleeve, shown in 
Fig.l, but the thermal ones on the temperature distribution.

It is very important to have at disposal a computation program 
which would make possible to determine with a sufficient accuracy 
the deformations and other magnitudes which influence the seal work. 
The task is rather complicated as it requires solving several mutually 
coupled equations which describe the course of the phenomena ac
companying the seal work, such as flow, energy, thermal conducti
vity, oil viscosity and deformation equations. A number of the equa
tions and their complexity depends on a physical model assumed.

Two models of adiabatic oil flow through the bearing interspace 
for calculating the sliding radial seals are presented in [2,3]. The mo
dels differ from each other by a way in which thermoelastic deforma
tions of the sleeve and shape of the bearing interspace are calculated.

A more complex model describing the phenomena based on the 
diathermic oil flow through the bearing interspace with two- 
directional,i.e. axial and radial, heat flow through the seal sleeve taken 
into account is presented in [6],
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This paper is a continuation of the above mentioned work as 
well as its extension by a computer calculation program and research 
results of an exemplary seal.

PHYSICAL MODEL ASSUMPTIONS
The physical model which describes the phenomena occurring 

in the sliding radial seals is based on the following assumptions :

•  Two-directional, i.e. axial and circumferential ,oil flow through 
the bearing interspace.

•  Oil is incompressible, therefore p = const.
•  Oil viscosity is a pressure and temperature function : p = f(j>, T).
•  The heat generated in the oil flow through the bearing interspace 

is carried away by the flowing oil as well as due to the heat con
ductivity of the shaft and sleeve.

•  Oil temperature changes in the interspace are three-directional, 
i.e. circumferential, axial and radial -  across the oil film thick
ness.

•  Sleeve temperature changes along axial and radial directions. 
This is connected with accounting for the heat exchange between 
the oil and sleeve on its surfaces (cylindrical and face ones).

•  Shaft surface temperature is assumed equal to that calculated on 
the sleeve internal surface.

•  Thcrmoelastic deformations of the sleeve arc axial-symmetric. 
It means that the height of the bearing interspace changes in the 
axial direction in dependence on sleeve deformations, and in 
the circumferential direction in dependence on mutual orientation 
of the shaft and sleeve.

The assumption on axial-symmetric distribution of pressure and 
temperature in the bearing interspace for calculating the sleeve defor
mations makes the calculation model much simpler and is reasonable 
in view of correct sleeve operation as the favourable, stable operation 
of the sleeve is obtainable at the characteristic, almost co-axial loca
tion of the shaft and sleeve. Pressure and temperature differences over 
the sleeve circumference are therefore small and their influence on 
the sleeve deformation can be neglected.

PHYSICAL MODEL EQUATIONS
Particular equations together with short comments on their sol

ving methods are presented below.

Fig. 2. Scheme o f  the sleeve assumed fo r  theoretical calculations 
m - loading mass, g  - gravity acceleration

Equation of oil flow 
through the bearing interspace

Reynolds flow equation takes the following form in view of the 
accepted assumptions :
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R= ~D  - shaft radius (Fig. 1) 
- oil pressure

shaft angular speed
coordinate in the circumferential, radial and axial direction, 
respectively
bearing interspace height (Fig.2) defined by (3) :

h = c + e  • co s  6  + A h (z ) (3)

- design radial clearance of the seal (Fig.l)
- eccentricity of the sleeve location in respect to the shaft 

(Fig.2)
Ah(z) - sleeve thcrmoelastic deformations
9 - angular coordinate
p - oil dynamic viscosity calculated from (4) :

P = P „  ex p / a- p  + b (T ml - T J ]  (4)

oil dynamic viscosity in the reference temperature T 
at the atmospheric pressure 
reference temperature 
oil temperature
characteristic coefficients of oil properties.

The reference system of the cylindrical coordinates r, 6, :  and 
the following boundary conditions were assumed to solve the equa
tion (1) :

p {6 ,  Z = 0) = p

p (0 , z  = L )  = p

p (6 ,  z )  =  p (6 + 2 n , z )

(Fig. 1,2)

(Fig.1,2)

(5)

where : L = L4- Z,; (see Fig.l).
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The flow equation was solved by means of the five-point, finite 
difference method which consists in the covering of the entire inte
gration area by a mesh of calculation points in which the derivatives 
were replaced by the relevant finite differences. The equation system 
obtained in this way was solved with the use of an iteration method. 
The calculated oil pressure values in every mesh point make it possi
ble to calculate hydrodynamic force components by applying the fol
lowing relationships :

2n L

Fs p( 6 , z ) -  cos OdOdz (6a)
0 0

I n  L

Fn =  R  |  j  p( 0 , z  )■ sinO dO dz  (6b)
0 0

The resultant hydrodynamic force F was then calculated :

F  = J f [ + f J  (Fig.2) (7)

and the angle between the direction of the resultant force and the line 
of centres of the shaft and sleeve, a  :

F
a  = arc  tg  —

F s
( 8)

The output of the oil leaking through the interspace was calcu
lated from the following expression :

R 2 ? h dp
Q  = —  J -------L d 0
^  12 o H dz

(9)

Energy equation
The oil temperature distribution in the bearing interspace was 

derived by solving the energy equation of the following form corre
sponding to the assumed model :

( d r  d r ) d2r f du ^
2 2 -

l"  *  + ’r dz r K a -1 = "

___
i

+

where :
( 10)

p - oil density 
c - oil specific heat 
k - oil heat conduction coefficient 
u - circumferential component of oil (low velocity, 

expressed by (11) :

u =  — C] - qjR (1 -C 2) ( i i )
c)x

and „w” - axial component of oil flow velocity defined by (12) :

W  = ( 12)

After transformation of (10) by means of cylindrical coordinates 
and replacement of the temperature derivatives by finite difference 
expressions the equation was solved with the use of the iterative me
thod and the following boundary conditions :

T J 8 ,  r , z ~  0) =  7,

Tje,r = R,z) = TJz)

T0(6,r = R + h ,z )  = Tp(z)  ( 1 3 )

T0(d,r,z) = T0(e+2n,r,z)

<97(0, r, z.) _ <97 (0 + 2 k , r, z) 
d 8  d 6

for R < r < R + h
where :

T_ - seal input oil temperature (environmental 
temperature, Fig.l)

T (e) - temperature distribution over the shaft surface
T (z) - temperature distribution over the internal

sleeve surface.

The first calculation step is carried out for the temperature as
sumed on the sliding surface of the sleeve and shaft. In result a tem- 
perture distribution in the oil film is obtained that makes it possible to 
calculate circumferentially averaged temperature gradients on the 
sleeve sliding surface as well as the average temperature at the bear
ing interspace outlet.

These parameters serve as the boundary conditions for the heat 
conduction equation presented further on ; in result of solving it the 
temperature distribution over the sleeve is achieved. It makes deter
mining a new temperature distribution on the sliding surfaces of the 
sleeve and shaft possible that forms the boundary conditions for the 
energy equation in the consecutive iteration step of calculation.

The temperature on the sleeve sliding surface is determined from 
the following relationship :

T ‘+l(6,r = R+h ,z )  = ( l -m)  • T ‘(6,r = R + h ,z )  +

+ m ■ T'(r = R + h,z)  ( 1 4 )
where :

i - iteration step number 
m - relaxation factor.

The shaft surface temperature is assumed equal to that calcu
lated on the sleeve internal surface. The cycle of computation is re
peated until results of the subsequent steps differ sufficiently little.

Thcrmoelastic deformation equation
The finite element method was applied to calculate thermoelastic 

deformations of the sleeve. It was possible to reduce the three-dimen
sional problem to two-dimensional one due to assuming the axial- 
symmetric loading on the sleeve. In view of expected small deforma
tions of the sleeve the pressure was assumed to form the static load of 
a constant distribution calculated from the flow equation and circum
ferentially averaged, and of a steady direction.

The searched displacement vector u is obtained from the global 
solution (for the entire sleeve) of the equilibrium equation as follows :

K Ti — r ( 1 5 )

stiffness matrix obtained in result of 
agregation process of the stiffness mat
rices K of all /V sleeve elements 
load matrix obtained in result of aggre
gation process of the vectorial sums of 
nodal loadings due to the pressure, pt , 
and temperature, p .

The equation (15) is modified during solution process by taking 
into account constraints applied on the structure. In result the global 
displacement r ector is obtained :

where :

r  =  X C P .+ /> ')■
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CD

EE It = K ~ '- r ( 16)

i—i—l
After identification : if —> identification —> ;7 the searched ra

dial displacements of the nodes located on the generatrix of the inter
nal cylindrical surface can be determined for each element as well as 
deformations at an arbitrary point of the sleeve :

e(y,z) = B(y,z)-ue (17)

and then the stresses :

a  =  C ' - ( e - e ' )  (18)

where :

B (y ,z)  - deformation (strain) function matrix
q ' - constitutive matrix
E1 - thermal deformation (strain) vector.

Lost power equation
Power losses in a correct working seal are caused by shearing 

the oil layer due to shaft rotation and resistance of the oil flow in 
result of pressure difference. The lost power value was calculated 
from (19) for one half of the seal :

In  L.

N, = q)2R2 J  J y -dddz + Q,( pz - p „ )  ( i 9)
0 0 ^

Heat conduction equation
The Laplace equation was applied to calculate the temperature 

distribution in the sleeve in compliance with the earlier defined as
sumptions, which takes the following form when assuming the cylin
drical coordinates r, 9 ,:  and axial symmetry :

c f T  \ _ f T _  c f T

dr2 r dr dz1
=  0 (20)

where: T - temperature of the sleeve material.

The sleeve and bearing casing were assumed to contact each 
other on their cylindrical surfaces therefore they may be considered 
to form a uniform element like the sleeve shown in Fig.3.

Fig. 3. Scheme o f  one half o f  the sleeve together with hearing casing, 
applied in the theoretical calculation model

The conduction equation (20) was solved by using the analyti
cal method for two sets of boundary conditions (d|,d,)which differed 
from each other by the assumed model of heat flow through the mid
dle part of the circumferential ducts of the sleeve (that is highlighted 
further on) :

d r
if z = 0 ---- —— hT  =  hiTz (d, model) (21)

dz

-----=  0 (d, model) (22)
dz

if e = L ~  + lhT  = h1Tk (23)

if r = r df_
dr = & ) (d| model) (24)

~)T
if r = r  and 2 = 0 -  (-L f —  +  h j  =  h j ,  

dr

and 2 = 0 ■ L d T  ( 1—  =  g(z)
dr

(d, model) (25)

if /•= rh
r)T_

dr
+ lhT = / hTol(z) (26)

where :

(27)

or, -  a ,  - heat absorption coefficients on the surfaces o fr = 0 ,2  = L, 
r = rh and r = r , respectively

k - heat conduction coefficient of the sleeve material
Tk - environmental temperature (Fig. 1 (assumed at the surface

2 = L equal to the temperature of oil outflow from 
the bearing interspace, calculated from the cq. (10)

Tm (:) - environmental temperature assumed at the surface r = r
y(z) - temperature gradient [°C/m] on the surface r = r

Moreover the functions Tn (2) and "(2) arc assumed of the dis
crete form of pairs: [ 2., g(z)], [2. ,Tm (2.)] , i = 1, 2,...j.

COMPUTER
CALCULATION

PROGRAM

The calculation program presented in Fig.4 in the form of block 
diagram and written in the FORTRAN language, is intended for car
rying out the calculations o f :

•  pressure and temperature distributions of oil in the bearing 
interspace of the seal

•  temperature distribution on the external and internal surfaces of 
the sleeve

•  distribution of thermoclastic deformations of the sleeve
•  stress distribution within the sleeve
•  height distribution of the bearing interspace
•  hydrodynamic force components
•  eccentricity of the mutual sleeve and shaft location
•  leakage output and friction power
•  static characteristics of the seal.

The program contains the input data check block which signals 
the possible errors connected with introducing inadequate units or 
out-of-range numbers. A FEM input data generator is also included 
to form the data on the basis of a characteristic input information and 
mesh parameter. A mesh of FEs and nodes as well as the temperature 
is generated for an assumed sleeve subdivision in compliance with 
the regularity principle and solution convergence conditions for a given 
type- and-size class of the seal in question.
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I Start

. . ▼.. _ _ 
Input data

C heck ng data
A re date correc t? j

Yes ! N o

C orrection  o f  data

A ssum ption  o f  the tem perature o f  the oil 
and zero deform ation o f  the sleeve

C alculation  o f  the interspace height, the oil viscosity, 
the oil p ressure d istribu tion  and the hydrodynam ic force

Do you vant to ca lcu late?
Static characteristics 1 S teady work param eters

Is the hydrodynam ic to
▼

rce egual to  the load o f  the seal?
Yes No

1 T . _

- - - - - - - 3  ' C orrection  ol the eccentricity  e

C alculation o f  the tem perature d istribu tion  w ithin 
the bearing  interspace

Is the calculated tem perature distribution enough accurate? 
N o I y J 7

C alculation o f  the tem perature d istribu tion  in the sleeve, 
the casing and the shall

A re the oil sleeve tem perature d is tribu tions on 
the in terior sleeve surface equal

C orrection  o f  the tem perature 
on the interspace boundary

Is the num ber o f  th iteration b igger than 1
Yes | No

-«
j C alculation ol the therm o-elastic 1 ; C alculation o f  the rigid ty m atrix
j deform ttion ol the sleeve and its deeom pos tion

' '  .
Are the oi pressure and sleeve i Sending the resu lts to the tiles

deform ation d is tribu tions enough accurate for the next iterat ons
No i Yes

H _________
I C alcu lation  o f  the seal work param eters and prin ting  read-out

Stop

Fig.4. Block diagram o f the calculation program

CALCULATION RESULTS
The performed calculations were aimed at assessment of quality 

of the presented method. It was achieved by comparing the actual 
results with those obtained by applying the earlier elaborated and 
experimentally verified method based on the adiabatic model of oil 
flow through the bearing interspace [3]. The calculations were car
ried out for the following values of the design and operation para
meters (see Fig.1) :

D = 0.6 m D, = 0.64 m D, = 0.68 m D, = 0.702 m

Subsequent calculations in accordance with the presented method 
were carried out for the same input data and two different models of 
heat flow through the sleeve and casing mutually contacted.

In the first of them the axial heat flow towards the cold oil in the 
middle part of the sleeve and casing is assumed to be effected through 
the entire face surface of the elements. This model better reflects heat 
exchange conditions in the typical, unloaded radial seals whose cir
cumferential ducts are of a large cross-section area, and in conse
quence their heat exchange area is also relatively large.

In the second model the middle part of the above mentioned 
elements is assumed free of the circumferential ducts and heat flow 
from the sleeve to the cold oil to be effected along the circumferential 
duct in the radial direction only. The axial heat flow between oil and 
the sleeve and casing is effected on the external side-face surfaces 
only. This model is more suitable for calculating the not-unloaded 
seals applicable to small diameter shafts, or unloaded ones and hav
ing the middle circumferential ducts of relatively small lateral dimen
sions.

The calculation results are graphically presented in Fig.5 where 
the two models arc distinguished by d, and d, respectively. Addition
ally the calculation results, marked by „a”, are included which are 
obtained from the earlier mentioned method based on the model of 
adiabatic oil flow through the bearing interspace and one-dimensional 
axial heat flow through the sleeve.

The results of calculations for the above specified design pa
rameters indicated a stable performance of the seal within the entire 
investigated range of supply oil pressure changes and of shaft rota
tion speed.

The calculated value of the relative eccentricity defined as the 
ratio of the shaft-to-slecvc distance and the design radial clearance 
was very small : not exceeding 0.025 even at the relatively low sup
ply pressure of 6 MPa. It means that the mutual location of the sleeve 
and shaft was practically co-axial, in compliance with the experimen
tal results.

ers

D, = 0.716 m D =  0.856 m L, = 0.01m L, = 0.103 m4 (j 1 2

L, = 0.113 m L, = 0.130 m C = 0.000105 m

mass applied to the seal : MASA = 600 kg
linear heat expansion coefficient of the sleeve material (steel) :
ALF = 0.11104 1/K
heat conduction coefficient of steel : k = 52 W/m/K 
heat absorption coefficients within the middle part of the 
circumferential ducts of the sleeve :a] = a 4 -  253 W/nf/K 
heat absorption coeffcient of the external face surfaces of the 
sleeve and casing = 200 W/nf/K.
heat absorption coefficient of the external cylindrical surface of
the casing :a , = 10 W/nf/K
oil dynamic viscosity at the temperature T = 50°C’
p , = 0.04 N-s/nf
oil specific heat : cv = 2000 J/kg/K 
oil density : p = 900 kg/mf

Fig. 5. Pressure distribution o f  oil in the bearing interspace, calculated according 
to three oil /low models (d </,. a) and the following data: 

nr = 2 rps , T = 4S°Cand'pm = 6. 8. W and  12 MPa

In Fig.5 the distribution of the average (circumferentially) pres
sure of oil in the bearing interspace is presented. The curves calcu
lated in compliance with both models d . d, of the diathermal flow 
practically cover each other. It means that the way of modelling the 
heat flow through the sleeve in the circumferential duct region is al
most of no importance in this case. Distinct differences in shape of 
the curves, which grow along with the supply oil pressure increase, 
are observed only for the different models of oil flow through the 
bearing interspace. It results mainly from that the oil temperature in 
the bearing interspace, calculated by means of the diathermal model, 
grows, in consequence of the heat transference to the sleeve and shaft 
being accounted for, to a smaller extent than in the case of the adia
batic model, that can be observed in Fig.6. It causes a far less drop 
of oil viscosity and somewhat smaller thermal deformations of the 
sleeve and in result a changed course of pressures.
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Fig. 6. Distribution o f  the average oil temperature in the hearing interspace, 
calculated according to three oil flow models ( d , d , , a) and the following data: 

ii' = 2 rps , T_ = 45°C and /;. = 12 MPa

The oil temperature distribution in the bearing interspace, simi
larly to the case of the pressure distribution, depends first of all on 
whether the heat exchange is or is not taken into account, and -to 
a very sm all, however noticeable extent - on the assumed conditions 
of heat flow through the sleeve. As expected, accounting for the mid
dle sleeve ducts in the calculations leads to obtaining a somewhat 
lower oil temperature.

A greater influence of the assumed model of heat flow through 
the sleeve and casing can be observed on the temperature distribu
tions over the sleeve cylindrical surfaces, shown in Fig.7.

Fig. 7. Temperature distribution on the sleeve surfaces, calculated according to 
three oil flow models (d , d , , a) and the following data: 

nr = 2 rps , r  = 45°C and p_ = 12 MPa

The temperature on the sleeve internal surface, calculated for 
both diathermal models still differs only slightly, but the temperature 
differences on the external surface arc of even 2°C.

The temperature values calculated from the adiabatic model 
(concering the full sleeve thickness) fit within the temperature range 
obtained from the diathermal models and arc close to their average 
(thickness-wise) temperature values. Attention should be paid how
ever to a smaller increment of the sleeve temperature based on the 
adiabatic model in comparison with the average ( thickness- wise)

sleeve temperature based on both diathermal models. It results from 
neglecting the heat exchange in the bearing interspace, namely : heat 
abstraction at the interspace entrance and heat absorption along the 
remaining part of it. The phenomenon is illustrated in Fig.8 by the 
oil temperature distribution within the bearing interspace between 
the sleeve and rotating shaft.

Fig.fi. Distribution o f  the oil temperature in the bearing interspace, 
calculated according to the oil flow model dl and the following data: 

ii' ~ 2 rps , T_ = 45°C and p_= 12 MPa

Each of the curves deals with a successive, equally spaced cross- 
section of the bearing interspace, counting from its entrance towards 
outlet. To simplify the drawing, the interspace walls are depicted pa
rallel. The first curve of z = 0 is depicted without any accurate fitting 
of points to make it more like its real course. The points put on the 
drawing present the temperatures which form the boundary condition 
for calculating the remaining temperature values. The temperature 
gradients observed at the inlet of the cold oil flow into the narrow 
interspace are the greatest, therefore cooling of this part of the sleeve 
and shaft is the greatest too. Changing the curve slope directions can 
be observed beginning from third curve, which means that heat is 
transferred from the oil to the sleeve and shaft. The close-to-sym- 
nretrical shape of the curves should be stressed because it is con
nected with the temperature on the shaft surface, equal to that on the 
internal sleeve surface, as it is assumed in the calculation model.

The amount of heat generated within the bearing interspace de
pends mainly on shaft speed. In Fig.9 the distribution curves are 
presented of the average (circumferentially) oil temperature in the 
interspace at five shaft speed values.

Fig. 9. Distribution o f  the oil temperature in the bearing interspace, 
calculated according to the oil flow model dt and the following data: 

nr = 1, 1.5, 2, 2.5 and 3 rps . T_ -  45°C andp_ = 12 MPa
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A distinct shaft speed influence on oil temperature increase in 
the interspace can be observed. Taking into account that calculations 
in compliance with the adiabatic model provide much higher values 
of the temperatures, one can confirm that elaboration of diathcrmal 
models is necessary for the water turbine seals where shaft speed can 
reach even 4 rps.

The influence of the supply oil pressure on the oil temperature 
in the interspace is low, as it can be observed in Fig. 10.

Fig. 10. Distribution o f  the oil temperature in the hearing interspace, 
calculated according to the oil flow model df and the following data: 

nr = 2 rps , T_ = 45° C andp_ = 6. X. JO and 12 MPa

The oil supply pressure more distinctly influences the sleeve 
elastic deformations and thus the bearing interspace height. In Fig. 11 
the interspace shapes are shown at four oil pressure values.
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and middle circumferential ducts of the sleeve leads to obtaining the 
lowest height of the interspace with the relatively high shape conver
gence maintained.

Fig. 12. Axial shape of the bearing interspace, calculated in compliance 
with three oil Jlow models (d . d , , a) and the following data: 

ti' = 2 rps . T_ = 45°C and /;. = 12 MPa

FINAL REMARKS
♦ The analytical solution of the conduction equation of the two- 

dimensional heat flow through the sleeve and seal casing, described 
in [6], made it possible to put into operation the complete calculation 
program based on the diathcrmal model of oil flow through the bear
ing interspace, with three-dimensional temperature distribution and 
oil viscosity accounted for.

♦ The above presented results of calculations makes positive 
assessment of the physical model and calculation method applied to 
the considered phenomena justified, and in consequence practical 
applications of the elaborated calculation program to designing the 
CP propellers and Kaplan water turbines possible.

♦ The program is especially suitable for calculating the opera
tion parameters of the seals under high thermal loading, c.g. in such 
cases as :

♦ in high-load propellers of naval vessels
♦ at high shaft speeds, typical of water turbines
♦ during emergency operation of the CP propeller 

with blocked pitch control when the supply oil 
pressure is as low as to effect fading the axial oil 
flow through the bearing interspace and thus 
the heat abstraction too

♦ the seals with thin-walled sleeves described in [5],

Fig. II. Axial shape o f  the bearing interspace, calculated in accordance 
with the oil flow model d/ and the following data: 

nr = 2 rps , T = 45°C and p_ = 6. X. 10 and 12 MPa

Increasing the supply oil pressure in the caleulatcd seal results 
in lowering the height of the interspace and changing its shape simul
taneously. Elastic deformations of the sleeve are very small at a low 
supply oil pressure therefore the interspace shape is close to the de
sign parallel clearance based on the assumed fit of the sleeve against 
shaft.

Increasing the pressure results in increasing the sleeve elastic 
deformations which means decreasing the interspace height with dis
tinct growing of the convergence of shape. In this case the shape de
pends on the location of the scaling rings that decide about distribu
tion of the pressure applied to the axial cross-section of the sleeve 
(see Fig.l).

It should be mentioned however that the interspace shape will 
be probably somewhat different if the calculations are performed at 
different, particularly higher, shaft speeds. Increasing the speed will 
cause the interspace convergence to drop.

In Fig. 12 the axial shapes of the bearing interspace are pre
sented, calculated in compliance with the three flow models. As ex
pected, taking into account the heat exchange within the interspace

The thermal phenomena occurring in the above mentioned cases 
affect performance of the seal to a greater extent than other ones and 
therefore application of the diathcrmal model to calculating such seals 
is fully justified.
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