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The general description of a method of ship 
hull vibration analysis is presented. Based on 
the Vlasov’s theory the differential vibration 
equations were formulated of a ship hull mo­
delled as a system of linear, elastic orthotro­
pic shells of multi-circuit cross-sections, flo­
ating on the ideal fluid. An algorithm for the 
generation of the motion equations and boun­
dary conditions, as well as for the numeri­
cal integration of the motion equations was 
elaborated.

The method enables to determine the hull 
response to excitation caused by the system 
of harmonic forces as well as to calculate the 
natural modes and natural frequencies of vi­
bration. Examples of numerical calculations 
compared with experimental results are inclu­
ded for two types of hulls.

The paper presented at the Symposium on Ship Structure and Mechanics - Ultimate 
Capacity of Ship Structures, held in memoriam of Prof. M arian Kmiecik, 20 and 21 
March 1996, Szczecin.

INTRODUCTION

In the design practice the following types of computation mo- 
delsare usually applied to the description of ship hull vibrations [1]:

O  the bar (beam) models based on the assumption of a non-dc- 
formablc hull transverse cross-section, or its projection onto the 
plane perpendicular to the hull longitudinal axis 

O  the multi-plate and shell models usually based on the finite ele­
ment method.

The basic advantages of the beam models are:
•  simplicity
•  low costs of computations against those based on more com­

plex models
•  description clarity leading to understandable classification of 

vibrations
•  consistence of calculation results of basic resonance frequen­

cies with those based on other models. The consistence also 
occurs in the cases where the cross-section deformability is ac­
counted for by means of more exact models. The bar models, 
though the simplest in applications, provide results close to re­
ality only in the case of slender enough structures and in respect 
to lower frequencies of vibration. They appear unreliable for 
higher frequencies.

The multi-plate and shell models make a more exact de­
scription possible, but they are much more expensive in use. Their 
application is connected with long computation time, use of 
a large operation memory computer and laborious, often prone to 
errors, process of data preparation. Physical description loses the 
clarity presented by the beam theory, therefore interpretation of 
calculation results is more difficult. Calculation accuracy not al­
ways can be improved by increasing the number of finite ele­
ments, and application of different finite elements sometimes leads 
to nonconsistent results. The results not always arc reliable in 
respect to higher vibration frequencies.

The drawbacks of the above mentioned models made a team 
led by Prof.J.Wiqckowski (deceased in 1984) of the Technical 
University of Gdansk, begin searching for another computational 
model, more exact than the bar-beam models and more transpa­
rent than the discrete, multid.o.f. models most often based on 
plate and shell finite elements. The frame-shell structure model 
proposed by W.Z.Vlasov in the 1930s was selected for static cal­
culations of multiccll, thin-walled structures of closed transverse 
cross-sections [2],

THEORY ASSUMPTIONS

The system of prismatic, connected to each other, thin-walled 
segments built of the orthotropic, linearly elastic plates or shells 
mutually joined along their parallel edges called the nodal lines, 
was assumed as the ship hull structural model. The contours of 
transverse cross-sections of each segment consist o f a finite num­
ber of polygons whose corners are called the cross-section nodes 
(see Fig.2 and 4).

The so called half-moment theory, based on the known stress- 
strain relationship for two dimensional state of stress was applied to 
formulate motion equations of particular segments. In the theory the 
resulting direct forces in the longitudinal and transverse directions, 
the resulting shear forces in the shell plane and the bending moment 
along circumferential direction, are taken into account from among 
all internal forces which act onto a given shell element, being re­
duced to the middle plane resultants. However the bending moment
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in the longitudinal direction and twisting moment are neglected as 
being small. Moreover it is assumed that the structure can be loaded 
by a system of the external forces directly applied to shell surfaces as 
well as to the end cross-sections of segments. The forces are explicit 
functions of the time t and the location coordinates z,s.

The Vlasov’s theory consists in representing the projections of 
the displacement vector of an arbitrarily chosen point of the structure 
cross-section circumference, effected onto the axis of the local sys­
tem of the coordinates b, s, n ( Fig. 1), in the form of the polynomials 
of two separated variables as follows:

where:

V i’V k ’ Xk

Vi A

- the shape functions assumed known, 
representing constraints imposed upon 
system’s motion

- the location functions of the coordinate z 
along the longitudinal structure axis and 
the time t , to be the searched magnitudes.

I
Xt

1

Fig. 1. Vlasov s  shape functions and local coordinate system fo r  ship hull cross-section

The linear shape functions of the first type, proposed by Vlasov, 
were used in this work.The functions <p, which describe the longitudi­
nal displacements, take the value equal 1 in i-th node of the cross- 
section (/ = 1,2 ,...N) and the value equal 0 in all the remaining nodes. 
The coupled-in-pairs functionsVk.Xt (A = 1,2, ...R) which describe 
the transverse displacements, are generated by shifting the mutually 
connected contour nodes of the structure cross-section by the value 
equal 1 in the circumference coordinate direction. Simultaneously 
the contour is considered as a planar frame built of hinged rigid bars.

The number N+R of the generalized coordinates y , i3t used for 
description is to be equal to the number of degrees of freedom of one 
cross-section of a structure.

MOTION EQUATIONS

Making equal zero the variation of a functional which expresses 
the work done by the internal elastic forces and external forces ap­
plied to a given structural segment, provides the following set of motion 
equations of the segment, written in matrix form [3]:

A z = B z"+C z'+D z -  f  (2)
which is the set of second-order, partial differential equations, as well 
as the boundary conditions as follows:

M Z =  D M Z =  D (3)i T i A A V a 1 t 1 B ^ B  F U

which is the set of first-order differential equations; where:

A, B, C, D - the square matrices of the constant coefficients 
depending on the material properties (density, 
moduli of elasticity, shear modulus, Poisson’s 
ratio) and dimensions of particular shell ele­
ments and their location within segment’s cross- 
section

Z - the column matrix of the searched generalized
coordinates y. j

f  - the column matrix of generalized vibration ex­
citation forces

M - the rectangular matrix with the constant coeffi­
cients depending on the material properties and 
cross-section geometry

~ - the column matrix of the generalized coordi­
nates v , i \  and their first derivatives in respect 
to the location coordinate z

p  - the column matrix of the generalized forces ap­
plied to the segment’s end cross-sections of 
z = zA and z = zg .

Note:
Dots over symbols stand for the derivatives in respect to the time t 
Upper apostrophes stand for the derivatives in respect to the location 
variable z along the structure axis
The lower indices A, B stand for the left and right end cross-section 
(edge) of a segment, respectively.

If a vibrating structure floats partly immersed in an inviscous, 
incompressible liquid, the liquid reaction forces applied to surface of 
the structure can be taken into account in the motion equations by 
adding,to the inertia matrix A, the appropriately formed, square 
matrix A of constant coefficients, called the added mass matrix. This 
does not change the general form of the equations and does not influ­
ence their way of integration. Methods of calculation of the added 
mass matrix coefficients, expressed by Vlasov’s coordinates, is given 
in [4],

Description of vibrations of the entire structure consists in for­
mulating the differential equations of motion for each of the segments 
separately, and then coupling the obtained equations by using bounda­
ry conditions. Details of the procedure can be found in [3],

INTEGRATION OF EQUATIONS

The set of the partial differential equations describing segment’s 
motion, if the vibrations are harmonic or excitation forces oscillate 
harmonically, can be transformed by substituting z = xcostut into 
a set of ordinary differential equations as follows:

Bx"+Cx'+Gx = g (4)
where:

G = fi)2A + D 
g = f  cos cot

(0 - vibration frequency.

A functional matrix of the following form can be found:

xJ(z) = Xj(z)cJ (5)

which is the solution of the set of ordinary differential equations ob­
tained for j-th segment of the structure in question, where:

X. - the integral matrix of the set of the differential 
equations describing j-th segment’s motion 
(7 = 1 ,2 .... M)

M  - number of structural segments 
C. - the column matrix of integration constants for j-th 

segment.

Determination of the constants is connected with the need of 
inversion of a square matrix having the size equal to the double number 
of the generalized coordinates v  .assumed for all segments of the 
computation model.

To integrate the equations, the Francis iterative method was used 
which makes it possible to continually control the accuracy solution, 
as well as to get, by steering the program appropriately, more or less
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the method can be found in [5],
Several computer programs for vibration analysis of multi-cell, 

thin-walled structures composed of shell segments with multi-circuit, 
closed cross-sections [6], were elaborated at the Department of Ship 
Structural Mechanics and Hull Structures, Technical University of 
Gdansk. Operation of the computer programs consists in automatic 
generation of the matrices of the coefficients of differential motion 
equations and boundary conditions after putting-in the data on di­
mensions, material contants and external structural loads, and inte­
grating the composed equations.

The programs make it possible to calculate:

O  the natural frequencies and the main vibration modes of a struc­
tural system

O  the frequencies of the excitation forces at which resonance vi­
brations of the system are generated, as well as:

O  the structural response to excitations generated by a known sys­
tem of harmonic forces.

EXAMPLES OF COMPUTATIONS 

Transverse vibration of ro-ro ship hull

In 1976-1-1980 five ro-ro ships of B 481 shipyard series number 
were built in Gdansk Shipyard. The ships of multi-cell, closed hull 
structure, 182 m long, of 16 000 t displacement at 6.8 m draught, 
without transverse bulkheads in the midship part, with flat-bottom 
stem , demonstrated an excessible level of vibrations in service. The 
need to disclose causes of the vibrations and eliminate them induced 
the builder to perform measurements onboard consecutive ships of 
the series, as well as to carry out hull vibration analyses with the use 
of various computational models.

The simplified ship hull model used for the calculations based 
on the Vlasov’s hypothesis is shown in Fig.2. The model consists of 
five prismatic segments having contours partly adhering to each other. 
Each of the segments is built of flat orthotropic shells of different 
thicknesses and material constants. Detail information on principles 
of modelling the real, stiffened deck and side structures by using 
orthotropic shells, as well as dimensions and material properties of 
particular shells are given in [7],

The natural frequencies of the hull transverse vibrations in the 
vertical plane, calculated by means of five different methods, as well 
as several first resonance frequencies experimentally determined with 
the use of a vibration exciter, are given in the table.The measure­
ments were carried out on real structures of two sister ships at sea.

Natural frequencies o f  hull transverse vibrations o f B 481 ship [s ']

Number 
of nodes

Computational model Measurements

A B C D E B 481-3 B 481-4
2 9.92 9.63 9.23 9.01 9.14 9.17 9.15
3 20.11 18.95 17.70 16.76 16.95 16.72 16.55
4 31.63 29.22 27.08 25.13 23.83 23.00 21.36
5 44.40 38.64 36.65 33.93 29.51 28.35 29.43
6 55.82 48.28 45.45 41.78 36.86 - 34.14
7 67.23 57.28 55.40 50.74 44.93 37.01 -

8 80.01 65.66 63.90 58.01 48.13 - -

8 - - 53.23 -

Notes:
a, c, d - the calculations performed by Ship Design and Research 

Centre (CTO) by means of a computer program based 
on the stiff finite element method [8], The particular 
calculation versions differ from each other in determi­
ning the added mass and shear influence [9] 

b - the results of the calculations based on the Timoshenko 
beam model, carried out by Ship Research Institute, 
Technical University of Szczecin, cited in [9] 

e - the hull resonance frequencies determined on the basis 
of the Vlasov frame-shell model.
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During the measurements at sea, carried out on the real ship 
hull, the first modes of transverse structural vibrations were experi­
mentally determined by means of vibration sensors placed along the 
middle deck axis [10]. The results of the measurements are compared 
with the calculated values in Fig.3.

Longitudinal cross-section

T

0 20 40 60 80 100 120 140 160 180 m

Transverse cross-sections

Fig. 2. The simplified ship hull model
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Fig.3.B-481 hull vibration resonance frequencies (i)r (Q,,cor ti)4 
and modes calculated on the basis o f  the Vlasov frame-shell model, 

compared with the results o f  full scale experiments

Note:
Small circle and triangle marks-the results of two different vibration 
measurements
Continuous lines - the calculated vibration modes (amplitudes of ver­
tical displacements of the middle deck axis).

The comparison of the results of calculations and experiments 
confirm the widely known observation that the beam model is unrelia­
ble in ship hull vibration calculations as far as higher order frequen-



cies are concerned. The frame-shell theory, more exact than the beam 
theories, made it possible to calculate accurately two additional fre­
quencies and basic modes of vibration.

Transverse and transverse-torsional 
vibrations of containership hull

The basic natural vibration frequencies and the correspon­
ding main modes of transverse and transverse-torsional hull vi­
brations of the 2700 TEU containership, designed by Gdansk 
Shipyard in 1992, were determined by using the above mentioned 
computer programs [6],

The ship of 65 000 t displacement at 12.3 m draught, 227 m 
long, is ,in her midship region, of the open hull structure strengthe­
ned by transverse bulkheads.

The shell structure composed of six segments with contours 
partly adhering to each other was assumed as the calculation model 
shown in Fig.4. The stiffened plates of ship hull bottom and sides 
were transformed into orthotropic shells in compliance with the prin­
ciples given in [7],

Longitudinal cross-section

0 20 40 60 00 100 120 140 160 IOO 200 220 m

Transverse cmss-sections

Fig.4. Scheme o f2700 TEU containership calculation model

The resonance frequencies of hull transverse vibrations in the 
vertical plane, calculated on the basis of the Vlasov’s theory, are [Hz]:

(0 = 1.19 (0= 2 .12  (0 = 2 .9 4  (0= 4 .271 2  3 4

The approximate methods [ 1 ] based on vibration measurements 
of the container ships of a similar displacement value, provide similar 
results:

(0=0.75 to 1.6 ( 0=1 . 5  to 3 (0 = 2.4 to 4.2 (0. = 3.1 to 5.51 2  3  4

An analysis of transverse-torsional vibrations of the investigated 
hull, based on the Vlasov theory revealed additionally the following 
resonance vibration frequencies:

(0, = 1.92 (02 = 3.11 (03 = 3.71

The basic vibration modes correspond to the calculated fre­
quencies.Twisting the structural cross-sections is the dominant 
mode in the first two cases, in the third one - diagonal bending 
distinctly coupled with twisting.The vibration mode (displace­
ment amplitudes of the left hull bottom edge) as well as the 
displacements and deformations of four selected structural cross- 
sections, which correspond to the frequency (0,=  3.71 Hz , are 
illustrated in Fig. 5.

The first two cross-sections stiffened by transverse bulkheads 
do not reveal any evident deformations. Third cross-section (z = 125 m, 
at the half-length of hold), not stiffened, apart from the rotation and 
translational displacement, manifests also deformations.

Fig. 5. The hull vibration mode ( displacement amplitudes o f  the left hull bottom edge ), 
displacements and deformations o f  four structural cross-sections, 

at (Os = 3.71 H z , o f 2700 TEU containership

Note:
------ the transverse lateral displacements
------  the transverse vertical displacements
........ the longitudinal displacements

CONCLUSIONS
•  The Vlasov frame-shell model with the linear shape func­

tions applied to the analysis of vibrations of a prismatic thin-walled 
structure of rectangular cross-section, shows the results close to those 
obtained from the bar models of Bernoulli-Euler (for longitudinal 
vibrations), Saint Venant-Bredt model (for torsional vibrations) and 
the Timoshenko beam model (for transverse vibrations).

•  Moreover it discloses an additional series of natural frequen­
cies and natural modes of vibrations corresponding to the exactly 
determined forms of deformation of the structural cross-sections.

•  The model used to describe vibrations of multi-cell struc­
tures, as well as of the structure composed of joint segments of diffe­
rent cross-sections, gives more accurate results than the beam mo­
dels, because it takes into account the effects of warping and trans­
verse deformations of the structure cross-sections.

•  The presented model, cheap in use, clear for interpreting the 
results and providing more information about the character of the 
vibration motion than the beam models provide, can be useful for the 
vibration analysis of some kinds of thin-walled structures at the early 
stage of design.
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