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ABSTRACT

The paper has been written within the European EUREKA Project E!2772, initiated and
completed at the Faculty of Ocean Engineering & Ship Technology, Gdarnsk University of
Technology in the years 2001-2003. A problem has been solved concerning mathematical
optimisation of a fleet of multipurpose sea-river vessels for European short-shipping regu-
lar lines, in the area of The North and Baltic Seas, on the level of marine transportation
task, by the non-linear programming methods with constraints. A method is proposed which
enables existing criteria of stability to be included as constraints in the optimisation model

of afleet. In the numerical examples, three typical criteria of intact stability: by IMO, PRS, and HSMB have
been selected to demonstrate a post-optimisation feasibility analysis of principal parameters of ships.
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1. INTRODUCTION

Computer aided ship design methods used at present, whi-
le offering automation of the design process, require its ratio-
nalisation and formalisation. In consequence, adequate mathe-
matical models of the design object must be created which af-
fect the design process by introducing a structure and termino-
logy which unavoidably bounds reasoning to the terms of the
model.

In this case a fleet of ships at the stage of owner’s study is
assumed to be an object and the task of optimising its main
parameters is an objective of the adequate mathematical mo-
del. In consequence, the global structure of the model (further
called an “optimisation model”’) corresponds to that proposed
by operational research methods in general and non-linear pro-
gramming methods (NPM) in particular [3]. Within this struc-
ture, optimisation models consist of a set of sub-models of par-
ticular properties of the object which have been recognised as
significant to the predictive features of the model. Optimisa-
tion models applied to fleet/ship design are definitely synthetic
in nature. This feature requires the analytical representation of
particular sub-models to be relatively simple. In consequence,
sub-models usually neither become isomorphic with, nor con-
form to the physical structure of that part of object to which
they are related. Such type of models is sometimes referred to
as “non-structural” [19]. NPM require for all the sub-models
concerned to be formulated as constraints. Among them there
are always those concerning safety of an object. In ship design,
a special interest in this group is focused on the stability of
ships. In naval architecture today, the stability requirements
are imposed in the form of legal regulations by such institu-
tions as IMO, classification societies, governmental organisa-
tions and other bodies. An essential part of stability regula-
tions are stability criteria.

The paper deals with the problem of incorporating stability
criteria as constraints in the optimisation model of fleet/ship
design. At the initial stages of the design the principal difficul-
ty is that the full geometry of a hull, necessary for the stability
criteria to be applied, is usually unknown. A standard solution
was to take into account the initial stability only, represented

by the initial metacentric height GMO [2], [4], [7], [12], [14].
The paper proposes an alternative approach, based on an idea
introduced by Wisniewski [20] and developed by Kupras [10],
[L1]. In this concept the full stability of ship can be accounted
for by using systematic standard series of hull forms, follo-
wing the methodology developed in ship resistance and power
prediction.

In order to accomplish the task, an attempt has been made
to define all the stability-related geometrical characteristics of
a ship analytically, based on the Series 60 body forms [19]. In
consequence, an arbitrary criterion of intact stability can also
be defined in an analytical way and so incorporated into opti-
misation model as a constraint.

Stability aspects in the computer-aided modelling of ship
design have been addressed on the background of the optimi-
sation problem concerning a fleet of multipurpose sea-river
vessels for European short-shipping regular lines, in the area
of The North and Baltic Seas, on the level of marine transpor-
tation task, by non-linear programming methods with constra-
ints. The problem has been undertaken within the European
EUREKA Project [13] based on predictions that a significant
increase of cargo transportation in Europe over the next 10
years (or probably after this period) will take place between
Western Europe and the Central and East European countries.

In the numerical examples, three criteria of intact stability:
IMO [6], HSMB [5], and PRS [17] have been selected, as typi-
cal of contemporary stability regulations, to demonstrate the
method in a post-optimisation, feasibility analysis of principal
parameters of ships.

2. PROBLEM STATEMENT

A fleet of ships consists of a number of homogeneous ships
operating as a maritime transportation system in a certain envi-
ronment. The transportation task for a fleet of ships is to carry
goods between ports during a prescribed period of time. An
optimum fleet to perform this task, given the particular (ow-
ner’s) data, is a general problem under discussion. A solution
to this problem needs adequate functional and mathematical
models.
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2.1. Functional model of a fleet

In the particular case (Tab.2.1), a (potential) shipping line connects the furthest Western and Eastern regions of Europe (a).
A corresponding model of shipping (b) is called a multi-port route model linking two areas of operation A and B with the two
groups of clustered sea and hinterland river ports. There are two streams of goods transportation in the model: from A to B (called
OUT) and back, from B to A (called IN). Ports A-0 and B-0 are the home and destination ports. For more details about the
functional model of a fleet - see [13].

Tab. 2.1. An example of a shipping line and its graphical model
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2.2. Optimisation model of a fleet

The mathematical model chosen for the fleet optimisation problem can be described as deterministic, static, continuous,
single level and single objective model, imposed and solved by non-linear programming methods. A standard formulation of the
model, within NPM, is as follows: given a vector ¢ (or a set C) of constants, find such a vector of decision variables x that
minimises a single valued objective function Q(x,c¢) subject to a set of inequality constraints. An adequate mathematical form of
the problem is :

min Q(x;¢); Q:R"xRN 5> R!

(x;¢) e Q= {(x;c) gi(x;0)<0 - 1,2,...,m}¢ %) @1

It is generally assumed that Q(-) and g;j(-) are all non-linear functions.
The conditions for existence and uniqueness of the (optimum) solution to (2.1) can be found in [3].

Tab. 2.2. Elements of an optimisation model of a fleet of ships
b)

X

It is obvious that the optimum solution x of the problem (2.1) is, in fact, parametrised by constants C that can be classified
according to different criteria (Tab.2.2a). In particular, the group C3 delivers constants for the stability criteria of a ship (legal
environment). A crucial element of the optimisation model is a feasible solution region (FSR) Q, because it eventually decides
about an optimum solution to the problem. FSR is such a set of pairs (x,¢) that all the constraints hold.

Q={(x,0):gix,c)<0,je€J},J={1,2,.m} (2.2)
For further discussion, it is useful to classify FSR from the functional and formal points of view. In the functional classifica-
tion, FSR defines, in fact, the notion of feasibility in ship design. Formally it can be thought of as a common part of the four

groups of requirements imposed on a fleet/vessel by the environment (Tab.2.2b) and can then be written as the following product
of four sets :
4

Q=N Q
k=1 K
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All of them affect constraints of the model. For example, the SAFETY (Qa) group contains, among other things, design
restrictions concerning stability regulations.

In (2.2), an individual constraint is an inequality-type relation in which a function gj(-) expresses a balance between certain
(dependent) parameters of an object. In order to keep the same standard relation of inequality (<) for all constraints, the general
form of g;(-) has to be alternatively :

i(x;e) — pi(xse) ()
g(x:0) = fj(x 0 7 PO jed (23)
pj(x;e) — pj(xic) (b)

where :

the pj(-) parameters are those predicted by the model and pJ( ) are the corresponding ones required by Qk
In most cases the p; parameters are just constant figures such that p; =c; € C.

In the formal classification of FSR, attention will be focused on constraints forming the boundary of Q.
Figure in Tab.2.2c¢ illustrates the problem. Let us define an FSR corresponding to a single j ] constraints :

Q; ={xw©0):g;x0)<0}, je1I
Its boundary is then:

0Q; ={(x;c):gj(x;c) :0} , jeJ

For the whole feasible region one has, of course : L =NQ; , j€J
Similar relation does not, however, hold for boundaries :

aQ;&ﬂan,;tanj but agcuaszj,je.l (2.4)

A jth constraint is called a boundary constraint if its own boundary contributes to the boundary of Q, otherwise the constraint
is a non-boundary constraint. It is obvious that, in fact, the boundary constraints are those which determine €2 and, as such, affect
the optimum solution of the problem :

Q=NQ;= NQ, (2.5)
jeJ je Jgcd

Relation (2.5) suggests an apparently equivalent formulation of (2.1) with the smaller number of constraints (boundary
constraints only). Unfortunately, this is not the case because the set of boundary constraints Jg is not known in advance. Among
the boundary constraints one can further distinguish active constraints and passive constraints. The classification refers to the
location of the optimum x* solution in Q, which exclusively depends on the objective function €(-) used in the optimisation
process. A j ] constraint is active in x* if x* € dQj (= je J§ ), otherwise the constraint is pass1ve (= jeJi=Jg\J3). If the
optimum solution belongs to the interior of FSR (x* € intQ), all the boundary constraints are passive and no constraint affects x*.

Let us now introduce another classification of Q and the corresponding constraints : stability constraints vs. non-stability
(remaining) constraints.

Q=N & J=Jjuli (2.6)
where : Qg is a feasible solution region with regard to stability requirements, Jg is a set of indices of stability constraints, Qg,
JR, correspond to the remaining constraints accordingly. The current classification is independent of the previous one; i.e. both
stability and remaining constraints can become the boundary or non-boundary constraints. Let us investigate the status of stabi-
lity constraints via the relations: Qg vs. Q, 0Qg vs. 0Qg, and Jg vs. Jg. It is obvious that the relation Qg D Q is always satisfied,
but similar relation does not occur for boundaries. One can distinguish here four cases (see Tab.2.3).
Tab. 2.3. Stability constraints (gg) vs. remaining constraints (gp)

c) d)

i!l gr b x Qs

a)
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Qc Qg Qc Qg Qc Qg Q=Qq
00 N oQ, =D 00 20 00, c 60 20, = a0

ad. a) Stability constraints do not contribute to the FSR, so, for given stability regulations and a set of constants C, they are
totally insignificant, regardless of the objective function Q.
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ad. b) Stability constraints do contribute to the FSR, so, for given stability regulations and a set of constants C, they are currently
insignificant but potentially significant, dependent on the objective function Q.

ad. ¢) Stability constraints do contribute to the FSR, so, for given stability regulations and a set of constants C, they are currently
significant, but potentially insignificant, dependent on the objective function Q.

ad. d) Stability constraints form the boundary of the FSR, so, for given stability regulations and a set of constants C, they are
currently and potentially significant, regardless of the objective function Q.

The foregoing discussion will be recalled in Chapter 5 to verify the status
of stability constraints in the fleet optimisation model.

3. IDENTIFICATION OF INTACT STABILITY CRITERIA

In order to illustrate the thesis of the paper, three criteria of intact stability have been chosen, as recommended by the
following institutions: International Maritime Organisation (IMO [6]), Polish Register of Shipping (PRS, [17]), and Hamburg
Ship Model Basin (HSMB [5]). In the light of the discussion in [8], all these criteria can be regarded as a present day standard as
far as intact stability regulations in naval architecture are concerned.

Tab.3.1 introduces the coordinate systems as well as basic notions and terminology which will be in use throughout the paper.
In particular, (Y-Z) and (y-z) are, respectively, a dimensional [m] and non-dimensional [-] coordinate systems of the hull and
(w-t) [-] is a non-dimensional coordinate system rotated around the x axis.

Tab. 3.1. Coordinate systems and basic terminology of intact stability of ships
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A common feature of the criteria under discussion (in fact, all the contemporary criteria of intact stability of ships) is that, as
far as the righting moment of a ship is concerned, they all are totally based on the righting lever curve calculated in a calm water
as the function : Ly (¢;:D,Zg) (3.2a), where : ¢ is angle of inclination and D [t], Zg [m] are a constant displacement and
coordinate of the centre of gravity G, describing current loading condition of a ship. In further discussion, the only loading
condition accounted for is the design condition. It follows from (3.2) that all the stability-related characteristics and parameters
of a ship have been normalised with regard to the design draught T. A short overview of the criteria by IMO, PRS and HSMB in
an analytical form has been shown in Table 3.2.

It can be seen that the criteria by IMO and PRS involve both righting Lr(-) and heeling Ly(-) lever curves (,,weather-type”
criteria), whereas the criteria by HSMB are based on the righting lever curve exclusively (,,Rahola’s-type” criteria).

It follows from Tab.3.2, that, from a mathematical viewpoint, all the criteria can be formulated as combinations of certain
operations on the functions Lr(-) and Lg() : linear - such as calculating ordinates, first derivatives, and integrals or non-linear —
— such as calculating characteristic angles, the weather parameter K, etc. Two examples illustrate the problem :

(1) Linear case - a dynamic righting lever curve LR2(-) (PRS) is defined by integration of Lr() :

-4 ~%o
[Le, @do +  [Lg @)do  for 90
0

Ly, @) =1
ILR1(¢)d¢ for ¢>0
0

(3.3)

(i1) Non-linear case - angles of the first and second interception ¢, ¢ (IMO, PRS) are defined
as the smaller and greater roots of the following non-linear equation :

Fi(9) =Ly, ()~ L (9) =0 < ¢, =min[F'(0)], ¢, = max[F; " (0)] (3.4)

A formulation of the intact stability criteria in Tab. 3.2 differ from but are fully equivalent to those originally formulated in
the referenced documents by IMO, PRS and HSMB. Among other things, a notation has been unified and sequences of the
righting and heeling lever curves as well as characteristic angles have been introduced to emphasize the analytical aspects of the
criteria.

In the subsequent chapters of the paper, the intact stability criteria will be examined with a special attention to those parts of
them which concern the righting lever curve of a ship. This is because determination of the righting lever curve Ir(*), via cross
curves wi() involves the full geometry of the hull and as such decides on the reliability of the whole model.
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Tab. 3.2. Intact stability criteria by IMO [6], PRS [17] and HSMB [5]

Righting / heeling lever curves Stability criteria
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Characteristic angles
@, - initial heeling angle, ¢, - rolling amplitude, ¢ - ship flooding angle, ¢, - deck immersion angle
¢t - turning angle, ¢s - superstructure flooding angle, d)c - capsizing angle, d)c =min (d)f,d)c) - critical angle

Oy - the angle for calculating K, ¢y, , ¢y, -1* and 2" maximum of Lg angles, ¢, maximum of Lg angle ¢, = O,

m
if Lp (¢, )2 Lg (9, ) otherwise ¢, =@, . ;. , - first and second interception angles, ¢3 = min (¢,40)
¢, =min(0.8-¢4,16) ., ¢5 =min(¢¢,$,,50). ¢ = max(¢;,¢,). ¢; =min(0.5-¢4.15)
Weather criteria indices : Ko =Ag /Ay[-]. Kprg =Ly, /Ly, [-]
HSMB form factor
T-H' CB 100 2b-B 2l
C= T — ,where H'=H +h- -—— -acorrected depth, h - height of a hatch above
B CW L B L
deck [m], b - breadth of a hatch (b>B/2) [m]. ], - length of hatches within 0.5 L

4. ANALYTICAL FORM OF STABILITY-RELATED CHARACTERISTICS OF A SHIP

Analytical definition of the stability constraints needs the analytical definition of righting and heeling lever curves. For the
reasons given earlier, the attention will focus on the righting lever curve only. This will be done by approximation or interpola-
tion of a series of stability-related characteristics of a ship.

The geometrical data for the task were prepared in [ 1], based on the systematic calculations of cross curves for Series 60 (S60)
[19] for three different block coefficients Cg and four h = H/T ratios. Three parent models of S60 had been chosen and then
modified by: (i) extrapolating sections to obtain different h ratios (beyond the basic h” = 1.50), (ii) adding standard superstructu-
res (a poop and forecastle), (iii) extracting the data concerning merely the design draught T (displacement), and (iv) making them
dimensionless. The ratio b=B/T = b’ =2.50 was kept constant for all the models. Table 4.1 presents the resulting twelve models
and, as an example, geometry of the M7072 model.

Table 4.2 shows a full list of ship characteristics that have to be defined analytically in order to form the stability constraints
in the fleet optimisation model. All of them are dimensionless (related to T) and classified from the analytical point of view as

POLISH MARITIME RESEARCH, Special issue, 2004 43



Stability criteria as constraints in a fleet of ships optimisation problem

one - (1D), two - (2D), three - (3D), and four-dimensional (4D) characteristics, taking into account a number of variables of
corresponding interpolating or approximating functions.

Tab. 4.1. The Series 60 hull models used for the approximation of cross curves and geometry of the M7072 model

Series 60 Series 60 Modified Models (B/T =2.50)

Parent Models Cg \ HT 1.610 1.726 1.813 1.900
4210W 0.60 M6061 M6072 M6081 M6090
4212W 0.70 M7061 M7072 M7081 M7090

4214WB-4 0.80 M38061 M8072 M38081 M8090

Tab. 4.2. Stability-related geometrical characteristics of a hull form and their analytical representation

Generation
No Characteristics Dimension process Function
1 Block coefficient 2D Interpolation 5=1,(Cy,2)
2 Vertical coordinate of the centroid B 2D Interpolation zg =1,(Cy,2)
3 Transversal metacentric radius 3D Interpolation 1, =f5(Cy,b,2)
4 Deck immersion angle 3D Interpolation ¢p =1,(Cg,h,b)
5 Cross curves in the (w-t) system 4D Approximation wy =f5(¢;Cp,h,b)
6 Righting lever curve 4D Approximation Iz =f,(¢,Cg,h,b; z;)
7 Righting lever curve 1D Approximation TR =1;(9)

Fig.4.1 presents three examples of 2D/3D geometrical characteristics
of a hull form based on the S60 data defined by the interpolation method.
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Fig. 4.1. Graphs of analytically defined 2D / 3D geometrical characteristics of Series 60 by the interpolation method
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In the analytical definition of stability constraints, the basic characteristic is righting lever curve Ig(¢;-).
A fleet optimisation model requires for the righting lever curve to be defined as the following 4D function :

I (9.Cp.h.b:zg) =wp(9.Cp,h.b) 7 -sing (4.1)
The process of generation of the righting lever function Ir(¢;) (4.1) has been divided into five steps :
(i) Approximation of cross curves based on the twelve models of S60, resulting in a 3D function w% (¢,Cg,h)

for b =b" = const.

(ii) Correction of the w% (+) function for the regions of small h (below the available S60 data), resulting in the W]c3°r( -) function
for these special regions. This step was necessary to cover H/T ratios typical of sea-river vessels and expected when optimi-
sing a fleet of such ships.

(ii1) Affine transformation of the function w% )/ W%OI( -) with regard to b # bO, resulting in a 4D function W% (¢,Cg,h,b)

(iv) Definition of the righting lever curve as a 4D function: 1 (¢, Cg,h,b) = w}3£¢, Cg,h,b)—z5 -sind

(v) Approximation of the 4D functionl (¢, Cy, h,b; z5 ) bya 1D function (of ¢ only): I (¢; Cg,h,b,zg ) for Cg,h,b,zg = const.

In all the steps listed above, the only problem that appears twice is that of approximation of multivariable (i) or single-
variable (v) functions. The problem will be then addressed first as a separate numerical problem formulated in a compact matrix
notation.
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4.1. Approximation problem

Let f (u) be a function to be approximated and f(u) be its approximation, both assumed to be single valued,
multi-variable functions of u=(u;,u,,....u). The approximation problem is formulated as :

p(f,f) — min (4.2)

where : p(-,-) is a metric of approximation. Let the f(-) function be given in a discrete manner
by the following sequence of data : qu, ;f, }111 and the f(-) function has the following linear representation :

f(u;a):ZQi-ei(u)zaT-e(u) , n<N (4.3)
i=1

where : 00 = (0, 0y,....00, )" a vector of unknown coefficients, e(u) = [el(u),e:2 (w),...e, (u)]T - a basis.
For given arguments one has: ?k = f(uk,a), k=12,.,N and f= (E,f;,....,fN )
Using the representation (4.3), one gets the following equation :

f=E"-q (4.4)

A matrix E = lEijJ= [e; (u;)],xn Will be later called the basis matrix. As the metric

of approximation p(- , -) a weighted norm ” : of an Euclidean distance between fand f has been chosen, then :

2w

o(f,T) = ||f —f || 4.5)
2w
In consequence, the approximation problem (4.2) can be formulated as the following quadratic optimisation problem :
min Q(a) , Q:R" - R! (4.62)
with the objective function :

~ 12

Q) =|f-F| =¢F-E"o)" W-(f-E"-0) (4.6b)
w

where : W = diag(w) , w = (W1, Wp, ..., wn)T— a vector of weighting factors (w; 20, i=12,....,N).
Now let us assume that some linear interpolatory constraints are imposed on the f () function :

Iu(f)zcH R p=1,2,:..,m<n=dima 4.7
where I;(*) is a functional of f(-) in the general form :
L(F)=L,(F)u;:e) , p=12...m (4.82)
and Ly(") is a linear operator. For instance, Ly(-) can be a differential operator, as below :
A~
~  OMTy(.
Lu(f):# s 7\“ =0,1,2..., iH =1,2,3,.... (4.8b)
ou.*

Iy

where the sequences of indices: {}”H } R {iM ; , w=L12,....,m have to be defined separately.

Let I( f) = (Il(f), I, (?),...., Im(§) be a vector of functionals of f(-) .
The interpolatory constraints can then be written as the following matrix equation :

I(f)(a)=c" 4.9)
where : ¢ =(c,Cy,...C, )" is a vector of given values of interpolatory constraints. Thanks to the linearity of I(-), one can write
()= I(aT 'e(U))= o' -Ile(w)=a"-C" (4.10)

A matrix C = [CMV ]= [Lu (e, )(“u)] will be later called the constraint matrix.
Putting (4.10) into (4.9), one obtains the interpolatory constraints as the following matrix equation :
H(o)=C-a—c=0 (4.11)

The approximation problem with the additional interpolatory constraints
can now be formulated as the following quadratic optimisation problem with constraints :

min Q@)=(f-E"-o)" -W-(f-E" -0)
aeQ={a:H(@)=0, dim0=m<n}cR"

It has been proven [3], that both problems (4.6) and (4.12), as the convex problems, do have unique solutions. Moreover, in
both cases the solutions can be found analytically. In particular, for the problem (4.12), this can be done either by Lagrange's
multipliers or by the penalty function method. The latter approach has been applied in the case. Let the penalty function P(-) be
defined as a square of the norm || H(a) ||, in the form :

P(o)=H"(a)-®-H(0) (4.13)

(4.12)
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where: @ = diag(w), ® = (01, 9, ..., ®y) - a vector of weighting factors for the penalty function, ®. 20., i =1,2,....,m.
The optimisation problem with constraints (4.12) can now be replaced by the equivalent optimisation problem
without constraints, with the modified objective function F(*) :

{min F(a)=Q(a)+P(a) , P:R" - R!

0ecR" (4.14)
The solution to the problem (4.14) follows from the necessary condition of a stationary point in R" :
V,F)=0 < V,Q(a)+V, P(a)=0 4.15)
Finally, one arrives at the equation :
E-W-E'+C" ®-C)-a—(E-W-f+C" - ®-g)=0 4.16)
B b
or, in short :
B-a-b=0 4.17)

Existence of the solution to the problem (4.12) assures that the matrix B is non-singular (det B # 0).
So one eventually gets the desired definition of the approximating function f () :

a=B"b (4.18)

One can observe that: (i) the solution o is parametrized by the weighting coefficients: o0 = ou(w;w) and (ii) putting ® = 0, one
gets the solution of an unconstrained problem (4.6a).

From the numerical point of view, solution o to the approximation problem (4.2) can be found either by solving the system
of linear equations (4.17) or by solving a single matrix equation (4.18) (inverting B). The first approach has been applied in
approximation of cross curves (Section 4.2) and the second one in approximation of righting lever curve (Section 4.4).

4.2. Approximation of cross curves
In this case the approximated function is a cross curves function (f = W%) determined in a discrete way for the twelve S60

models listed in Tab. 4.1. Given 11 ordinates of the function per one model, one gets N = 132 ordinates to be approximated. The
following polynomial three-linear form has been chosen, as a particular representation of the approximating function f (-).

f(wa)=a' e(u) = Zoc] e (u) = Za -e,(0.Cq.h) = Zoc (" -hhCyt) = (a)

nel e (u) (4.19)
1 J K o

= Zzzai,j,k'd)l -h’ 'CBk (b)
i=0 j=0 k=0

The equivalency of the two notations introduced follows from the correspondence of both indications. After some trials and
errors, the upper limits of the indices in (4.19b) have been established as follows : 1=5,J=2,K =2. It gives the following
dimension of the basis e () in(4.3) : dime () =n=(I+1)-(J+1):- (K +1) =54, so the condition n <N holds. The basis matrix E
(4.4) can now be readily calculated according to the definition :

i ' =12,....,
=[eu(uv)]=[(¢”)v'(hj”)v'(C:;“)v] for {H N

v=12...N (4.20)

The constraint imposed on the approximated function w% (¢,-) follows from the known property of cross curves :

—WB(¢)| 9-0 =Zp +Tg =Zy 4.21)

dé

It imposes the following interpolatory constraints on the approximating function f(-) :

5 T:Cafy g =za(Ca)+n(Ca) @22)

Eq. (4.22) should hold for all the models given, so the number of imposed constraints is m = 12.
The determination of the weighting coefficient matrices W and w in (4.12 and 4.13) was done by the , trial and error” method.

The best results obtained are as follows :
{1000.0 for i corresponding to ¢ =0
Wi =

o; =1 for i=12,....m (4.23)
1.0 —  otherwise

Results of the approximation of cross curves WOB (+) for the S60 models (Tab.4.1) is shown in Fig.4.2.
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Fig. 4.2. Comparison of the original (o) and approximated (a) cross curves of S60
4.3. Correction of the cross curves function w0B for small H/T ratios

The function w%(d),CB ,h) approximating the cross curves of the S60 data is formally valid for the form parameters from the
region : (Cg,h)€[0.60,0.80]x[1.61,1.90], b = b’ =2.5. Such a range of data evidently corresponds to the standard hull form
parameters of sea-going ships but does not cover the regions typical of the sea-river vessels where the block coefficient Cp
reaches values as large as 0.90 and h as small as 1.1 (Tab.4.3).

Tab. 4.3. Hull form of a sea-river vessel [18]. a - body lines, b - a sample of statistics [13]
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It turned out that a natural extrapolation of the cross curves function (4.19) obtained for S60 towards large Cg and small h=H/T
is acceptable as far as Cp and not acceptable as far as h is concerned. Fig.4.3 illustrates the problem. So a special extrapolation
was necessary for the function W% to be used in an optimisation model of sea-river ships. As a result, a corrected cross curves 2D

cor

function Wy (9,h) has been defined (by an interpolation technique), based on the boundary data of S60 (for h = 1.61) and
a cross curve data for the SINE-205 sea-river vessel [18] (for h = 1.239) in the following tensor product form :

wi' (0.h) =d" (9)-g(h)=e' (¢)-D-g(h) (424
where : d(¢) — interpolatory characteristics, D - interpolatory matrix, e(¢), g(¢) — bases, dim(d) = dim(g) = 3, dim(e) = 5.
For details - see [13].

1. 860 - H/T = 1.60 3. 560 - H/T = 1.20 s Wa H
twgn We I =
0.8 . A H o ¢ 2.8 e a
N 3 —T |
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Fig. 4.3. A natural extrapolation of the cross curves function w% () of S60 towards the region of small H/T ratio

After correction, a definition of the basic (B/T = b’ = 2.5) cross curves function is :

wi(9.Cg.h) for h>1.610

0
w(9,Cp.h) =
B((I) B ) Wg)r o,h) for h<1.610

(4.25)
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Fig.4.4 show comparison of the basic cross curves functions before and after correction with regard to the small H/T ratio.
A. Before correction

CB=0.870
HIT = 1224 . 4 CB = 0.870
B/T = 2.580

Fig. 4.4. Basic (b = p'=25 ) cross curves function before and after correction with regard to the small H/T ratio

4.4. Affine transformation of the cross curves function WOB(-) with regard to B/T

The definition of cross curves function w % (+), obtained as the result of approximation of the Series 60 data and then corrected
for small H/T ratio is only valid for B/T = b’ =2.5. Accounting for a new B/T ratio = b! # b’ can be done by the way of affine
transformation of a hull form. The situation is illustrated in Fig.4.5. A system of hull coordinates is transformed when the hull is
heeled. As a result, for equivalent waterlines (e g. CWL or deck immersion waterline), one obtains, among other things,
a changed angle of heel (¢g — ¢1), changed coordinates of B (By — B1) and, in consequence, the desired transformation of cross
curves wi (0,Cg,h;b=b")— w(9,Cy,h,b).

t

A, O
[}ﬁ}:{ b ]|:YO:| kbzbl/bo
Z, 0 1]]z

Fig. 4.5. Affine transformation of coordinate system

In order to derive a particular form of this transformation,
let us recall the inverse relation between the (y-z) and (w-t) systems (3.1b) :

y| |cos¢ —sin¢ |w 4.26)
z sing  cosd| |t
Using the formula (4.26) for the points By and B one has accordingly
the following (w-t) — (y-z) transformation of coordinates :
0 ; 0
Yp |_| COS®o —sindg | | wp (4.27a)
z sing,  cosd, | |t}
Wh =Yg -COSO; + 2 -sind, = (L, -y )-cosd, +2% -sin g, (4.27b)
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After substitution of (4.27a) into (4.27b) one arrives at the formula :

0 0
W}g =08 -cosf, '[WB ‘(A +1200 - tgd)) + ty - (—Ay, - tgdg +tg¢1)] (4.28)
Further algebraic manipulations lead to the final transformation function (the indices 1 were dropped) :
Loy o] B @20 [wiloo(@)]
Wg (d)s b ) _______ 0
tg[0(9)]

where the auxiliary functions involved in (4.29) are :

fw(¢9}"b) = kb'r((l)a}"b) (a)
£ (9.hp) 0.5-(1-2%)-sin2¢-7($, 1) (b)

1

(¢, Ap)

Jcosz O+ A% -sin® ¢ (4.30)
9o (9)

(@2y) = z5— [wh(e)do (@)

0
0o (d.Ay) arctg(Ay, -tgd) (e)

Fig. 4.6 presents graphs of a heeling angle function (4. 30e) for different A, € [0.25 , 2.00]
and the functions wg(+) (4.29) and tB( ) (4.30 d).
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Fig. 4.6. Affine transformation of cross curves with regard to the B/T ratio (Ap = b/bo)

4.5. Analytical definition of the righting lever curve lg(*)

An analytical definition of the righting lever function for the hull form parameters g=(Cg, h,b):
Ir(9. 8:26) =Wy (9. 8) —2-sin¢ (431)

can instantly be obtained based on the analytical definition of the cross curves function (4.29) :

Wi (0. 8) =W (9. 8) = W (9, Cp.h) £, (§.0) +t5(4. Cp.h)-£,(9.b) (432)

When looking at the formulae above it becomes obvious that the righting lever function so defined would be too complicated

for performing various analytical operations (with regard to ¢) when generating the stability constraints. In order to cope with

this problem, a 4D function 1 (¢, g; z) has been approximated by an 1D function 1 (¢;g,z5) (for g, zg = const.) using the

known solution to the approximation problem (4.18). The idea is based on the observation that the matrix B depends only on the

given nodes (matrices E, C), the types of constraints (matrix C), the weighting factors (matrices W, @) and does not depend on

ordinates of the approximated function or values of constraints (¢). It follows from the above that for all the mentioned elements

kept fixed, the matrix B and its inversion B can be generated once and be used many times for different combinations of the g

and zg parameters, when running the optimisation procedure. Bearing in mind the need for simplicity, a linear polynomial
representation has been assumed for the approximating function :

fuo)=a' - e)= Zoc ei(n) o Ig(da)= Zoc ! (4.33)

where : a = (0o, 0,,.. 0(6) - is a solution of the approx1mat10n problem and the deﬁmtlon of l (). Note, that o = oc(g,zG)
In analogy to approximation of cross curves, the only constraint (m = 1) imposed on the lever righting function is :

a(l RO =0)=2z5(Cy)+1,(Cy,b) -2 (4.34)

The resulting righting lever function has the desired simple form :

~ ~ 6 -
lg = 1R (¢:Cy.h.b;z5) = Zoci(CB ,h.b; ZG)~(|)‘_l (4.35)

i=1
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Fig. 4.7 presents some diagrams of the righting lever curve as a 4D function Ir(¢, Cg , h, b ; zg) according to the definition (4.31).
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Fig. 4.7. Righting lever curve as a multivariable function of ¢ and hull form parameters of a ship

5. STABILITY CONSTRAINTS
IN POST-OPTIMISATION STUDIES

An example of post-optimisation stability-oriented study
is presented on the background of the optimum solution of the
fleet of ships optimisation problem. To perform the calcula-
tions, the optimisation model of a fleet has been implemented
in the EUROS computer program [13].

5.1. The data

A typical sea-river vessel and a sample
of the main fleet transportation data are shown in Table 5.1.

gramming method of optimisation, a combined, double level,
algorithm for constrained problems has been applied, inclu-
ding a penalty function shifting method by Powell and Wierz-
bicki, for the constrained part, and Rosebrock’s method for the
unconstrained part of the problem ([3],[ 15]).

5.3. Numerical results

Numerical examples of optimisation are presented in Ta-
ble 5.2. The calculations have been carried out separately for
three criteria of stability: IMO, PRS, and HSMB with the same
data, the same objective function: (NPV) and the same star-
ting point x . The optimisation process has been repeated twi-

Tab. 5.1. Fleet transportation problem :
Typical sea-river vessel for short shipping in the North and Baltic Seas [18] and main transportation data [13]

Sea-river vessel

T T ERL T TR T T ER T

. = | Period of operation : N = 15 years

A sample of main transportation data :

No. of ports : OUT / INP / total =10/ 11/ 20

No. of river ports = 12

Mass of cargo OUT = 110 000.0 tons / year

Mass of cargo IN =103 000.0 tons / year
Distance : OUT / IN / total: 2827 /2959 / 5786 [NM]
Max. draught / velocity in river : 2.8 m/ 14 km/h
Period of calling at ports : 6 - 14 days

General cargo stowage factor : 1.0 - 2.0 [m’/t]
Relative quotas of cargo type :

qcc/ qge /qgbc OUT=0.8/0.2/0.0 [-]
qcc/qge/gbcIN  =0.9/0.1/0.0 [-]

qcc - containerised c., qgc - general c., gbc - bulk c.

Sea-river ships, as multi-purpose vessels, carry different
kind of commodities, such as containers, general cargo and
bulk cargo. In the transportation data, these are accounted for
by fixing relative quotas of cargo types for the whole period of
fleet operation.

Referring to the terminology introduced in Table 2.2a, the
overall quantities of numerical data used in the model (inclu-
ding those in Tab.5.1), in the four categories of constants, are:
VESSEL - 154, CARGO 10, ENVIRONMENT - 374, OPE-
RATION - 326. This sums up to 864 constants in total.

5.2. The model and NPM algorithms

The implemented model for fleet optimisation problem
contains 12 decision variables (Tab.5.2), 70 constraints in total
(including 26 stability constraints) and 3 alternative objective
functions: Net Present Value (NPV), Internal Rate of Return
(IRR) and Required Freight Rate (RFR). As a non-linear pro-
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ce : the results of the first optimisation were used as a starting
point to the second optimisation and then convergence was
reached. It turned out that, from the viewpoint of the final va-
lue of the objective function, such an approach improved the
results remarkably. Apart from the NPV, the results in Table
5.2 show the corresponding values of two remaining measu-
res of merit: IRR and RFR. It can be seen from Table 5.2 that
the results for the stability criteria by IMO and HSMB are
identical. This will become obvious when one analyses the
status of the stability constraints with regard to the feasible
solutions region Q.

5.4. Feasibility analysis - the case study

Feasibility analysis is an element of post-optimisation stu-
dies (together with parametric study and sensitivity analysis)
that aims at investigating the status of a certain group of con-
straints (in the case - the stability constraints) versus boundary
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Tab. 5.2. Results of optimisation of a fleet of multipurpose ‘sea-river’ ships for three intact stability criteria. Objective function: NPV

Intact Stability Criteria
X Description Unit Start IMO PRS HSMB
X Number of ships in a fleet [-] 4.000 3.927 4.433 3.927
X, Deadweight of a ship [t] 2941.000 3178.873 3112.931 3178.873
X3 Speed of a ship at sea [kn] 12.000 11.075 11.059 11.075
X4 Total container capacity of a ship [TEU] 90.000 117.499 110.336 117.499
Xs Length b.p. of a ship (Lpp) [m] 87.470 99.106 97.592 99.106
Xg Breadth of a ship (B) [m] 11.400 13.422 12.996 13.422
X7 Draught of a ship (T) [m] 4.400 4.252 4.170 4.252
Xg Depth of a ship (H) [m] 5.450 7.010 6.833 7.010
X9 Block coefficient (Cg) [-] 0.874 0.796 .827 0.796
X10 No of container columns under deck [-] 9.000 11.296 11.257 11.296
X1 No of container rows under deck [-] 3.000 4.345 3.000 4.345
X12 No of container tiers under deck [-] 2.000 2.302 2.259 2.302
NPVI Net Present Value / Investment Cost [%] -10.000 28.800 18.400 28.800
IRR Internal Rate of Return [%] 8.23 14.540 12.934 14.540
RFR Required Freight Rate [$/t] 121.49 102.937 111.784 102.937

Tab. 5.3. List of stability constraints

Constraints’ index in the model
No Criterion Type | Unit Institution container ship general cargo ship
1 GMO at river min [m] - 45 -
2 GMO at sea min [m] IMO, PRS 46 59
3 GZ (30°) min [m] HSMB 47 60
4 Max GZ min [m] IMO, PRS, HSMB 48 61
5 Max GZ angle min [deg] IMO, PRS 49 62
6 GZ range min [deg] PRS 50 63
7 Critical heeling lever min [m] PRS 51 64
8 Weather criterion min mrad IMO 52 65
9 Turning heel angle max [deg] PRS 53 -
10 Static heel angle max [deg] IMO 54 66
11 Area under GZ [0, 30] min | [mrad] IMO, HSMB 55 67
12 Area under GZ [0, 40] min | [mrad] IMO, HSMB 56 68
13 Area under GZ [30, 40] min | [mrad] IMO, HSMB 57 69
14 Area under GZ [30, range] min | [mrad] HSMB 58 70

constraints on the background of the remaining constraints,
significant in a vicinity of the optimum solution. It can also be
thought of as a preparatory, qualitative part of sensitivity ana-
lysis. Table 5.3 presents a list of stability constraints together
with their indices in the optimisation model implemented in
the EUROS program.

Sea-river ships, as multipurpose craft, operate in their life
as different types of vessels, both from the viewpoint of their
functionality and the corresponding stability regulations. To
cope with the problem three extreme situations have been re-
cognised in the model as crucial ones :

(1) A ship operates as a ,,pure” container sea-going vessel.
She then carries containers both in holds and on deck and
is allowed to take water ballast into the double bottom and
wing tanks.

(i1) A ship operates as a ,,pure” general cargo sea-going vessel.
As such, she does not load cargo on deck but, on the other
hand, she is not allowed to take water ballast into her tanks.

(iii) A ship operates as a ,,pure” container, river vessel. She
then carriers containers both in holds and on deck but, as
the total mass of ship must be smaller than that at sea due
to restricted draught, the ship is not allowed to take a wa-
ter ballast.

All the three situations have been accounted for by formu-
lation of a triple set of corresponding stability constraints ,,ac-
ting” simultaneously. Such an approach assures that stability
requirements will also be satisfied in all the intermediate lo-
ading conditions which can occur in operation. A feasibility
analysis has been done in a graphical form using the method
and software worked out in [9]. The results are presented in
Tab. 5.4. The constraints are presented via visualisation of the-
ir contour lines in the vicinity of the optimum solution. The
arguments of the graphs are ship’s dimensions: B vs. H (1) and
hull form ratios: B/T vs. H/T (2), the most essential ship para-
meters as far as the intact stability is concerned. The descrip-
tion in Tables 5.4 refers to the terminology introduced in Chapter
2. The stability constraints recognise three potential functional
ship categories : a sea-going container carrier, a sea-going ge-
neral-cargo ship and a container river ship. The feasible solu-
tion region Q is shown as a darkened area and the ,,tufts” on
the contour lines point in the unfeasible direction. The parame-
ters of a fleet, which are not arguments of the graphs, are those
in Table 5.2. The feasibility analysis is summarised in Table
5.5 where the attributes of stability constraints refer to those in
Tab. 2.3.

It follows from Tab.5.5 that in the case under investigation
the most restrictive stability criteria are those by PRS, where
the criterion No. 50 (GZ range) appears as a boundary and
active constraint.
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Tab. 5.4. Feasibility analysis - the case study
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cr: 45

Legend : a - active constraint, p - passive constraint
cs - container ship at sea, gs - general cargo ship at sea, cr - container ship in river

Boundary constraints :

Annual mass of cargo (INP)  [t] (min) Vertical container clearance  [m]  (max)
Mass reserve factor [-] (min) Freeboard [m]  (min)
Mass reserve factor [-] (max) Height of bow [m]  (min)
Length of forepeak ratio [-] (min) L/B ratio [-] (max)
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Tab. 5.5. The status of stability constraints versus boundary constraints

Bvs. H B/T vs. H/T
IMO a a
PRS [ C
HSMB a b

6. SUMMARY AND CONCLUSIONS

A post-optimisation study — stability-oriented feasibility
analysis has been demonstrated on the background of a marine
engineering design problem — optimisation of a fleet of sea-
river ships for a regular shipping line in the area of the North
and Baltic Seas. Two questions can be addressed based on the
results obtained: (i) why the full intact stability criteria (such as
IMO or similar) should be included in the optimisation model,
and (ii) how to prepare such a model to accomplish the task.

As far as the first question is concerned,
the following justifications seem to be of importance :

designers and potential customers (owners) express speci-
fic and growing interest in the safety of ships

the stability criteria do exist as formal and legal design re-
strictions so they can not be neglected

their presence in the model improves its quality, thereby
making it more credible

their incorporating into the model enables post-optimisa-
tion studies to be undertaken, such as parametric study, fe-
asibility analysis and their quantitative extension - sensiti-
vity analysis, with special emphasis on the economic aspects
of the solution (,,shadow prices” and risk assessment).

vV V VYV V

As to the second question, an attempt has been made to
define arbitrary stability criteria as constraints based on a com-
plete analytical definition of all the necessary geometrical cha-
racteristics of hull form. A method has been proposed to use
a systematic series of ship body forms. As an example, appro-
ximation of cross curves and accompanying characteristics of
Series 60 has been demonstrated which makes it possible to
determine a righting lever curve as a multi-variable function of
the heeling angle and ship parameters — decision variables in
the fleet optimisation model.

For a particular case under study — a fleet of sea-river ships,
Series 60 turned out to be not suitable for the whole range of
form parameters expected of such type of ships (very large Cg
and very small H/T). Consequently some corrections have been
made to fit the available characteristics of SINE-205 sea-river
vessel. Such an approach, however, must be regarded as a tem-
porary solution. A research project is under way to work out
a stability-oriented, analytically defined series of hull forms
for specific functional types of ships such as full cellular con-
tainer ships, tankers and so on, to be used in the corresponding
fleet optimisation models.

NOMENCLATURE

B/b - breadth of ship / B/T ratio

c/C - vector / set of constants

Cy - block coefficient

gi() - function of a jth constraint

H/h - depth of ship / H/T ratio

Jp/Jg/Jgr - sets of indices of boundary / stability / remaining
constraints

Ly - heeling lever curve

Ix / Lg - non-dimensional / dimensional [m] righting lever
curve

m - number of constraints

n - number of decision variables

Q - objective function

Rn - n-dimensional arithmetic space

Ty - non-dimensional transversal metacentric radius

T - design draught of a ship

Wg - cross curves function

X - decision variable vector

ZG - non-dimensional centre of gravity of a ship

(0] - heeling angle

Q - feasible solution region
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