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ABSTRACT

The paper presents a general approach to mechanical system modification aimed at con-
trolling the steady harmonic vibrations by means of passive and active methods. The rela-
tive decrease of harmonic vibration amplitudes of selected elements of the mechanical
system has been chosen as a measure of the quality of the introduced modification. The
proposed theoretical method enables to determine the parameters of the system s dynamic
flexibility matrix, which show the most remarkable effect on the dynamic behaviour of the
whole system. When active control is considered the method is useful in designing the

structure and choosing the parameters of the control system. In certain cases of self-excited vibration the
approach helps examining the elements of the system, most responsible for this kind of excitation.
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PROBLEM DESCRIPTION

Theoretical investigations into the problem of active con-
trol of mechanical vibrations have been carried out for many
years, but real-life mechanical systems making use of this idea
are still rare. However recently the progress in control methods
and technology has had an impact on the development of no-
vel practical solutions, used to reduce vibration of turbomachi-
nery rotor systems. Application of magnetic and pressurized
bearings reveals new possibilities for the control of rotor beha-
viour. With the advent of nanotechnology the practical applica-
tion of active control methods may increase in the future. The
application of distributed sensor and actuator systems is tightly
linked with the theory of multidimensional system control.

Let us consider a mechanical system with n degrees of free-
dom, Fig.la. The inertial elements of the system can perform
translational, bending and torsional movements. The forced har-
monic vibration of the system is given by the matrix equation :

J-Q+B-Q+K-Q=F (1)
where :
- the matrix of the moments of inertia of the system
- the matrix of the damping coefficients of the system
the matrix of the stiffness coefficients of the system
- the vector of the harmonic forces or moments acting upon
the inertial elements of the system
- the vector of displacement of the inertial elements of the
system.

o HRE=

The matrices J, B, K are of nxn dimension,
and the vectors F, Q - of nx1 dimension.
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The forces F acting on the system are assumed to have an
identical frequency m, and amplitudes varying within the sys-
tem to be described by the vector f. They may therefore be
expressed as a function of time t :

F=f-¢ 2
where :
j=4/—1 - the imaginary unit.
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Fig 1. Schematic diagram of a mechanical system
and its block diagram describing mechanical vibrations



The solution Q of equation (1) describing
the displacement of the elements of the system
may be expected to have the form :

Q=q-¢

where :

3)

q - the vector of displacement amplitudes
of the inertial elements of the system.

After accounting for relations (2) and (3),
equation (1) takes the form :

(—0’J+joB+K)q=f 4)

All matrices and vectors bearing the subscript 7 are assu-
med to refer to the vibrations of the mechanical system for
a given frequency ;. For the sake of clarity it is helpful to
introduce the following notation: D, = (K —min +jo,B) . The
matrix Dj is of nxn dimension. Equation (4) may be rewritten
to include Dj :

D;-q; =f; ®)
or equivalently (assuming the equation has a solution) :
q; =G f; (6)
where :

the matrix G, = Di_1 stands for the dynamic flexibility
matrix of the system for the frequency ;.

The external forces fz; are assumed to act on selected iner-
tial elements in a way which can be described by the binary
matrix Bz;. The matrix qz; in turn represents the vibration am-
plitudes of the elements whose behaviour has to be controlled.
The selection of these amplitudes is performed by means of
the binary matrix Cz;. This is shown (for any vibration frequ-
ency) in Fig.1b and Fig.1c.

Active control

The behaviour of the system shown in Fig.1c is controlled
by adding a feedback loop. The schematic block diagram of
the active control of mechanical vibrations is presented in Fig.2.
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Fig 2. Block diagram of active control of mechanical vibrations

It is here assumed that only the amplitudes qw; of a certain
number s of inertial elements (selected by the sxn binary ma-
trix Cw) can be measured. They are treated as an input value
for the controller. The output vector fw; of the controller consi-
sts of  elements and is a function of the vector qw; of measu-
red displacement, as well as of the derivative and calculus (of
any order) of the displacement. The transfer matrix R; of the
controller action is a rxs matrix with complex elements, which
fulfils the relation:

fw; =R; -qw; (7
In the case when a PID controller is used in the system,
the matrix R; takes the following form :
. -1

where :
K, Ky and Kp - rxs matrices of the proportional (P), inte-
grating (I) and differentiating (D) controller, respectively.

Let us define the rx3s matrix R
of the controller parameters as :

R=[K; |K;|Kp]
The relation between matrices R; and R
may be written in the form :

Ri =R'[0Ji

where :

When taking into consideration controller models with dif-
ferentiation or integration of a higher order it is sufficient to
extend the parameter matrix R horizontally, and appropriately
extend the frequency multiplier matrix Q vertically.

The steering force signal fw; is passed onto the active ele-
ments of the control feedback loop. The locations of the ele-
ments upon which they act are given by the nxr matrix Bw.

The aim of the controller R is to minimize the vibration
amplitudes of selected elements described by the matrix qz;.

Passive control

Passive control is here understood as the modification of
parameters of the mechanical system. This may be achieved
by introducing the changes P =[AJ | AB | AK] to certain sys-
tem parameters (i.e. inertia, damping or stiffness coefficients),
selected by the binary matrices Bw and Cw. For a given frequ-
ency o; the changes introduced to the matrix Dj; lead to the
following changes in equation (5) :

(D; +Bw-P,-Cw)q; =T, )
where :
P;=P Q;

From equation (9) one obtains :

q; =D, ', —D,'Bw -P-Cw-q, (10)
By taking into account the notation: G, = Di‘l,
equation (10) may be written in the form :
Relation (11) is presented in the form
of the block diagram shown in Fig 3.
ﬁ» Bz > f G; i cz, 95
fw; Pi qw;

Fig 3. Block diagram of harmonic vibrations
with correction of system parameters

The aim of selecting the matrix P; (which describes chan-
ges of system parameters) is the minimization of the vibration
amplitudes of chosen elements described by the matrix qz;. It
should be emphasized that harmonic vibrations with the cor-
rection of system parameters and the process of active control
of mechanical vibrations may by represented by the same ge-
neral form of block diagram (compare Fig.2 and 3).

Some cases of self-excited vibrations

In many cases the so-called self-excited vibrations depend
on the behaviour of the mechanical system itself. Let us consi-
der, as an example, self excited vibrations of a turbomachinery
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rotor system due to aerodynamic forces. Rotor-stator eccentri-
city or rotor-stator misalignment changes the clearance distri-
bution above the blade shroud (and in glands) which results in
aerodynamic forces and moments acting on the turbine rotor.
As a result, self-excited vibrations of the whole rotor system
may be observed. Due to inaccuracy of manufacture and as-
sembly, the value and the distribution of the clearance in parti-
cular seals may differ significantly, and seals of different types
can be used in the same machine, thus the aerodynamic forces
acting on a rotor in each stage can vary remarkably. Various
theoretical models have been elaborated to describe the fluid
motion in the seals and to determine the acrodynamic forces
generated in a shroud clearance. Usually the aerodynamic for-
ces and moments are expressed in the form of rotodynamic
coefficients [1+ 6, 8, 9, 12, 13] which can be written in the
form of the following vector equation:

F=J,Q+B,Q+K, Q
where :
F - vector of the components of the aerodyna-
mic forces and moments
Q - rotor displacement and rotation in horizon-
tal and vertical directions
- matrices with the so called “inertia”, “dam-
ping” and “stiffness” coefficients of the
shroud (or gland), respectively.

(12)

Ju, By and Ky

The symbol S is used to denote the matrix
of rotordynamic coefficients : S =[J, |B, |K,].

Because the self-excited vibrations occur at a certain fre-
quency j, equation (12) takes a form similar to that of equa-
tion (4) :

2 .

The matrix Cw selects the displacements responsible for

aerodynamic excitations, while the matrix Bw determines the

places where these forces are applied.
The equation (13) can also be written in the form :

where :
S, =-0J,+joB,+K, =S-Q,

When taking into consideration only the aerodynamic exci-
tation forces, the behaviour of the rotor system can be repre-
sented by means of the block diagram shown in Fig.4.

D fi G qi 1 qz;
By |V > il cw
[s ]

Fig 4. Block diagram of harmonic self-excited vibrations

The comparison of Fig.2 , 3 and 4 leads to the conclusion
that harmonic vibrations with the correction of system para-
meters, the process of active control of mechanical vibrations
as well as some cases of self-excited vibrations can by repre-
sented by one and the same general form of block diagram.
Thus all the three cases may be generalized to the form presen-
ted in Fig.5. The matrix U; can represent any of the matrices
R;, P;, S;, depending on the context. All further considerations
are conducted with the use of this general form, and the atten-
tion is focused on determining the value of the coefficients of
the matrix U for which the amplitudes qz of chosen elements
of the system (described by the dynamic flexibility matrix G)
will be minimum.
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Fig 5. Block diagram of the system performing mechanical vibrations

When taking into consideration vibrations of a mechanical
system with £ different values of frequency o it is possible to
generalize the model given in Fig.5 to the form shown in Fig.6.
This is performed by introducing generalized matrices G, €2,
U, U,Bw, Cw, Bz, Cz, and vectors f, fz, fw, q, qz, qw (Fig.6),
which correspond, respectively, to the matrices Gj, Q;, U, Uj,
Bw, Cw, Bz;, Cz;, and vectors f;, fz;, fw;, q;, qz;, qw; in the case
of vibrations with a single frequency w; (Fig. 5).
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Fig 6. Block diagram of active control of mechanical vibrations
All of the vectors f, fz, fw, q, qz, qw in the generalized
scheme are column vectors composed of the corresponding
vectors for a single frequency. In other words, these vectors
may be written in the form :

[ f, [ fz, fw,

f fz fw

f=| 7| fz=| 7| fw=| .’
| f |z, | fw,
q qz, qw,
142 _ 9% _ | aW2
q=| . | qz=| .| qw=| .
LDk LdZy L AW

The matrices G, €2, [NJ, U, Bw, éw, Bz, Cz
are described by the following formulas :

(G, 0 - 0 ] (@, 0 - 0 ]
G - 0 G, - 0 o - 0 Q, - 0
0 0 G, | 0 0 Q,
‘U 0 0 | U, 0 0 |
B LA LS P
0 0 U | 0 0 U, |
[Bw 0 0 | [Cw 0 0 |
Bw= 0 Bw 0 Cw= 0 Cw - 0
0 0 Bw 0 0 Cw |
Bz, 0 0 | Cz, 0 0 |
By © 312: 0 | e |0 (.312: (,)
10 0 Bz, | 0 0 Cz,|



It is useful to note that all the generalized matrices may be
described as a linear combination of the corresponding matri-
ces for particular frequencies and certain other fixed matrices.
In particular, for the matrix U it can be written :

k
622[(91XIS)'U'(e;FXISr)]

i=1

(14)

where :
e; - the i-th versor of dimension k, the symbol : X stands for
the carthesian product of matrices.

METHOD OF RESPONSE CIRCLES

The following set of equations can be written
for the system presented in Fig.6 :

q=G-f (15)
f =Bz-fz+Bw-fw (16)
qz=Czq (17)
qw=Cw-q (18)
fw=U-qw (19)
T-U-0 (20)
By combining equations (14) + (22)
the following relation can be derived :
qz:Cz(In—G-ﬁwzk: (eiilS)' Q.Cw -G fz
iz U-(ejxI5)) 1)

In the case without any feedback (U=0) the vector qzg
of amplitudes of selected elements may be written in the form :

qzo=Cz-G-fz (22)

By using equations (15) + (21) it is possible to investigate
how the real or imaginary part « of a particular coefficient of the
matrix U influences the amplitudes in vector qz. The vibra-
tions of particular elements represented by the matrix qz can
play a different role in the dynamic behaviour of the mechani-
cal system. Therefore in some cases it is useful to use a weigh-
ted sum of amplitudes as a measure of the vibration level :

@=Zﬂﬂmm

where :
a[i] - the weight coefficient
corresponding to amplitude qz[i].

(23)

For the case of no feedback it can be similarly written :
6,0 = Y, alil-qzli]
i

After some transformation it is possible to show that the
ratio { of the indexes 0, and 0,( may be written in the general
form :

(24)

C(u)=cz—(u)=1+iM (25)

G,o(W) i L—u(e; +jdy)
where :
aj, b, ¢j, d;, (1<i<Kk) are real numbers.

The module || shows the effect of the feedback loop on the
weighted vibration amplitude of the elements of qz. In gene-
ral, when V..., [d, #0 A (a; #0Vv b, # 0)] equation (25) repre-
sents a closed smooth curve which is described by the end of
the vector £ in the complex coordinate system (r , i) when u

varies from - e to + eo. An example of such curve is presented
for k =4 in Fig.7.
i

Fig 7. Graphical interpretation of equation (25)
with exemplary coefficients for k different frequencies (k =4 )

When taking into consideration only a particular
frequency m, equation (25) may be written in the form :

B u(a + jb)
W=

where :
a, b, ¢, d, are real numbers.

(26)

In the usual case when d # 0 A (a # 0 v b # 0), equation (26)
represents a circle which is described by the end of the vector £
in the complex coordinate system (r, 1) when u varies from - eo
to +oo [7]:

a’+b? N
44*

A graphical interpretation
of equations (26, 27) is shown in Fig.8.

a) b) .

1
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Fig 8. Graphical interpretation of equation (27)

The diameter of the closed curve (in particular — a circle)
described by the vector { enables to assess the influence of the
parameter u on the weighted amplitude of vibrations. The large
diameter of the curve (the circle described by the vector {; in
Fig.8a) may be interpreted as a significant influence of the pa-
rameter «, while the small diameter (the circle determined by
{, in Fig.8a) — as an insignificant influence of the parameter u.
However in practice the parameter u has a reasonably limited
range of values. Thus only a part of the curve drawn by the
vector { can be applied in practice (for example only the mar-
ked part of the circle shown in Fig. 8b). Moreover, only the
values of parameter u, for which the module || is lesser than 1,
result in the decrease of the weighted amplitude level. In this
way it is possible to estimate the effect of all parameters u on
the vibrations and thus to choose :

X the controller structure and its parameters for the best acti-
ve control of mechanical vibrations
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% the changes of system parameters leading to the most ef-
fective reduction of vibrations

* the shrouds and the glands which play the most important
part in generating forces and moments in the case when
rotor self-excited vibrations of aerodynamic type are con-
sidered.

EXAMPLES
A ship propulsion system

Ship propulsion systems equipped with flexible couplings
are very sensitive to disturbances caused by unsteady engine
operation. The disturbances have the form of shaft torque pe-
riodical changes which lead to torsional vibrations of the who-
le propulsion system. In some cases resonance vibrations re-
sulting in damages to flexible couplings, were observed. This
situation very often occurs when the engine works with one
misfiring cylinder. In Fig.9a an example ship propulsion sys-
tem is presented.

a)
GENERATOR ——— H—PUMP| propELLER
GEAR
MAIN ENGINE —n— N
m
1
b)
1
= 1
S 1 T
=]
i
<)
1
[ H ]
1 r
H
d) :
1
g BE
=]

Fig 9. Variants of additional control systems and their response circles

It consists of a main medium-speed diesel engine which —
— through a main coupling and a mechanical gear — drives
a ship propeller, an electric generator and two hydraulic pumps.
All the couplings are flexible. The linear model of this system
and the analysis of its behaviour was elaborated [11] by using
the engine producer’s data and results of some additional inve-
stigations. The reduction of the main coupling torsional vibra-
tion was performed by modifying the main engine governor.
Three system variants were considered for the following diffe-
rent correction input signals :

» angular velocity of the generator (Fig.9b)
» angular velocity of the main coupling (before the gear)
(Fig.9¢c)

26 POLISH MARITIME RESEARCH, No 4/2004

» angular velocity of the propeller shaft (measured directly
after the gear) (Fig.9d).

In all three cases the presented method of response circles
was applied to the analysis of the structure and parameters of
the additional correction controller. The reduction ratio { of the
main coupling vibration amplitude for the case of a proportio-
nal controller, 270 rpm shaft speed and 14 Hz fundamental har-
monic frequency of forced vibrations, is shown in Fig.9b + 9d
for the above mentioned system variants, respectively.

From Fig.9 it is evident that the controller using the gene-
rator’s angular velocity as its correction signal offers the lar-
gest possibilities of reducing torsional vibration amplitude in
the main coupling.

Turbine rotor self-excited vibrations

The method of response circles was used to select the seals
which play the most important part in generating aecrodynamic
forces leading to self-excited vibrations of the rotor system.
The forces were described by means of the rotordynamic coef-
ficient matrix S=[J, |B, | K, ], and calculated from relation
(13). The relevant schematic diagram is shown in Fig.10.

W
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Fig 10. Schematic diagram for rotodynamic coefficient analysis

In the case of a double-cylinder medium-power steam tur-
bine the performed analysis proved that the seals of the first
stages of the HP cylinder had the greatest influence on self-
-excited vibrations of the aerodynamic type. It was enough to
change the seals of the shrouds and shaft in first four turbine
stages to achieve the desired effect of vibration reduction.

A currently conducted work is concentrated on active con-
trol of rotor vibrations of a steam turbine by means of pressu-
rized bearings. The method of response circles is used to de-
tect the bearings which have the greatest influence on active
control. Results of the work in question will be presented in
a separate paper in due course.

CONCLUSIONS

O An analytical method for the investigation of linear mecha-
nical systems performing harmonic motion was presented.
This approach was successfully applied for the analysis and
improvement of the dynamic behaviour of a ship propul-
sion system.

O The proposed theoretical method makes it possible to de-
termine the parameters of the system’s dynamic flexibility
matrix which show the most remarkable effect on the dy-
namic behaviour of the whole system.

O When active control is considered the method is useful in
the designing of the structure and choice of parameters of
the control system.

O In certain cases of self-excited vibrations the approach helps
examining the elements of the system which are most res-
ponsible for this kind of excitation.



In Part II of the paper (to be published) a theoretical me-
thod of optimum vibration control by active means is descri-
bed and illustrated by some examples, including an approach
to pressurized bearing application.
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NOMENCLATURE

B - matrix of damping coefficients
C - selection matrix

Bw, Bz, Cw, Cz - binary matrices

D - transfer matrix

f - vector of force amplitudes

fw - controller output vector

- vector of external forces

- vector of harmonic forces (or moments)

- dynamic flexibility matrix

- unitary matrix

- imaginary unit

- matrix of inertia moments

dimensions of matrices and vectors

- matrix of stiffness coefficients

- matrix of changes of system parameters

- vector of displacement amplitudes

vector of measured amplitudes

vector of amplitudes of controlled elements
- vector of displacements

- controller matrix

- matrix of rotordynamic coefficients J, , B, , K,
- time

- general symbol for the matrices P, R, S

=

=

©
1

N
1

- weighted sum of amplitudes
- frequency
- frequency multiplier matrix

vea G‘"’VJFUO@-EQ TRAESET AR

Indices : P - proportional controller
I - integrating controller
D - differentiating controller
u - of rotordynamic coefficients of turbine seals
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