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ABSTRACT

This paper presents numerical and semi-analytical solutions of oil velocity components
and pressure distributions in spherical unsymmetrical gap of slide bearing. A hydrodyna-
mic unsteady lubrication during oil flow with viscoelastic properties is here considered. In
the case of various driving systems on ships the bearings with spherical journals and
spherical sleeves or slide bearings with spherical bits operate often under impulsive unsteady
motions. Many impurities appearing in service leads to viscoelastic properties of the oil.
During service of transport machines it is necessary to adjust the shaft location respective

to the sleeve in order to make optimizing the convergent lubricating film possible. Such conditions are
effectively satisfied in bearings with spherical journals. The presented numerical calculations were perfor-
med by means of the Mathcad 2000 Professional Program and the method of finite differences. This method
satisfies stability conditions of numerical solutions of capacity forces occurring in spherical bearings.
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INTRODUCTION

Lubrication of spherical bearing under periodic motion has
been considered in many papers till now [3, 4, 8,9, 10, 11, 12].
This paper considers pressure distribution during hydrodyna-
mic viscoelastic lubrication of spherical bearings and bearings
with spherical bit, at impulsive unsteady motion. These pro-
blems have been not elaborated hitherto.

Bearing systems are commonly used in diesel engines in-
stalled in land transport machines and ships. The oil in bearing
gaps in such bearing systems is contaminated mainly with dust,
soot, smoke black as well as many inhibitors improving the oil
properties. Transport machines usually work under unsteady
impulsive vibrations. Thus the lubricating oil has often the non-
-Newtonian properties. Therefore in this paper viscoelastic time-
-dependent properties of oil are taken into account. Designing
the bearings without accounting for the viscoelastic oil proper-
ties brings about to occurrence of the seizing of the bearing in
kinematics pairs.

The seizing of bearings can be prevented by proper reco-
gnition of bearing operational parameters for real oils. This is
very important because the seizing of ship diesel engine bea-
ring system may lead to the catastrophe [1, 2].Therefore deter-
mination of real bearing capacity at unsteady viscoelastic lu-
brication has important sense.

The bearings presented in this paper have spherical jour-
nals. The spherical journals can be turned with the shaft or the
form of an individual ball can be used (see Fig.1). Such ball is
installed in bored end of the shaft.

Fig.1. Spherical bearings: a) spherical journal together with shaft and
spherical sleeve, b) individual spherical ball with conical sleeve, ¢) spheri-
cal journal together with shafi and conical sleeve

The sleeve has spherical or conical shape. The spherical
sleeve is more effective than conical one, because it ensures
small values of slide thrust and wear.

Usually the spherical bearing is adjustable. It makes it po-
ssible to set up the shaft with respect to the sleeve and to con-
trol the convergent lubricating film, and it is capable of trans-
ferring both axial and transverse loading, Fig.2.

a)

Fig. 2. Loading of the spherical journal: a) transverse loading,
b) axial and transverse loading
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GOVERNING EQUATIONS AND BOUNDARY LAYER SIMPLIFICATIONS

Lubrication of journal and sleeve in slide spherical bearing is described by oil flow. The momentum conservation equations
and continuity equation describe oil flow. Moreover the second order approximation of the general constitutive equation given
by Rivlin and Ericksen, can be considered. The equations can be expressed in the following form [6, 7] :

DivS=pdv/dt , divv=0 , S=-pI+n,A1+ (A1)’ +BAs (1)
where :
S - stress tensor p - oil density
Div S - stress tensor divergence t  -time [s]
A4 - velocity vector [m/s] p - pressure
divv - velocity vector divergence I - unittensor

Ajand A, - two Rivlin-Ericksen strain tensors of three material constants 1, o, [3,
where :
No - dynamic viscosity o , - pseudo-viscosity constans of oil.

The tensors Ay, and Aj are given by the symmetric matrices defined by:

A =L+LT
Aj = grad a + (grad a)T +2LTL ()
v+ &
a= Ly .
ot
where :
L - tensor of oil velocity vector gradient [s'l] a - acceleration vector [m/sz]
LT - tensor with matrix transpose [s™ ] grad a - acceleration vector gradient

It is assumed that the product of Deborah and Strouhal numbers, i.e. DeStr, and the product of Reynolds number, dimension-
less radial clearance, and Strouhal number, i.e. ReyStr , are of values of the same order. Moreover DeStr >> De = aw/n,, .
where : - relative radial clearance - angular velocity of spherical bearing journal.

The following is additionally assumed :

the rotational motion of spherical journal with peri-
pheral tangential velocity U = @R

unsymmetrical unsteady oil flow in the gap
viscoelastic and unsteady properties of oil

the oil density p of constant value

the characteristic value of the bearing gap height, €
no slip at the bearing surfaces

R - radius of spherical journal.

VVVVVYVY V

By neglecting the terms of the radial clearance y = €¢/R = 107 in the governing equations expressed in the spherical
coordinates @, r, 9, and by taking into account the above mentioned assumptions the following is obtained :

ov ov o’v

0 __ 19@;%6( (p}s o 5
ot pRsin—a(P p or{ or p otor

R
0:% @)
3

Ove __10p Mo 9(0Vs | BOVs (5)

ot podS p or\ or ) potor?
ov
—®+Rsin(ij v, +i Rvg sin(gj =0 (6)
o R)or a9 R

where : 0<@<2mc; , 0<ci<1, bp=7mR/8<V<nR/2=by , 0<r<h , h-gapheight.

Symbols v, vy, v denote oil velocity components in the circumferential, gap-height and meridianal directions of the sphe-
rical journal, respectively. The terms multiplied by the coefficient f in the right hand sides of (3) , (5) denote influence of time-
variable viscoelastic oil properties on the bearing operational parameters. The terms in the left hand sides of (3) , (5) describe
influence of accelerations which occur during the impulsive motion, on the bearing lubrication. The relationships between
dimensional and dimensionless quantities are assumed in the following form :
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r=er;, 9=ROy; , t=tet; , h=¢eh; , vo=Uvgy , v=Uyvy
2
vg=Uvyl , P=PoP1 » Po=UnoR/e

and Reynolds number, modified Reynolds number and Strouhal - Deborah number are as follows :

ReEpUymj,Rausm%%m),SUERKU%),[REBUM%R)
hence :

DeStr = /(Moto) = Des , ReyStr = p82/(n0t0) = Res

(7

(®)
(8a)

For thezoil containing inhibitors the constant /t, is always 0 < 3/t, < 1, and of values usually in the range from 0.0001 to
0.1000 Pas”. The dimensionless symbols have lower index “1”. Hence the equations (1) + (6) obtain the following dimensionless

form :
3
Res aV(Pl = - ! P, + 0 aV(Pl + Des —6 Yo
at, sind, 0¢  or, | o ot,or
0 = op,
or,
Re Ove1 _ _ Op, 0 [ 0V, Des *Vg,
ot, 88, oOr, \ or at,orf

where : 0<@<2mc; , 0<¢c <1 , W8<B 1 <m2 , 051 <hy
THE METHOD OF INTEGRATION

For lubrication at impulsive motion a new dimensionless variable was introduced [4] :

1 [R D
(=N . N=> % L4350, 0<—<]

1 tl
and the solutions in the form of the following convergent series, were assumed :

2
Des Des
Vo1 = Voo (1@, 91) + t_V<p12 (%9, 91) + (t_] Vs (0. 81) + e

1 1

2

Des

Vg1 = Vgor (- 9.9 )+ . VSIZ(X 0,9 )+( . ] Vors (P 9) + e,
1 1

2

Des Des

Vil = Vioz (X? ®, 91) + t_VrIZ (X? o0, 81) + (t_] Vioy (Xn o, 81) to
1 1

2

Des

plO((Paglst )+t_pll((P9919t )+( t j plZ((pa‘gl’t )+ """""
1 1

where :t;>0 , 0<Des<<1 , (Des/t}) <1

)

(10)

(11)

(12)

(13)

(14

(15)

(16)

amn

The first terms of the series (14), (17) describe oil flow parameters in impulsive unsteady motion, with neglecting the visco-
elastic properties. The second, third, etc terms in the series (14), (17) describe the corrections of oil flow parameters, caused by
the time-changeable viscoelastic oil properties. In (9) - (11) the derivatives with respect to the variables t;, r1, can be replaced by

the derivatives with respect to the variable ¥ only, by using the following relationships :

0 00y —IJ_ _Li

ERE tn/— ax 2t, oy
O _0(9)_9 (0 x| _Res °
o or\or ) oyl\oyor jor, 4t oy?
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o’ 0 (Res 0? j__Res 0? Res 0 (82 j@_x__Res(@z x o J 19

2 A 2 2 - 2 ;T 3
otor oy 4y oy 47 o7 Ay ox\axt oy A \oy 20y

Next, the series (14)-(17) were put into the changed set of the equations (9)-(12) where the variables t,r| were replaced by the
variable (. And, the terms multiplied by the parameter (Des/t|)" of the same power values k , fork=0,1,2, ... , were respectively
equalled to each other.Thus the following sequence of the sets of ordinary second-order differential equations, was obtained [5] :

1
(Vies) P+ 20 (vigs) M = N2 % (20)
@ M) 1 9piy @, 1 @) )1
(Viig) 7+ 20 (Vig) U+ A(Vip) = — +( Vios) "+ =x(Vigz) 21
N? oo 2
1 ap 1
(V|22)( )+ 2X(Vuzz) Dy 8(V122)—N— 5 12 2(Vi12)(2)+ EX(Vilz)G) (22)

i i
and so on,
where:i=¢,0 , 0p=0 , oy=9
The upper indices: (1), (2), (3), ... denote : the first, second, third, etc. derivative with respect to the variable 7, and :

(Ng)>=N%sin(®1) , Ng=N 23)
GENERAL SOLUTIONS AND VALIDITY OF BOUNDARY CONDITIONS
The general solutions of the equations (20) for : i = ¢ , 9; have the form :
vio=(X) = Cirvo1(x) + Ciavo2(x) + vi 03(X) 24)
where : Cjp , Cpp - integration constants.

The following particular solutions of homogeneous and non - homogeneous differential equations were obtained :

o2

Vo =Je Mdy, , vp() =1 (25)
0

1 Jpyy e e

Vios () = N2 oo IeXI Vor()dx: = voi () _[CX1 dy;, (26)
Ni %i o 0
where : 0 <y <y =rN.
For t; >0, N — oo, thus y — oo. For t; — e, N — 0 hence for r{ > 0 will be y — 0.

For t; > 0 and r| = 0 also %, = 0. The following limits are true :

V01(X)=Tc0'5/2 for:y >o , tt—>0, N> w»

voi(x) =0 for:y—>0 , =0, 0<t;,<tp<oc0 , N>0

voi(x) =0 for:xy >0 , 1n1>0 , tt—>0 , N>0

vios(x) =0 for:xy—>0 , =0, 0<tj<tp<oo , N>0 where:i=¢,3 (27

2
5 Opy
v =———— 2 for:x—0,1,>0, ;>0 , N>0
(pO3(X) 25in9, 09 X 1 1
2
Vons () =— L P10 for:x—0,1>0, tj—eo , N0
2 09,

The spherical journal moves only in the circumferential direction ¢. Hence the oil velocity components on the journal surface
in this direction are equal to the peripheral velocity of the spherical journal surface. The oil velocity component on the spherical
journal surface in the meridianal direction O equals zero because the spherical journal is motionless in O- direction. The oil flow
around the journal is assumed viscous. Hence on the journal surface the oil velocity component in the gap height direction equals
zero. Therefore the following boundary conditions are valid:

Veoz(x = 0) =sin8; , vgoz(=0)=0 , viox(x =0)=0 o8)
for:11=0<y=0and0<t;<t<ow , N>0
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The spherical sleeve surface is motionless in both circumferenial and meridianal directions. But the spherical sleeve performs
any impulsive displacements in the gap height direction. Hence the gap height changes along with time. Thus the oil velocity
components on the sleeve surface are equal to zero in both circumferential and meridianal directions. The oil velocity component
in the gap height direction r is equal to the first derivative of the gap height with respect to time. Hence the following boundary
conditions are valid :

Voor( =M) =0 , vgos(x =M)=0 , vis(y = M) = Stroh,/ot,
(29)
for:ry >hj<yy—>Nh =M , 0<t;<tz<ew , N>0

where : h=¢h; - gap height , h; - dimensionless gap height , Str= 1/wt,
Imposing the conditions (28) , (29) on the solution (24) one obtains :
C(pIVOI(X = 0) + C(p2 + V(P03(X, = 0) =sinY, for:r;=0
C(P1V01(X = M) + C(PZ + V(P03(X = M) =0 for:r1=h;
Cg]Vo](X = 0) + Cgp + V903(X = 0) =0 for:r1=0
Co1voi(y =M) + Cgz + vgo3(x =M) =0 for : ;= h;

(30)

By taking into account the limits (27) the following solutions of the set of the equations (30), are obtained :

sin 9, + v, 03 (M) Ve (M _
(pl:_ ! 003 N CSlz_M N C(pZZSIIlSl N Cszzo (31)
Vo1 (M) Voi
Now, into the right hand side of (21) the solution (24), (25), (26), (31) is inserted.
Thus the general solution of (21) obtains the following form :

Vis () = Cigvi () + Cigvip () + vips(x) - for:i=¢@, 9 (32)
where : Cj3, Cj4 - integration constants.

The particular solutions are as follows :

42 2% 1 n
vii=xe™ , vip()=ye* IX_ze Ady, (33)
3 %1

Vis (1. Cip) = V11(X))j( {Cil 11 +2) —(1 X2] j _[V103 (Xl)] —L }Vlz(Xl)dh +
0 dy? 2 o

i i

(34

oo
for:i=¢,9 , 0<6£xlsx

2 d? 1
+vu<x>1‘{(l+%}e’“@[vios(m] N Py ﬂx1<x1+2>}v“(xl>dxl

The solutions (32) represent the corrections of the oil velocity components due to the viscoelastic oil properties.
By virtue of the solutions (33) and (34), for: x -0 , r1 >0 , N>0, it follows:

lim vi(1) = lim xe I — efldy, = (35)
x—>0,N>0 x—0,N>0 X]
The following limits are true :
vii(x) =0 for:xy >0, n=0, 0<t1<tp<o0 , N>0
via(y) = -1 for:xy >0 , 11=0 , 0<t;<tp<o0 , N>0 (36)
viis(y) =0 for:xy—>0 , =0, 0<t1<tp<o0 , N>0 where:i=¢,93

The corrections of oil velocity components can not violate the boundary conditions (28),(29) which are assumed on the
journal and sleeve surfaces in the circumferential and meridianal directions. Therefore, the following boundary conditions were
applied to the corrections of oil velocity components :

Vorr(x=0)=0 , ves(=0)=0 for:r=0<y%=0 , 0<tj<t<oo , N>0

(37
chlZ(X:M):O R Vs]z(X:M):O for : 11 > hy C>X—)Nh1 =M , 0<t;<tp<oo , N>0
Imposing conditions (37) on the general solution (32) one gets :
C@V]](X = 0) + C(D4V21(X = O) + V(pl}(x = O) =0 for: 1= 0 (38)

C(D3V11(X = M) + C(p4V21(X = M) + V(p13(x = M) =0 for: = h]
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Cosvii(x =0) + Coava1(x =0) + vgi3(x =0)=0 for: ;=0

(39)
C93V11(X = M) + C94V21(X = M) + V913(X = M) =0 for:r1=h;
By taking into account the limits (36), the following solutions of the set of the equations (38),(39) were obtained :
CB:M, Ciu=0 for:i=@,0 (40)

VII(X:hIN)

where : 0 <y <h|N , N:%/Rewstr , 0<tj<oeo , O0Zri<h; , by <% 1<bg; , 0<@<2mc; , 0<cy<oo

NEWTONIAN UNSTEADY LUBRICATION

By neglecting the viscoelastic properties of oil, by virtue of solutions (24) and constants (31), the particular velocity
components of oil in ¢ - and ¥ - directions for non steady flow obtained the following dimensionless form :

Jn 9Pio [Y(X:Nhl)]}' erf(rN) +

N%sin9, 0¢ erf(h,N) )
o Py
smS o
J—Gp erf(rN) J_ap
1,9.t) =—— —%|Y (3 =Nh, )| - 1 O y(y =N (42)
Voo (1 31-4) =205 5. [¥Ge=nn,) erf(h,N) 2N? 09, =)
where :
L 2 X 2
Y(X) = [eMerfy,dy,—erf(h,N) [e* dy, (43)
0 0
N= l‘/E erf ()= —= Je % dy, (44)
for:

0<tj<eo , 0<r<h; , by <Y <by , 0<@<2mc; , 0<ci<eo , 0 <Y1 <Y=rN<hiN=M , h;=hi(@,01,t)

The oil velocity components (41),(42) were put into the continuity equation (12) and both sides of this equation were integra-
ted with respect to the variable r. The oil velocity component vy in the gap height direction equals zero on the spherical journal
surface. Therefore by imposing the boundary condition vygx = 0 for r; = 0, the oil velocity component in the gap height direction
obtained the following form :

~hiN? n
Ne ahl_ﬁ( I oh dpy  oh apmJ " Certydy |1 EEN)

Vios (0,171,891, 1) =— I

(45)

d
erf(h)N)| dp 2 sir123l op Op 88 09, N * gerf(th)

o o* 0 M erf(t, N n
_ﬂ i p;O + Plo h =cot§, L2Y(X = th)IM dr, — IY(X = er) dr,
2 {sin“9; Jo 29; 681 N oerf(h;N) 0

where: 0<t;j<eco , 0<1p<1r1<h; , by <V 1<bg; , 0<@<2mc; , 0=5ci<eo , 0 <x1Syx=rIN<hiN=M

The oil velocity component v,gy in the gap height direction does not equal zero on the sleeve surface. Therefore by integrating
the continuity equation (12) and imposing the boundary condition (29) for r;=h; on the velocity component in the gap height
direction, the following equation was obtained :

h h oh
9 j] Voox Ay + 63 j]sinS 1Vgos dry = —Stra—tl sin$, (46)
10 1

If the expressions (41)+ (42) are put into (46) the following modified Reynolds equation is yielded :

hj]erf (r,N)dr, h,
Vr 12 Yo =Nhy)- [¥(x=Nn Jdy

ON? sin9, d¢ || erf(h,N)
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hy
£ (r,N)dr,
Ja oo || et h op
Y(x=Nh,) - [Y(y=Nr )dr, |—2sin 9, } =
+2N2 29, erf(th) (X 1) ({ (X rl) h 29, SIn v

=—(sin9, )i(hj1 {1 —M} dr, J - Str%(sin 9,)

oo\ o erf(h,N) 1
where :
0<rp<r<h; , 0<@e<2mc; , 0<c;<1 , 0O <m2 , 0<t;<eo
0<y<xi <hiN , 0<N(t;)=0.5Res/t])"> < oo

(47

The modified Reynolds equation (47) determines an unknown pressure function pyg (@, 91,t1). If t; tends to infinity, i.e. N
tends to zero, then the equation (47) tends to the classical Reynolds equation. To explain this fact the following limits were

calculated :
hN N
lim ‘/;2 Y(x=hN)= lim ‘/;2 [exp(x?)erf(y)dy — erf(hN) [exp(y*)dy | =
N—0 2N N0 2N 0 0
1 [mN S % X hyN ) h N )

= lim — 1 | [exp(x Mexp (= )dXI}dX_( [exp(—x )de( [exp(x )dx] =

N—0 N | ¢ 0 0 0

Nh, 5
h
- exp(r)dy h? exp(h2N2) o

. 0
im = lim =
N>0 2Nexp(hiN?) 2 N>o0exp(hiN?)+2hiN2exp (h;N?) 2

and, analogously :

Vr ol
li Y(y=Nr,)=—=+
fim g Yo=N)=5
as well as :
erf(rN)

lim =
N—oerf(hN) h,;
Thus the equation (46) for N — 0 tends to the following form :

h2 h h 2 o 2 h,
_1 O _hi jlr—ldrl—j1 _L dr, Pio —|—i _hi sin 9, jr—ldrl-i-
sin$, op 2 Joh 0 2 op 09, 2 oh,

h, 2 h,
—| I sin 9, dr, OPig =—(sin81)i | -1 dry —Stf&(sm&)
ol 2 29, ool h ot

Finally, after calculations, the following form of the classical Reynolds equations
of flow in the spherical coordinates was obtained :

.1 0 h; Py |, 9 hfaplosina1 :6&sin81+128tr%sin81
sin$, Op op ) 09, 09, op ot,

for:0<@<2mc; , 05ci<1 , 05O <m/2

The time-dependent average gap height with perturbations has the following form :
hy = (ho/e)[1 + 51 - exp (-tot1Wo)]
where :
ho(@,91) = Agcos@ sind + Agj sin@ sind; — Agz cosd — R +
+ [(Agjcos@ sin¥] + Agy sing sin¥] — Agj cosﬁ])2 + (R + €nin) (R+2D + emin)]o'5
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(50)

(51

(52)

(53)

(54)
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The coefficient s controls changes of the gap height during the impulsive motion. If s > 0 the gap height increases, if s <0, the
gap height decreases. The symbol ®, denotes an angular velocity expressed in [s'l] , describing impulsive changes of perturba-
tions in the unsteady oil flow in the bearing gap in its height direction. If Strouhal number tends to zero the equation (52) tends
to the classical Reynolds equation for stationary flow.

The centre of the spherical journal was assumed in the point O(0,0,0) and the centre of the spherical sleeve in the point Og
(x — Agy, y — Agy, z + Ag3). The eccentricity was determined by the value D (Fig.3). The lubrication region Q indicated in Fig.3
was defined as follows : 0 < @ <7, tR/8 < 03 =Y < mR/2.

. force of impulse
spherical sleeve 7

Fig.3. Schematic diagram of the gap height and eccentricities
VISCOELASTIC UNSTEADY EFFECTS

The particular corrections (32) of the oil velocity components in ¢ — and ¥ — directions, caused by the viscoelastic, fluid
properties and unsteady fluid flow, were multiplied by the factor DeStr/t;. By using the expressions (32), (33), (34), (40) and
boundary conditions (37), the corrections of the oil velocity components (32) obtained the following form :

Des 4B ere_rlzN2 opy | "
—_—V ,9..17,t) = Y. dy +
: otz (@91, 1) = & sing, {&p Ix 10 dy
N2 0
+7<h12_r12)Y1(X:h1N)}+ ;ql)o|: IYz(X)dX Y, (x= th) IXe 3 Y, (x)dy +
N
N 2 opy, [ PN (35)
+Y(x=nN) [ ye Y(x)dx}— Y 00Y;(0Y () dy +
RA ({ ? Jrerf(h,N) 90 q{ql ’

N nN
=Y, (x=hN) g Y0 Y () dyx+ Y, (x =1N) ﬂ Y5 (0)Y(%) dx}} +

_8[3N2r1e_“zstin91 v hNhNY bV (o NrNY . o
Jrpe et () { (= )I ;00dx =Y, (=1 )I 3 () dy - I (0 Y560 dy

nN

2

D 4 N
?vm(cp,eq,rl,t )= pB Nrje™ {‘9"”[ [FAY (x)dx+7(h -?)Y, [(x=h1N)]}+

1 1 N

0
+ plo{ [Y,(0)dy =Y, (x =h;N) jxe_x Y, dy+ Y, (x=1N) IXe * Yz(X)dX} (56)

1 | N

—2ap1°YYYthNYYdY_NYYd}}
Jrerf(h,N) 09, L{q O0Y; )Y Gdy =Y (x ) [Y;0Y 60 dy+ Y, (x=1N) [ Y500 Y () dy
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with :

L1 .2 X2 2k o
Y, (x)=[—=e dy, . Yy(x)= [x +7J(2xe * [eridy, —1J Y, () =721 +2)e (57)
3N 0
whereas : 0 <ty <oco , 0<1<r;<h; , by <V <by; , 0<@<2mc; , 0<ci<oo , 0Ly <x=rN<hN=M

The corrections of the oil velocity components (55) , (56) were put into the continuity equation (12) and both sides of this

equation were integrated with respect to the variable ri. From the viscous oil properties it follows that the corrections of the oil

velocity components in the gap height direction equal zero on the journal surface for r| = 0.Thus the corrections of oil velocity

components in the gap height direction obtained the form :

1 of(h 1 0
VrlZ((p’SI’rljtl):_sinS %[gv(pli((l)aglﬂrl’tl)drlj in9, 09, [j(smS )V912((P991=r19t )drlj (58)
1 1

The corrections of the oil velocity components can not violate the boundary conditions (28) , (29)
assumed on the journal and sleeve surfaces in the gap height direction.
Hence the corrections of the oil velocity component in the gap height direction equal zero on the sleeve surface for r; = h;.

By imposing this condition on the solution (58) the following modified Reynolds equation was obtained :

.1 0 opy|" I frlzNZZ](rl)drlJrZz(hl) +— 0 8p“sm\‘) frlefr'zszl(rl)drl+Zz(h1) =
sin 9, 8(p op | o 09, | 0% 0

2Nsm8 2 2 0 )0 2
0 e ™7, () + S1o {Irl N Z,(0)dr - Zs(h, )}
erf(Nh ) Jr erf(h,N)sin 9, 5([) op (59)
2 Opyy . [1 _iAN2 }
sin$,| [re™ " Z,(r)dt,—Zs(h)) |+
\/_erf(hN)89 {881 1 ({1 4 (r)dr; = Zs(h,
1 0 6p SN 0 6p . b, N
_sin81 6@{ 8([1)0 hrle N Zé(rl)dr1 +Z7(h1)}} =y {6810 smSle)rle N Zé(rl)dr1 +Z7(h1)}}
where:
N 1 —h2N2% ;. 2
Z,(r;) = IXYI( )dX_rl (X th) , Z2(h1)=_(1_e ")hiY (% = Nhy) (60)
nN
hN nN
Z5(r) =Y, (x=1N) [Y;00dy - Y, (x =1,N) I Y;(3)dy, - I Y1 (0 Y5 (0dy, (61)
0 N
N
Z,(1) = [Y00Y;0)YO0dy +Y, (=1, N) I Y; 00 Y5 ()Y (dy (62)
N —h; N2 hN 0
1
Zs(hy) —;TY (2 =h,N) IY (0Y; (0 Y(dy (63)
AN h,N
Ze(r)= [Y,(0)dx+Y,(x =, N) Y, () e *dy, (64)
N
1 e_hZNZ )
Z7(h1)—TY (x=h N) IY (%) xe *dy, (65)

and:0<rp<r;<h; , 0<@<2mcy , 0S01<1 , 00 1<m/2 , 0Lt <eo
0<yx1<x<hN , 0<N(t;)=0.5Res/t;)* <

The modified Reynolds equation (59) determines an unknown function py1(@, 91,t;)
of the pressure corrections due to the viscoelastic properties of oil in unsteady conditions.

NUMERICAL CALCULATIONS

The dimensionless pressure distribution pj and its dimensionless corrections pii, pi2 , ... are determined in the lubrication
region Q by virtue of the modified Reynolds equations (47) , (59) and by taking into account the gap height (53), (54). On the
boundary of the region Q the dimensional pressure and its corrections have values of the atmospheric pressure pae. The region Q
indicated as a section of the bowl of the sphere (Fig.3), is defined by the following inequalities: Q : 0 <@ <7, TR/§ <9 <mR/2.

Numerical calculations were performed for :

& the radius of spherical journal R = 0.08 [m]
& the angular velocity of the perturbations of bearing sleeve w, = 0.2 [s™!]
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& the characteristic time t, = 0.001 [s]

& the characteristic value of the radial clearance ¥ = ¢/R = 0.001.

And, the following bearing eccentricitiezs Ae1=20 [um] , Agr=2 [um] , A3€3: I[uwm] , the oil viscosity N, = 0.03 [Pas] , the
pseudoviscosity coefficient 3 = 0.0006 [Pas”], the oil density p = 950 [kg/m™], the rotational velocity of the spherical journal,

n = 1500 [rev/min], and the average minimum gap height €y,;, = 4 [um], were assumed.

The numerical calculations were performed by using the Mathcad 11 Program and the finite difference method. The obtained
pressure distributions for the dimensionless time values t; = 1, t; = 10, t; = 100, t; = 1000, t; = 10000, t; = o, and s = £1/4 , are

presented in Fig.4 and 5.

Pro ma=0.403 s;=1/4
tlzl
Emin=2.52um

N

P10 max=0.403 S1:1/4
t;=10
Emin=2.321um

-0.13
X

P1o max=0406 51:1/4
=100
Emin=0.50um

0
026  -0.13 -0.26
X
PloA
0
-0.26

Fig.4. The dimensionless hydrodynamic pressure distributions inside the gap of slide spherical bearing, over the region 2: 0 < ¢ < 7R/8 <Y < 7R/2,

-0.13 )
X ) ' 260y

at the dimensionless time values : t; = 1, t; = 10, t; = 100, up to the impulse occurrence, for the increasing (decreasing) effects
of the gap height changes, shown in the right (left) hand side column of the diagrams, respectively
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In order to obtain real values of time it is necessary to multiply the dimensionless values t; by the characteristic time
to = 0.001 s. For example t; = 1000 denotes the time of 1s after impulse occurrence. In order to obtain realistic dimensional
pressure, values the dimensionless pressure values indicated in Fig.4 and 5 are to be multiplied by the dimensional coefficient
URny/€".

The pressure distributions shown on the right-hand sides of Fig.4 and 5 were obtained for the increasing of the gap height, caused
by the impulse effects. In this case the longer the time up to the impulse, the more gap height decreases and pressure increases.
The pressure distributions shown on the left-hand side of Fig.4 and 5 were obtained for the decreasing of the gap height, caused
by the impulse effects. In this case the longer the time up to the impulse, the more gap height increases and pressure decreases.

s w1}
il yons
<S5 .

LN

Az t;=1000 P10 ma=0.434 s,=1/4
t;=1000

Emin=5.30pum

o
LS,
N
AT

0
51:_1/4 plOmax=0-588 _
Az t;=10000 5=1/4
A2 7Tum t,=10000
min™- 2 TR Emin=t.56m

T

P1o max=0-629
P1o max=0-629

s;=—1/4 s;=1/4
t1=oo Z t1=OO

Emin=4%4.42um

Emin=4.42um

0-

-0.26 -0.13
X

Fig.5 The dimensionless hydrodynamic pressure distributions inside the gap of slide spherical bearing, over the region 2: 0 < ¢ <m 7R/8 <Y < 7R/2,
at the dimensionless time values: t; = 1000, t; = 10000, t; — oo, up to the impulse occurrence, for the increasing (decreasing) effects
of the gap height changes, shown in the right (left) hand side column of the diagrams, respectively.
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If the time interval up to the impulse occurrence is sufficiently large i.e. for t| — oo, then the pressure distributions for the
increasing (s > 0) and decreasing (s; < 0) effects of the gap height changes caused by the impulse, tend to the identical pressure
distributions (Fig.5). Such limit pressure distribution can be also obtained from the classical Reynolds equation (52).

For the dimensionless time values : t; = 1, t; = 10, t; = 100, t; = 1000, t; = 10 000, t;

=oo, 1.e. for : t=0.001s, t=0.010 s,

t=0.100s,t=1.000s,t=10.000 s, t = oo s, after impulse occurrence the maximum pressure distributions for s; < 0 have the

following dimensional values, respectively :

111725 111520

Wy Y Wy

For the dimensionless time values : t; = 1, t; = 10, t; = 100, t; = 1000, t; = 10 000, t;

, 1102200 | 0,993 e

o 0.674200 | 0,620 00 (66)

Y Y Y
=oo, 1.e. for: t=0.001s, t=10.010 s,

t=0.100s,t=1.000s, t =10.000 s, t = oo s, after impulse occurrence the maximum pressure distributions for s; > 0 have the

following dimensional values, respectively :

040302 | 0.403°0e | 0,406
Wy Wy y
CONCLUSIONS

@ The pressure distribution changes at the instant of impulse
occurrence are caused mainly by the bearing gap height
changes and viscoelastic oil properties.

@ The gap height changes during impulsive motion and the
viscoelastic oil properties may either increase or decrease
the pressure distribution and load-carrying capacity of sphe-
rical bearings in contrast to those of the same bearing but
free from impulse effects.

@ The pressure distribution changes and load-carrying capa-
city values at the instant of impulse occurrence attain about
40 percent of those appearing in the spherical bearing free
from impulse effects.

@ The pressure distribution changes caused by the viscoela-
stic oil properties can attain only about 10 percent of those
appearing in the instant of impulse occurrence.

@ Just after the impulse occurrence the influences of the vi-
scoelastic oil properties on the pressure and capacity chan-
ges quickly tend to zero. This is the moment in which the
largest values of wear may be expected.
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NOMENCLATURE
a - acceleration vector [m/s]
A - strain tensor, [1/s]

A, - dimensional tensor, [s-2]

bui,bs1 - dimensionless origin and end coordinate of
lubrication surface in meridianal direction

c - dimensionless end coordinate of lubrication surface

in circumferential direction
Ci1, Cp, Ci3, Cy4 - integral constant
D - dimensional eccentricity, [m]

De - Deborah Number

Des = DeStr - Deborah and Strouhal numbers

erf - special integral function

h - gap height, [m]

h, - dimensional gap height for spherical journal

and spherical sleeve, [m]

dimensionless gap height

- average gap height minimum, [m]

time depended dimensionless function

- time depended dimensionless function

- centre of the journal

centre of the sleeve

- dimensional pressure, [Pa]

- dimensionless pressure

- dimensionless pressure for Newtonian (classical)
unsteady oil flow

dimensionless pressure corrections caused by
viscoelastic oil properties in unsteady flow
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r - dimensional radial coordinate, [m]

I - dimensionless radial coordinate

R - radius of the journal, [m]

Re - Reynolds Number

S - dimensionless coefficient of gap height changes
caused by the impulse

S - stress tensor, [Pa]

Str - Strouhal Number

t - dimensional time, [s]

t - dimensionless time

o - characteristic value of the dimensional time, [s]

U - peripheral velocity of spherical journal, [m/s]

A - dimensional oil velocity component in radial
direction, [m/s]

Vi - total dimensionless oil velocity component in radial
direction

Vios - dimensionless oil velocity component in radial

direction for Newtonian (classical) unsteady oil flow

Vi1, Vis,--.- dimensionless corrections of oil velocity components
in radial direction caused by the viscoelastic oil
properties in unsteady flow

Vg - dimensional oil velocity component in meridianal
direction, [m/s]
V1 - total dimensionless oil velocity component in

meridianal direction
- dimensionless oil velocity component in meridianal
direction for Newtonian (classical) unsteady oil flow
Vg1ss Vgos,- .- dimensionless corrections of oil velocity components
in meridianal direction caused by the viscoelastic oil
properties in unsteady flow

Vaoz

Vo - dimensional oil velocity component in
circumferential direction, [m/s]
Vol - total dimensionless oil velocity component in

circumferential direction
- dimensionless oil velocity component in
circumferential direction for Newtonian (classical)
unsteady oil flow
Voiss Vgos,- .- dimensionless corrections of oil velocity components
in circumferential direction caused by the viscoelastic
oil properties in unsteady flow

Vpoz

Y,Y.,Y, - dimensionless functions

71,25 - dimensionless functions

o - pseudo viscosity coefficient, [Pas?]

B - pseudo viscosity coefficient, [Pas?]

€ - radial clearance, [m]

Agy, Ag,, Ags-components of the sleeve centre, [m]
Mo - dynamic viscosity of the oil, [Pas]

O - meridianal direction

0] - circumferential direction

X - time depended dimensionless variable
U} - dimensionless radial clearance

® - angular velocity of the journal, [1/s]
®, - angular velocity of the impulsive changes caused by

the perturbations in unsteady conditions, [1/s]
- lubrication surface, [m2]
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Hydroacoustics

From 25 to 28 May 2004 the yearly
21st Symposium on Hydroacoustics

was held in Jurata, a touristic resort at Hel Peninsula. It was
organized under the auspices of the Acoustics Committee,
Polish Academy of Sciences, and the Polish Acoustical So-
ciety. The symposium was hosted by Naval University of
Gdynia and Gdansk University of Technology.

The symposia in question have been aimed at providing
an opportunity for direct exchange of experience and infor-
mation among teams dealing with hydroacoustics and rela-
ted subjects.

The scope of the 21st Symposium
covered the following items :

acoustic wave propagation in sea water
hydroacoustic noise

non-linear acoustics in water environment
ultrasonic transducers

signal processing

hydroacoustic devices and systems

other related problems.

VVVVYVVYV

Presentation of 31 papers was performed during four ple-
nary sessions and four topical sessions.The following pa-
pers were presented during the plenary sessions :

* Golay's codes sequences in ultrasonography — by A. No-
wicki, I. Trots, W. Secomski, J. Litniewski (Institute of
Fundamental Technological Research, Polish Academy

K of Scieces, Warszawa)

* Acoustic reconnaisance of fish and environmental back-
ground in demersal zone in Southern Baltic — by A. Or-
towski (Sea Fisheries Institute, Gdynia)

*  Underwater ship passport — by 1. Gloza (Naval Univer-
sity of Gdynia)

* Stability of mechanical and dielectric parameters in pzt
based ceramics — by J. llczuk, J. Bluszcz, R. Zachariasz
(University of Silesia, Sosnowiec)

* Directional sonobuoy system for detection of submarines
by R. Salamon (Gdansk University of Technology).

Most of the presented papers were prepared by 47 au-
thors representing 10 Polish universities and scientific cen-
tres, including the following : of Gdansk University of Tech-
nology - 8 papers, of institutes of Polish Academy of Scien-
ces - 6 papers, of Naval University of Gdynia - 5 papers.
A group of foreign authors consisted of : 3 authors of Se-
vchenko Research Institute of Applied Physical Problems,
Minsk, Belarus, 1 author of University of Victoria, Canada,
1 author of Institute of Applied Physics of Nizhny Novogo-
rod, and 2 authors of Nizhny Novogorod State University,
Russia, 1 author of Institute of Marine Sciences of Mersin,
Turkey.
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