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ABSTRACT

This paper presents an analytical solution of velocity components of unsymmetrical oil
flow and pressure distribution in radial journal bearing gap for hydrodynamic unsteady
lubrication with viscoelastic oil. Numerical calculations are performed in Mathcad 11
Professional Program, with taking into account the method of finite differences. This me-
thod satisfies stability conditions of numerical solutions of partial differential equations
and values of capacity forces occurring in cylindrical bearings. Exact calculations of pres-
sure in journal bearing and its load capacity may be useful to prevent from premature
wear tribological units of self ignition engines, especially those applied in ships.
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INTRODUCTION

Correctness assessment of functioning the machines used for driving systems of various transport means e.g. diesel engines
in which journal friction units are installed, depends to a large extent on assumed computational models, correct estimation of
assumed appropriate simplifications, if necessary, and then on an assumed numerical method for the determining of operational
parameters. During maneouvres of sea-going ships as well as when driving cars many frequent changes of engine operational
parameters occur, especially of its rotational speed and loading. Similarly it happens during sailing the ship in rough weather
when non-stationary loads on its propulsion engine happen.

Both car vehicles and majority of sea-going ships are equipped with a propulsion system of a single self-ignition combustion
engine. Seizure of trigological system of such engine is equivalent to depriving the vehicle or ship of its propulsion and thereby
of'its serviceability [3]. If such an event occurs during storm emergency situations or even a catastrophy may happen [4]. One of
the ways to avoid such failures is to apply a lubricating oil of required properties, especially of appropriate viscosity and lubricity.

Therefore the main aim of this work is to present analytical-numerical calculations of distributions of hydrodynamic pressure
values occurring during non-stationary impulse lubrication of bearing surfaces at viscoelastic oil flow. Viscoelastic properties are
characteristic for all oils which contain various bettering admixtures or in which some impurities such as lead salts, soot or dust,
happen. All such impurities and admixtures are typical for land and sea transport.

Taking into account the above mentioned observations it is necessary to precisely analyze the influence of non-stationary
load impulses which are transferred through a propulsion system to a slide friction unit and result in such characteristic quantity
of the bearing as its load-carrying capacity determined on the basis of pressure distributions.

In Fig.1 the structure and loading scheme of a slide journal bearing is presented.
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Fig. 1. Structure and loading scheme of a radial slide journal bearing and its characteristic dimensions
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As shown in the scheme the bearing sleeve axis may undergo a skew respective to the journal axis. The quantity is described
by the angle y. In such case the oil gap height depends on the tangential variable ¢ and the longitudinal coordinate z. In the case
of non-stationary impulse loads the oil gap height additionally depends on time t.

THEORETICAL MODEL

Oil flow through the cylindrical gap height of radial slide bearing is described by the momentum conservation equations and
continuity equation [1, 2, 6, 7, 8, 10, 11, 15]. Additionally, Rivlin-Ericksen constitutive relationships were assumed. The equ-
ations in question are of the following form :

DivS=pdv/dt , divv=0 , S=-pl+n.A;+ (A’ +PA, (1)
where :
S - stress tensor p - oil density
DivS - stress tensor divergence t  -time
v - velocity vector p - pressure
divv - velocity vector divergence I - unittensor

Ajand Ay -two Rivlin-Ericksen strain tensors of three material constants 1, ., 3,
where :
Mo - dynamic viscosity o, B - pseudo-viscosity constans of oil
The coordinates of Ay, A, tensors are described by the symmetrical matrices defined as follows :

Aj=L+ LTT .
Ar=grada+(grada) +2L L )
Lyt ov
a=L0Lyv -
ot
where :
L - tensor of oil velocity vector gradient s a - acceleration vector
LT - tensor with matrix transpose s~ grad a - acceleration vector gradient

The product of the Deborah and Strouhal numbers, marked DeStr, is assumedof the same order as the product
of the Reynold's number, relative radial clearance and Strouhal number, marked ReyStr. Moreover : DeStr >> De = aw/n .
where : y - relative radial clearence, and o - angular speed of cylindrical bearing journal.

The following is additionally assumed :

rotational motion of the journal with the tangential speed U = wR
unsymmetrical, non-stationary oil flow through bearing gap height
non-stationary viscoelastic properties of oil

constant oil density p

the characteristic gap height h(@,z,t), in the cylindrical bearing

no slip between bearing surfaces

R - radius of cylindrical journal

2b - length of the bearing in question.

VVVVVVVYYV

Neglecting the terms for the relative radial clearance y = &/R = 107 in the basic equations defined in the cylindrical coordi-
nate frame : @, r, z, as well as taking into account the above mentioned assumptions, one can obtain :

ov ov o’y
Wy _ L@ﬂ_oi( JE o

o pRap p ol o ) paer’ Y
0:% @

3
12 A
10 v v, (6)

R op or oz
for:0<@<2m , -b<z<+b , 0<r<h , where: h - characteristic gap height.

The symbols: v, vy, v, represent the respective oil velocity vector components : tangentially directed, that along gap height, and
longitudinally directed. The following relationships between the dimensional and dimensionless quantities are assumed [12 , 13] :

r=R(1+yry) , z=bz; , t=tst; , h=¢h; , V(pZIZJV(pl » vi=Uy vy 7
v;=(U/L) Va1 » P=PoPl » Po=UNoR/E> , L| =b/R M
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Reynolds number, modified Reynolds number, Strouhal and Deborah number are assumed in the following forms :
Re =pUe/m, , Rey = pooez/no , Str=R/(Uty) , De=pU/(M,R) )
hence : DeStr = B/(Noto) = Des , ReyStr = pez/(noto) = Res (8a)

For the commorily applied in%libitors the coefficient [ satisfies the inequality: 0 < /t, <m,. Values of the coefficient § vary
from 0.000001 Pa-s” to 0.01 Pa-s”. The dimensionless symbols are marked with the lower index "1". The equations (3) + (6) take
the dimensionless form :

ov ov v
Res—2 :—apl +i 2 |+ Des (p12 9)
o, 0 or | or ot
0= (10)
arl
3
ResVa _ P O [Vy | 1. O Va (1)
ot, oz, or| or ot,or;
avcpl vy 1 vy,
+ +—2 = (12)
o0 o, 12 oz
for:0<e<2n , -1<z1<+1 , 0<r<hy
GENERAL AND PARTICULAR SOLUTIONS
A new variable is now introduced :
y=rN L N=+ [ReS oo gD (13)
2\ t t
and solutions are assumed to have the form of the following convergent series [5] :
2
Des Des
Vo1 = Veos (Xs(Ple)—i't_V(plZ (Xs(Ple)+[t_] V2z (Xa(P>ZI)+ --------- (14)
1 1
2
Des Des
Va = VZOZ(X’(P’ZI)+t_VZIZ(X’(P’Zl)+ t_ VzZZ(Xs(Pszl)+ """"" (15)
1 1
D Des )’
€S €S
Vil :VrOZ(Xﬂ(P>Zl)+t_vrlE(X9(P’ZI)+ t_j Vios (9. Z)) e (16)
1 1
Des
P =D (9.2, ¢, )+t—P11((P,Zl,t D+ —j P (@, 2y, 1)+ (17)
1 1

for:t;>0 , 0<Des<<1 , (Des/t})<1

In the equations (9) + (11) the derivatives respective to the variables tj, rj are substituted for the derivatives relative to the
variable %, by using the relationships given in App. 1. Therefore the variables t, r| are substituted for the variable %. Now the
series (14) + (17) are introduced to the equation system (9) + (11). Next, the terms multiplied by the parameters of the same
power, (Des/t;)", are successively compared fork =0, 1, 2, ... . Hence the following sequence of ordinary differential equations
is obtained:

2
d Voox +2y dV(DOZ :Laplo (18)
dxz dy N? ¢
szzOZ +2Xdeoz _ 1 Jpyo (19)
dy? dy N? oz
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sz(plZ £y dv s 4 _ 1 Opy, sz(poz 1 sz(pOZ
dxz Y 01X N2 o0 dxz 2 dxz
d*v,s +2Xd A | gy o= 1 dpy, szzOZ 1 szzOZ
dX2 N2 azl dXZ 2 dXZ
dX2 dX 02% N2 a(P dX2 2 dX3

d’v,s 0y Va2r g _ 1 9py, ) vy 1 vy
dy? v T N ey ot 27y

and so on.

The general solutions of the differential equations (18), (19) are of the following form :

Voo(X-9,21) = Co1vo1(X) + Cepavor(X) + Vo3 (X.P,21)
V20s(X0,21) = Co1vor(X) + Cavoa(X) + V203 (X90,21)

where: Cy1 , Cq2 , C;1, Cyp are integration constants. The particular solutions of the uniform
and non-uniform ordinary differential equation are as follows :

NE 2
=—-ocrf , =1, erf(y)=— |e7¥d
Vo) =-erf(0) 5 Vo (1) au)ﬁ& e

VT Opy v Op,
s = —0Q , z P, = — —OQ
V03 (X-9,21) N (X) V,03 (9.2 N o7, (X)

x 2 x 2
Qy)= Je’“ erfy dy, — erfy Ie’“ dy,
0 0

where : 0 <y <x=1r|N

For t;—0, one obtains N— e, hence y— oo . If t}— oo, then N— 0, as well as for r; > 0 one obtains x— 0 .
Ift; > 0 and r = 0 then % = 0. The following limits are true :

VO](X)ZT[0~5/2 for: x—>o0 , t;—0 , N—oo

voi(x) =0 for:x—=0 , 1=0, 0<t;<tp<eo , N>0
Vis(x) =0 for:x—0 , 11=0, 0<t;<ty<eo , N>0 ; where:1=0,z
voi(x) =0 for: x—0 , 11 >0 , t;—>e0 , N0
I o
Vo3 =————— for:x—=0, 11>0, tj—>ee , N0
2 op
2
Vz03:_%%110 for: x—0 , 11>0 , tj—e0 , N0

The cylindrical journal executes only the rotational motion in the ¢ direction. Hence the oil velocity component
on the journal surface in the tangential direction is equal to the velocity of the cylindrical surface of the journal.

Voos(X =0)=1, v,05(x =0)=0 , vyox() = 0) = Str - (dh,/0t;)
fOI‘ZI'1:O<:>X:O , 0<t)<ty<oo , N>0

Voos(X =M) =0, vos(x =M)=0 , vos(x =M) =0
for:r1—>h; & x—>Nh; =M |, 0<t;<t;<eo , N>0
where : h = €h; - gap height , h;- dimensionless gap height
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(22)

(23)

24

(25)

(26)
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(28)

(29)

(30)

The longitudinal component of oil velocity on the journal's cylindrical surface equals zero because the journal is motionless
along the z-axis. However the shaft undergoes pulsatory changes of its location with time along the gap height direction. Hence
the gap height is time dependent. Thus, the following boundary conditions appear :

€2))

The cylindrical sleeve surface is motionless in the tangential, longitudinal ( axial) and radial directions. Viscous oil flows
around the sleeve. Hence the oil velocity on the sleeve surface equals zero in the tangential and longitudinal directions as well as
in the gap height direction r. Thus the following boundary conditions are valid :

(32)



Applying the conditions (31), (32) to the solutions (24), (25) one obtains :

C(pr()l(X = 0) + C(p2 + V(p03(x = 0) =1 for: 1, = 0
Cq)IV()l(X = M) + C(p2 + V(pOS(X = M) =0 for: n= h1
Cavor(x =0) +Cp +v,03(x =0) =0 for:r; =0
Cavo(X =M) +Cpa+v3(x =M) =0 for:1r;=h

(33)

If the limits (29), (30) are taken into account the set of equations (33) yields the following solutions :

1+v, ;M M
o LA) , C,, :_VZL() . Cy
Vo1 (M) Voi

Now, to the right hand sides of the equations (20), (21) the solutions (24), (25), (26), (27), (28), (34) are substituted.
Hence the general solution of the equations (20), (21) obtains the following form :

=1,C,=0 (34)

Vois (1:9,21) =C 3V (00) + Cou Via (0) + V13 (,9,21) (33)
Vs 09,21 =C 3V () + CLyvin () + Vo3 (0,9,2) (36)

where : Cy3, Cpa , C3, C,q - integration constants
03> ¢ 3 g

The particular solutions are as follows :

Vi (0) = Xe_XZ (7
x
V() =xe " I%e’x’zdxl (38)
5 X1
(14 _[ oL 0
Voi3(0:21.Cy1) = V11(X) Co 01O +2)—| 1+ 5 Vo3 (L) |+ 8(p Vi (u)dy +
x
X1 apll
+v 1+= — + -C +2) v d
12(X)OI[ 2} o [ o3 (1) T2~ Corti (i +2) v ()d,
(39
~ " (14 % [ ] p1 d
vzl3(X521’C(pl)_vll(X)_[ Canitu+2) +7 e Va3 ()] + 2 5, Vi (r)dy, +
0
x 2
X1 ). d 1 opy,
+v 1+ = " —|V,,is x|+ —=—-C 0. (t; +2) vy ()d
12(X)6[ [ 2} Xmz[ 03 X1 ] N2 oz, 1X1 0 1 01)49%
for:0<6<y <%
The solutions (35), (36) represent corrections to the components of oil velocity because of its viscoelastic properties.
On the basis of the solutions (37) + (39) for x— 0, r;— 0, N > 0 the following limits are achieved :
li li Xz)]’ L o dy, =-1 40
im v = lim e oz e Jta= (40)

The following limits are also true :

VII(X):O fOI‘:X—)O,I'le,0<t1<t2<°°,N>0
vio(x)=-1 for:x—0 , r;=0, 0<t;<t<eo , N>0 (41)

Vi) =0 for:x—0 , r1=0, 0<t;<tp<oco , N>0 ; wherei=0, z
The corrections to the oil velocity components cannot have the same boundary conditions as those previously assumed (31),
(32) for the cylindrical journal and sleeve in the longitudinal and tangential directions. Therefore the corrections satisfy the

following boundary conditions :

V(plZ(X:O):O , VZ]z(XZO):O for: 1y :O@XZO , O<t1 <t <oo | N>0

42
V(plZ(X:M):O s Vzlz(X:M):O f0r1r1—>h1<:>X%Nh1§M , 0<t1<t2<°° 5 N>0 (“42)
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Applying the conditions (42) to the general solutions (35), (36) one obtains :
Coavii(X = 0) + Ceavia(x = 0) + vgi13(x =0) =0 for: 1 =0
Cosvii(x =M) + Cpavia(x = M) + voi3(x =M) =0 for:1; =h

43
Cuavii(X = 0) + Coavia(x = 0) + v3(x =0) =0 for: 11 =10 )
Cavii(X =M) + Cyyvip(X =M) + v,i3(x =M) =0 for:1; = h;
If the limits (41) are accounted for the set of equations (43) yields the following solutions :
. =h,N .
Cy :——V‘B(’)C ! ) , Ciy=0 for:1=0,z (44)

Vi (X = th)
The general solutions of the oil velocity components (15), (14) at making use of the solutions (25), (35), (36),
can be presented in the following form :

2
Des Des
ol = “orVorlX 02 T Vo3 P52 ) +— L3 Vi K oa V1200 T Vo3 (00,2, o
Vor = CorVor 00+ Cop + Voo (10.20) += [CosV1100 +C oy Vin (0 + Vors (19.2)|+ O t (45)
1 1

Des Des
V1 =Cv (0 +Cpp +V,03(0:0,21) +t_[cz3V1 10D+ C v (0 + V5 (Xs(P,Zl)]"‘ O(t—] (46)
|

1
If tj—oo then N—0 , hence y = r{N—0.

For further analysis it is worthwhile to find the following limits :

lim N Vll(x)—thzxe ) (47)
%—>0,N—>0
x
lim NZ2v = lim N2ye™ — et |dy,=0 48
x—0,N—0 IZ(X) x—>0,N—0 X é[( Xl ( )
for:0<y1<hN , 0<tj<eo , 0<r;<h; , -1<z1<+1 |, 0<@<2m

VALUES OF OIL VELOCITY AND PRESSURE
AT NON-STATIONARY NEWTONIAN LUBRICATION

If viscoelastic properties of oil are neglected, then on the basis of the solutions (45), (46)
the oil velocity components in the ¢ and z directions, at non-stationary flow, are of the following form :

‘/_ plO Q(X Nhl)} erf(rlN) . ‘/; aplO Q(X:er) (49)

5r5Z 5t +1_ 1_
Voo (@:17,21, 1) = { N2 8o erf(h,N) 2N° 0o

Vn %Q(XZNhl) erf(rlN) Jn Po 0

N2 =N
2N? oz, erf(h]N) IN? oz, (x=Nr) (50)

V05 (@,11,21,1)) =

for:0<tj<eo , 0511 <h; , -122151 , 0<9<2n , 0o <x1<x=riN<hN=M , h;=hi(9,z1)

The oil velocity components (49), (50) are now inserted to the continuity equation (12)
and next the equation is integrated respective to the variable ry.

The oil velocity component vyos in the gap height direction is not equal to zero on the cylindrical journal surface due to
impulse displacements of the shaft. Therefore by applying the condition vz = Stroh/dt; for r| =0, the following form of this oil
velocity component is obtained :

oV 1 fov oh
VTOZ ((p, [‘1, Zl ) tl) - _I (POE dl’2 __2 J z0x dl’2 + Stl’—l (5 1)
o 00 Lo 97 ot

for:0<tj<oeo , 0 <r;<h; , -1<z;1<+1 , 0<0<2m , 0 <y <yx=riN<hN=M

The oil velocity component v,y equals zero on the sleeve surface. Integrating the continuity equation (12) along the direc-
tion r and applying the boundary condition (32) for r; = hy to the oil velocity component in the gap height direction, and making
use of the conditions (29) one obtains the equation :

h h
0 j dr, + -2 (v dr = surh
— |V 1, +—— |V, oxdr, = Str—
@0z % B I z0x % (52)
o9 L 0z, § ot,
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The solutions (49) + (50) are now inserted to the equation (52). One then obtains the following modified Reynolds equation :
o -
erf(r,N)dr
7 o | N ' o1
(=N~ [l =N, [P0
ON? 8¢ || erf(h,N) ; 3l0)
L - 4
erf (r N)dr
+ ‘/E 0 6[ 1 1Q(X:Nh )—th(X:Nr )dr % = (53)
2N’L} 0z, erf(h,N) ! ; VR bz,

_I erf(rlN) dr, +Str @
erf(h,N) ot,

for:0<r<rj<h; , 0S@<2n , -1<z;<+l , 0Stj<eo , 0<y;<x<hN , 0<N(t))=0.5Res/t;) <o

The modified Reynolds equation (53) defines an unknown pressure function pyg (@, z1, t1). If the dimensionless time t;
approaches infinity, i.e. the coefficient N approaches zero, then the equation (53) approaches the classical Reynolds equation

(see App. 2):
13 P1o h3 IPio —6 ch, —12Str% (54)
6(p op L2 6z1 0z, oo ot,

for:0<@<2m , -1<z1<+1

The dimensionless time-dependent height of the bearing gap height, at accounting for its periodical disturbances,
may be described by the following relationship :

hy=[1+A-cos@+s-z-cos(q)]-f(t)) ; f(t;)=[1+c-exp(-ty - t; - ®y)] (55)
where : s = %tan(y)— skew coefficient.

The symbol w, stands for an angular velocity given in [s” ] which describes the disturbances in the gap height direction for
unsteady oil flow through the cylindrical bearing gap height, and "c" stands for a coefficient used to control values of gap height
changes. If ¢c- value is positive the bearing gap height is increased, if negative - the bearing gap height is decreased relative to the
classical gap height. If t| approaches infinity then the gap height equation (55) approaches the classical gap height equation
independent on time during stationary motion.

PRESSURE CORRECTIONS FOR VISCOELASTIC OIL PROPERTIES

Particular solutions of oil velocity components in the directions ¢ and z; due to viscoelastic properties in non-stationary
motion are contained in the solutions (14) , (16) multiplied by the term DeStr/t;. By making use of (38), (39), (44) and the
boundary conditions (42), the corrections of the oil velocity components (35) , (36) can be transformed to the following forms :

Des 4 22 | O N
_vwlz((Plearlstl):_Berle Nt P jXQI(x)dx+
1 pe 0 nN
N2 hN
X - [+ 22 00,60 jxle 20,0y +
N
nN

+Q,0=1N) lee L0, (0dy |-

hyN

2 a1310
Q. () (NQ>y)dy + (56)
Jrert(h N) 09 £ 1005 ()Q>x)dy,

h,N LN

—Q, (=0 N) [Q;00Q)dx+Q (x =1 N) [Q;(0Q()dx |+
0 0

SBNzrle_rlzN2 by 1N
- Q hN) |Q;(0dy - (x =1, N) |Q;(x)d Q, (0, (y)d
TroeterthN) (= )j 3007, - (1, =1N) j 3(0dy, - £ L0 (0 dy,
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Des 43 1 N2 | Op
— Vs (9.2,,11, 1)) :_Bz_erle R jXQ (pdy +
1 pe Ll aZl oN

aplo[ b

N2
+7(h12 _rlz)Ql (= th)}

[0, (0dx - (= hyN) jxe 0, (r)dy +
1
(57)

I Q, ()Q; ()Q( )y, +

nN
: ] 2 Py
nN

+Q (1 =1N) jxe L0, ()dx Tot ) 2
1 1

hN nN
—Q, (% =hN) Iﬁg(x)Q(x)dx+Ql(x=r1N) fﬁg(x)Q(x)dxH
where : 0
2 L
j—e"‘ dy, Qz(x)E(wx—I%ex J.edeXI_l] , Q()=7"(+2)e 6B
5 X1 2 0
and: 0<tj<eo , 0<1p<ri<h; , -1521<1 , 0<0<2m , 0Ly <y=rIN<hWN=M

The corrections (56) , (57) are now inserted to the continuity equation (12)
and then both its sides are integrated respective to the variable r.

From the viscoelastic oil properties it results that the corrections of the oil velocity component along the gap height must equal
zero on the journal surface at r; = 0. Hence the correction of the oil velocity component along the gap height is as follows :

o 1 o)
Vis(9.20.5,4) = — J-V(plz((pﬁzlﬂrlﬂtl)drl t—= _[Vzlz((Pszlarlstl)drl (39)
ool ¢ L 0z, | g

The velocity vector corrections cannot change the boundary conditions (31) , (32) which are assumed on the journal and
sleeve surfaces in the direction of the bearing gap height. Therefore the oil velocity vector corrections in this direction are equal
to zero on the sleeve surface at r;=h. By applying this condition to the solution (59) the modified Reynolds equation can be
obtained :

h;N
0 e -
0 J%pu ,[1 a [ .[XQ dX, ’Q (X_rl )} dr; + 4(1 e )th (X th) +

op | Op 0 N
h hyN
1 & 1 b M 1 202
Tt Py e .[XQI(X) dy 17 (x = ;N) | dy +_(1_e_h] A )hlel(X =hN)|r=
L} 0z, | 0z, | § EN 4

TN h, , h,N h,N
——— fre "V [Q (o =1N) jsz (0dyx = Q,(x =1 N) jsz (0)dx - jQ (02, (x)dx]drl

0 nN
h;N
2 9 | dpy Y (60)
re ! Q, (%) Q5 () Q) dy +
J_erf(hN) 20| 30 6[1 [L 1005 () Q00 dx

nN 1— —hN? h,N
+O,(=1N) [Q (02020 dx} dr; - ;TQI (1 =hN) [0 Q) Q0 dy |+
0 0

2 18 |opg | _owe ™
O fne™™ Q0 Qs (0 Q) dy +
J_erf(h N) 12 0z, | oz, 6‘-1 II'L 1 ’

nN 1— ~hiN? hN
+O,00=1N) Q02 () Q) dxjdrl - ;Tﬁl (L=hN) [ 0Q0Q0 |+
0 0
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0 8p h N2 e an 2
Srve e _[rle_rl N jgz () dx +,(x =1 N) _[Qz (%) 7e *dy | dr +
a(P a(p 0 nN 0
1- e_h'zNz huf 2
- ——— i =hN) [Q,00)xe Fdy [+ (60)
2N 0
h hN h,N
1 0 |opy| . —on?| | ! 2
— L_Z]G_Z] Ello Jr]e N rl'LQZ(X) dy + Ql(x = rlN) 6[92(%) xe * dy [dg +
1— e—th2 hN

———O,(x=h\N) [Q,(x)xe " dy
N2 1 1 6[ 2

for:0<m<r<h; , 0<@<2m , -1<z; <+l , 0<t; <o , 0<y;<x<hN , 0<N(t)=0.5(Res/t})’’ <o

The modified Reynolds equation (60) determines unknown functions p1(®, z1, t;) of the corrections of pressure values,
resulting from viscoelastic oil properties during non-stationary motion.

NUMERICAL CALCULATIONS

The dimensionless distributions of values of the pressure p( and its corrections pyy, p12, ... in the lubrication area are determi-
ned by means of the Reynolds equations (53) , (60) with using the gap height (55). On the boundary of the area, dimensional values
of the pressure and its corrections obtain the value of the atmospheric pressure p,.. The lubrication area and the gap height are
shown in Fig.2. In order to determine a dimensional value of the gap height the dimensionless gap height indicated in Fig.2 should

be multiply by the radial clearance €. The lubrication area is defined by the following inequalities : 0 <@ <m , -1<z; < 1.
hy hy
4 to =0.001 s 4

W,=02¢s

Fig. 2. The example lubrication area with the time-variable height of lubrication bearing gap

The values of the dimensionless time t| increasing from 1 to 2000 and even more express the time of departing from the
instant of impulse occurrence of the force acting on friction unit. The impulse which causes the gap height decreasing was
denoted with the negative value of the gap height change coefficient ¢ = -1/4, and that causing the gap height increasing — with
the positive value of that coefficient c = 1/4.

In order to calculate definite hydrodynamic pressure values the following input data were assumed :

¢ relative radial clearance : y =107 * shaft radius : R =0.08 [m]

¢ oil viscosity : N, = 0.03 [Pa-s] ¢ dimensionless bearing length : Li=1

+ oil pseudo-viscosity coefficient: B = 6-10" [Pa-s?] * skewness coefficient : s =0.05

¢ oil density : p =900 [kg/m’] + angular speed of sleeve perturbation : ®,=0.2 [s”']

¢ shaft angular speed : n = 1500 [rpm] ¢ characteristic time : t, =0.001 [s]

+ relative excentricity : A =05 * time intervals : t; =1;100 ;10000 ; oo

For the so assumed data and on the basis of the Reynolds equation (53) the dimensionless values of pressure distribution were
numerically determined for the gap height defined by the equation (55) with the use of the method of finite differences and the
software Mathcad 11 ( Fig. 3,4, 5, 6 ). In order to obtain real dimensional distributions of pressure yalues, the calculated dimen-
sionless values of pressure distributions should be multiplied by the dimensional coefficient URM/€”. The distributions of dimen-
sionless hydrodynamic pressure values were presented for the dimensionless time intervals t; = 1; t; = 100; t; = 10000; t; = o and
the bearing gap height change coefficient ¢ =+ 1/4.
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Fig. 3. Distributions of the dimensionless hydrodynamic pressure in the cylindrical bearing gap for the dimensionless time t;=1 counted from the impulse
instant and for the gap height change coefficient ¢ = +1/4 ( lubrication gap height increased due to impulse load), and for ¢ = -1/4 ( lubrication gap height
decreased due to impulse load) at accounting for a skew of the journal
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Fig. 4. Distributions of the dimensionless hydrodynamic pressure in the cylindrical bearing gap for the dimensionless time t;=100 counted from the impulse
instant and for the gap height change coefficient ¢ = +1/4 (lubrication gap height increased due to impulse load), and for ¢ = -1/4 (lubrication gap height
decreased due to impulse load) at accounting for a skew of the journal
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Fig. 5. Distributions of the dimensionless hydrodynamic pressure in the cylindrical bearing gap for the dimensionless time t;=10000 counted from the im-
pulse instant and for the gap height change coefficient ¢ = +1/4 (lubrication gap height increased due to impulse load), and for ¢ = -1/4 (lubrication gap
height decreased due to impulse load) at accounting for a skew of the journal
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Fig. 6. Distributions of the dimensionless hydrodynamic pressure in the cylindrical bearing gap for the dimensionless time t; = e counted from the impulse
instant and for the gap height change coefficient ¢ = +1/4 (lubrication gap height increased due to impulse load), and for ¢ = -1/4 (lubrication gap height
decreased due to impulse load) at accounting for a skew of the journal
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For the same data on the basis of the equation (60) the numerical calculations of the dimensionless values of hydrodynamic
pressure corrections which result from oil viscoelastic properties, were performed. Their results are presented in Fig. 7, 8, 9 for
the dimensionless time intervals t; =1, 2, 10. For t; = 100, t; = 10000 and t| = o=, the calculations of dimensionless values of the
hydrodynamic pressure corrections were also performed, but they have not been attached here as being negligible. To obtain
dimensional values of the pressure corrections the dimensionless values shown in Fig. 7, 8, 9, should be multiplied by the
dimensional coefficient URN/€".

Des Des
— P —Pn

t . t
LA Dt—fsp11:0.216 14

0.2

0.1

Fig.7. Distributions of the dimensionless values of the hydrodynamic pressure corrections resulting from viscoelastic properties of oil in the cylindrical bear-
ing gap for the dimensionless time t; = 1 counted from the impulse occurrence instant and for the gap height change coefficient ¢ = +1/4 (lubrication gap
height increased due to impulse load), and for ¢ = -1/4 (lubrication gap height decreased due to impulse load) at accounting for a skew of the journal
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— P — P
4 L1

0.24 0.2

0.14 0.1
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Fig.8. Distributions of the dimensionless values of the hydrodynamic pressure corrections resulting from viscoelastic properties of oil in the cylindrical bear-
ing gap for the dimensionless time t; = 2 counted from the impulse occurrence instant and for the gap height change coefficient ¢ = +1/4 (lubrication gap
height increased due to impulse load), and for ¢ = -1/4 (lubrication gap height decreased due to impulse load) at accounting for a skew of the journal
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Fig.9. Distributions of the dimensionless values of the hydrodynamic pressure corrections resulting from viscoelastic properties of oil in the cylindrical bear-
ing gap for the dimensionless time t; = 10 counted from the impulse occurrence instant and for the gap height change coefficient ¢ = +1/4 (lubrication gap
height increased due to impulse load), and for ¢ = -1/4 (lubrication gap height decreased due to impulse load) at accounting for a skew of the journal

In Fig. 6 one can observe that when a load impulse occurs sufficiently far in time from the impulse occurrence instant, i.e.
when t;— oo, then the distributions of pressure values approach the pressure distribution identical as regards its values and shape,
both at the impulse increasing the gap height ¢ > 0 and that decreasing the gap height ¢ <0, which can be also achieved from the
classical Reynolds equation (54).

From the analysis of the pressure corrections (due to viscoelastic oil properties) it results that only in the initial instant t; = 1
after impulse occurrence (Fig.7) the corrections really influence the total pressure value. At the so assumed time instant t; = | the
share of the corrections of pressure pyj in the value of the basic pressure pjg amounts to about 6% (at the gap height decreased
due to impulse load, ¢ = -1/4) and to about 18% (at that gap height increased due to impulse load, ¢ = +1/4). The values were
calculated for the relevant maximum values shown in Fig. 3 and 7.
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DISCUSSION OF RESULTS AND CONCLUSIONS

O Numerical analysis of hydrodynamic pressure values during the unsteady impulse loading of radial slide cylindrical bearings
reveals that in the first time interval counted from the instant of impulse load occurrence very high changes of the hydrody-
namic pressure may appear, and also very high changes of bearing loads in comparison with their load carrying capacities
which shall occur at no impulse load.

O Inthe case if due to an impulse load the journal changes its location relative to the sleeve in such a way that the lubrication gap
height increases (left column of Fig. 3, 4, 5 and 6) then the bearing will suffer sudden drop of its load carrying capacity by
a few dozen percent. As time runs after the impulse load occurrence the hydrodynamic pressure in the bearing gap height
increases up to its value occurring under regular load (without any impulse).

O In the case when an impulse load results in decreasing the gap height (right column of Fig.3, 4, 5, 6) then an increase of
pressure values appears in the initial phase of impulse loading and next, as time runs, the pressure decreases down to the
hydrodynamic pressure value relevant for the bearing under regular load (without any impulse).

O The mixed case may also happen when the journal displaces itself due to simultaneous occurrence of two impulses of
opposite tendencies leading to the decreasing and increasing of the gap height relative to its initial location. Then, rises and
drops of hydrodynamic pressure in comparison to its initial value, may happen. Such hydrodynamic pressure changes may
lead to an accelerated wear of elements of the cylindrical slide friction units in question.

O The accounting for the impulse-load-induced pressure changes in designing the cylindrical slide friction units, would contri-
bute to elimination of engine failures resulting from seizure of cylindrical slide bearings in the service conditions in which
impulse loads often occur. Transport safety would be this way improved.
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The equation (53) at N—0 approaches the following form :
2\ hy 2
w5 R e
¢ 0™ 0 ? (A2.4)
1’12 hy hy 2 0 hy
SRINGES ] LT TP | R SR O
12 oz, 2 )0 I 2) e 0| J\

After realisation of the calculations the classical Reynolds equation is obtained in the form of (54) for a cylindrical system.
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NOMENCLATURE

a - acceleration vector [m/s2]

A, - Rivlin-Ericksen strain tensors [s-!]

A, - Rivlin-Ericksen strain tensors [s-2]

b - a half of bearing length [m]

c - coefficient for controllling gap height changes
C1,Cpn, Cpi,Cu, Cyi, Gy, Cy3, Cyy - integration constants
De - Deborah number

h - gap height in the cylindrical bearing [m]

h, - dimensionless gap height

I - unit tensor

L - tensor of oil velocity vector gradient [s-1]

LT - tensor with matrix transpose [s-!]

L, - dimensionless bearing length

N - dimensionless number

- estimate of all remaining corrections of velocity
and pressure components

p - pressure [Pa]

Po - characteristic value of hydrodynamic pressure [Pa]

P - total dimensionless hydrodynamic pressure

Pio»>P11- P12 - dimensionless corrections of hydrodynamic
pressure

P - load [N]

r - radial coordinate [m]

ry, - dimensionless radial coordinate

R - radius of cylindrical journal [m]

Re - Reynold's number

S - skew coefficient

S - stress tensor [Pa]

Str - Strouhal number

t - time [s]

t, - characteristic time [s]

t, b - dimensionless time

8] - tangential journal velocity [m/s]

v - velocity vector [m/s]

Vo» Vrs Vy - dimensional values of tangential, radial and axial

components of velocity vector, respectively [m/s]
- dimensionless values of tangential, radial and
axial components of velocity vector, respectively
Voox s Viox » V205 - dimensionless components of oil velocity vector,
without accounting for changes due to disturbing
impulse
Voixs Vriz s V213 » Veu » Viox » Vox - dimensionless corrections of oil
velocity vector components, resulting from
disturbing impulse impact on a bearing at
sufficiently close instant from the impulse
occurrence

V(pl > Vils Vz1

Vio» V2o - parts of dimensionless velocity vector
components, dependent on shaft rotation, without
accounting for disturbing impulse action

Vi, Vi2 - parts of dimensionless velocity vector
components, dependent on shaft rotation, with
accounting for disturbing impulse action

V03 » V203 - parts of dimensionless velocity vector
components, resulting from pressure gradient
influence, without accounting for disturbing
impulse action

Vi3> V213 - parts of dimensionless velocity vector components,
resulting from pressure gradient influence, with
accounting for disturbing impulse action

z - longitudinal coordinate [m]

Z - dimensionless longitudinal coordinate

o,p - pseudo-viscosity constants of oil [Pa-s2]

Y - skew angle

- a value close zero

- radial clearance

- characteristic value of oil dynamic viscosity [Pa-s]
- relative eccentricity

- oil density [kg/m3]

- tangential coordinate

- dimensionless coordinates

- relative radial clearance

- angular journal velocity [s1]

- angular speed of sleeve perturbation [s-1]
Q. Q;, Q,, Qs - auxiliary functions

)

SccEexR6T >3 0>
x
=
[ )

[9)
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