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INTRODUCTION

Underwater Robotic Vehicles (URV) play an important role
among various technical means used for searching seas and
oceans. The unmanned floating units fitted with propulsors and
capable of maneouvring are designed to realize tasks at the
water depth from a dozen or so to several thousand meters.

Robot’s motion of six degrees of freedom is described
by means of the following vectors [1, 3] :

(1)

where :

ηηηηη – vector of location and orientation in an inertial re-
ference system

v – vector of linear and angular velocities in a hull-
-fixed reference system

τττττ – vector of forces and moments acting on the robot
in a hull-fixed reference system.

Contemporary underwater robots are often and often equip-
ped with the automatic control systems which make it possible
to execute complex maneuvers and operations without any in-
tervention of operator. The main modules of such control sys-
tem are shown in Fig.1. Its crucial element is the autopilot which
– on the basis of comparison of a current location of controlled

object with its set values – determines forces and moments to
be generated by the propulsion system so as to make the ob-
ject’s behavior complying with that assumed. The thrust vec-
tor corresponding with them is computed in the thrust distri-
bution module and sent to the propulsion system as a control
quantity.

The control laws implemented in the autopilot , which make
it possible to determine propulsive forces and moments, have
a general character; they do not take into account constraints
put on maximum and minimum values of the thrusts which
can be developed by particular propellers. It can cause that the
obtained solution would be unfeasible for the propulsion sys-
tem. Such situation may worsen control quality and cause that
robot’s behavior would greatly differ from that assumed.
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ABSTRACT

The paper deals with synthesis of automatic control system for an unmanned underwater
robotic vehicle. The problem of determining permissible propulsive forces and moments
necessary for optimum power distribution within a propulsion system composed of azi-
muth propellers (rotative ones). To allocate thrusts the unconstrained optimization me-
thod making it possible to obtain a minimum-norm solution, was applied. A method was
presented for assessing propulsion system capability to generate propulsive forces (set
control inputs). For the case of lack of such capability an algorithm was proposed making

modification of their values and determination of feasible propulsive forces (i.e. permissible control
inputs), possible. A numerical example which confirmed correctness and effectiveness of the proposed

approach, was also attached.
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Fig. 1. Schematic diagram of a control system for underwater robot
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Therefore a two-phase procedure
of power distribution is proposed (Fig.2).

In the first phase propulsion system capability of genera-
ting the set control inputs τττττd would be assessed and the permis-
sible control inputs d'τ  (i.e. such values of forces and mo-
ments which the propulsion system is able to generate) would
be determined. Their values would be so calculated as – ensu-
ring operation of propellers to a saturation limit at most – not
to cause a drastic perturbation in the robot’s motion control
process.

In the second phase on the basis of d'τ  the thrust vector f
would be calculated, i.e. the allocation of thrusts to particular
propellers would be performed.

THRUST ALLOCATION PROCEDURE
FOR HORIZONTAL MOTION

The solution used in majority of conventional unmanned
underwater robots is a structure having longitudinal and trans-
verse metacentric stability which ensures motion with small
trim and heel angles. Hence the basic motion of such objects is
their translation in horizontal plane at changing depth of im-
mersion, being a motion of four degrees of freedom.

It makes it possible to split the propulsion system
into two independent subsystems, namely :

The first produces the propulsive force acting along verti-
cal axis, and the second ensures translational motion along lon-
gitudinal and transverse axes and rotation around vertical axis.

In this paper an underwater robot is considered fitted with
the propulsion system having the arrangement of propellers
shown in Fig.3. Its vertical motion subsystem consists of two
vertically arranged, ducted screw propellers. To assess capabi-
lity of the subsystem to generate the set force Zd is not a diffi-
cult task as its absolute value cannot exceed the sum of maxi-
mum thrusts developed by the propellers [4].

The horizontal motion subsystem consists of four spatially
arranged azimuth propellers producing forces along longitudi-
nal and transverse axes as well as moment of force in vertical

axis. To assess capability of the subsystem to generate the set
forces Xd and Yd as well as the moment Nd is a complex task
as each of the propellers contributes to generating both propul-
sive forces and propulsive moment. Therefore it is necessary
to have a procedure making it possible to assess whether the
set control inputs are feasible, and in the case if the subsystem
is not capable to produce them to modify them in such a way
as to ensure their feasible values. Hence further considerations
are limited to plane horizontal motion of the robot.

Let τττττd = [τd1 , τd2 , τd3]T = [Xd , Yd , Nd]T stand for the
vector of set propulsive forces and propulsive moment,
and f = [f1 , f2 , f3 , f4]T - for the vector of thrusts developed by
the propellers.

Moreover let the components of the vectors
  be constrained by the following constraints :

(2)

(3)

resulting from design parameters, arrangement and orientation
of the propellers within the hull of the robot.

The vector of forces and moment, τττττ , is associated with the
thrust vector f by means of the following relationship [1,2] :

τττττd = T(ααααα)f                                   (4)

where :

T(ααααα) – arrangement matrix of propellers :

(5)

ααααα = [α1 , α2 , ..., α4]T – vector of thrust angles
αi – thrust angle of i-th propeller, i.e. the angle between ve-

hicle’s longitudinal axis and direction of its thrust force
ϕi – orientation angle of i-th propeller, i.e. the angle between

vehicle’s longitudinal axis and the line connecting the
vehicle’s mass centre and the propeller axis

di – distance of i-th propeller from the vehicle’s mass centre.

The quantities αi , ϕi and di are shown in Fig.4.

The propellers are aimed at developing such thrusts which
can ensure generating the vector of set control inputs τττττd = [τd1 ,
τd2 , τd3]T. Allocation of thrust values to particular propellers
is realized in the power distribution module. The problem of

vertical motion subsystem (in vertical plane)
horizontal motion subsystem (in horizontal plane).
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Fig. 2. Schematic diagram of power distribution module

Fig. 3. Arrangement of the propulsion system fitted with six propellers
Fig. 4. Arrangement of 4 propellers in horizontal motion subsystem
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determination of values the thrust vector f on the basis of the
vector of set control inputs τττττd is usually considered as an
unconstrained optimization problem in which a minimum-
norm solution is searched for. The solution has the following
form [1,5] :

f = T*(ααααα)τττττd                               (6)

where :
Moore-Penrose’s pseudo-inverse matrix :

 T*(ααααα) = TT(ααααα)[T(ααααα) · TT(ααααα)]-1

Its practical application is possible then and only then, when
no demand of developing a thrust value exceeding the limit
value (3) by anyone of the thrust propellers is declared. If it is
the case then the set control inputs cannot be generated and
a modification of their values is necessary, i.e. determination of
the vector of permissible control inputs [ ]T

3d2d1dd ',','' τττ=τ .
Together with the vector of control inputs the vector of azi-
muth angles is computed. A way of determining their values is
presented below.

ALGORITHM FOR DETERMINING
THE VECTOR OF PERMISSIBLE

CONTROL INPUTS

Let the robot’s propulsion subsystem ensuring its planar
horizontal motion be consisted of four azimuth propellers of
the following features :

of the same type, hence the thrust maxmax
k

max
i fff ==  for

4,1k,i =
located at the same distance from the mass centre, symme-
trically against the robot’s plane of symmetry, namely :

di = dk = d and ϕ=πϕ=πϕ
2

mod
2

mod ki        for 4,1k,i =
whose thrust angles satisfy the relationships :

at every instant t for 4,1k,i =  and i ≠ k :

(7)

thrust angle change by the value ± ∆α occurs in all the
propellers simultaneously.

By virtue of the above given assumptions and the relation-
ship (4) the forces and moment at the instant t are described by
the following equations :

(8)

(9)

(10)

where :

(To make the mathematical description more clear, the
time symbol t in the notation of the thrust angle α(t) is fur-
ther omitted).

The maximum values of the quantities, possible
to be generated by the propulsion system are as follows :

(11)

An analysis of Eq. (10) shows that the propulsive moment
τ3(α) depends on the thrust angle α through the term sin(α + ϕ),
where the angle ϕ is a time - independent design parameter.

In Fig.5 runs of the relationship sin(α + ϕ) in function of
the angle )2,0( π∈α  are illustrated for some values of the angle
ϕ contained in the interval )2,0( π . They demonstrate that for
a fixed value of the angle ϕ it is possible to determine such
value of the propulsive moment which can be always genera-
ted independently of a current value of the thrust angle α. The
value is further marked τ3max and calculated as follows :

(12)
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τ1[α(t)] , τ2[α(t)]- propulsive forces along longitudinal
and transverse axis, respectively

               τ3[α(t)]- force moment around vertical axis.
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Fig. 5. Influence of selected values of the angle ϕ on sin(a + ϕ) value
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Therefore, by applying the following constraint
onto the propulsive moment τd3 :

(13)

its feasibility is ensured within the entire range
of variability of the thrust angle α.

Values of the propulsive forces which should be developed
by the propellers to generate the moment τ3max independently
of a value of the thrust angle α , are determined by the relation-
ship:

(14)

The reserving of a part of propeller’s output to generate the
force moment τ3max makes that the maximum values of the
forces τ1max and τ2max which can be generated by the propul-
sion system, will be smaller. Their new values marked τ1max
and τ2max, respectively, are now :

(15)

In further considerations it was assumed that :
τd = [τd1 , τd2 , τd3]T

is the vector of set control inputs whose
components satisfy the constraints :

and P is a point of planar coordinates (τd2, τd1).

By analyzing the relationships (8) and (9) it was stated that
the demanded propulsive forces τd1 and τd2 can be simultane-
ously generated by the propulsion system then and only then if
the point P is located inside or at the edge of a geometrical
figure shown in Fig.6. The figure is an asteroid described as
follows :

(16)

whose vertices are the points of the coordinates :
(τ2max , 0)   ;   (0 , τ1max)   ;   (- τ2max , 0)

and (0 , - τ1max) respectively.

However if the point P lies outside the asteroid then the
propulsion system is uncapable to develop set forces. Then the
vector of permissible forces and moment [ ]T

3d2d1dd ,','' τττ=τ
and the corresponding thrust angle α' should be determined.

The schematic diagram of the algorithm for determining
the permissible control inputs d'τ  and the angle α' is shown in
Fig.7. Input data for the algorithm are :

and, the task of determining the permissible values of propul-
sive forces 1d'τ  and 2d'τ  as well as of the thrust angle α' is reali-
zed for the following conditions :

the propulsive moment is kept unchanged : 3d3d' τ=τ
the mutual ratio of the forces : 

2d

1d

2d

1d

'
'

τ
τ=

τ
τ

 is maintained.

The algorithm in question consists of the following steps :

1. Calculate the expression :

(17)

to check whether the point P = (τd2 , τd1)
lies inside or at the edge of the asteroid.

2. If the inequality (17) is true then apply substitutions :

and go to Step 4.
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3. If the inequality (17) is false then calculate :

(18)

4. Apply substitutions :

5. The end of the algorithm.

The proof of Eq. (18) can be found in [6].

Numerical example
Numerical calculations were carried out

for the following data :

τd = [700 N  ;  - 120 N  ;  50 Nm]T

τ3min = 50 Nm  ,  f max = 250 N

ϕ = 30°  ,  d = 0.4 m

The value of τ1max was calculated for the worst case, i.e.
for the angle αmin = 0° :

Step 1
Check if the point (τd2 , τd1) lies inside or at the edge

of the asteroid, i.e. check the condition (17) :

7002/3 + (- 120)2/3 – 7502/3 = 20.6 > 0

Step 2
As the inequality has appeared false the point (τd2 , τd1)

lies outside the asteroid. Calculate – by using (18) – permissi-
ble values of forces and thrust angle :

A. Calculation of the value of the force 2d'τ :
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B. Calculation of the value of the force 1d'τ  :

C. Calculation of the value of the angle α' :

Step 3
Calculation of the vector of permissible control inputs :

To assess correctness of the calculations it was checked if
the ratio of longitudinal and transverse forces was kept un-
changed:

The obtained result showed that after correction the ratio
of the forces was of the same value.

RECAPITULATION

The presented paper concerns synthesis of an automatic
control system for unmanned underwater robot, particular-
ly its phase connected with power distribution in multi-pro-
peller propulsion system. Planar horizontal motion of the
robot executed by means of four azimuth propellers was
considered.

For thrust allocation to the propellers an unconstrained
optimization method was applied. To use the method prac-
tically in a propulsion system of a limited power output
a procedure which makes it possible to assess its capabi-
lity of generating demanded forces and moment was
elaborated.

For the case when the task appears unfeasible an algorithm
was proposed allowing to modify propulsive forces by pro-
portional decreasing their values and determining permis-
sible ones, i.e. the forces which the propulsion system is
capable to develop.

The performed numerical tests confirmed correctness of the
applied approach.

NOMENCLATURE

di – distance from i-th propeller to robot’s mass centre
fi – i-th propeller’s thrust
f – vector of thrusts
K – propulsive moment around longitudinal axis of hull-fixed

reference system
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M – propulsive moment around transverse axis of hull-fixed
reference system

N – propulsive moment around vertical axis of hull-fixed
reference system

p – angular velocity around longitudinal axis of hull-fixed
reference system

q – angular velocity around transverse axis of hull-fixed
reference system

r – angular velocity around vertical axis of hull-fixed reference
system

t – time
T(a)– arrangement matrix of propellers
u – linear velocity along longitudinal axis of hull-fixed

reference system
v – vector of linear and angular velocities in hull-fixed reference

system
w – linear velocity along vertical axis of hull-fixed reference

system
x – x – coordinate of vehicle’s position in inertial reference

system
X – propulsive force along longitudinal axis in hull-fixed

reference system
y – y – coordinate of vehicle’s position in inertial reference

system
Y – propulsive force along transverse axis in hull-fixed reference

system
z – z – coordinate of vehicle’s position in inertial reference

system
Z – propulsive force along vertical axis in hull-fixed reference

system

αi – i-th propeller thrust angle
ηηηηη – vector of location and orientation of vehicle in inertial

reference system
θ – heel angle
ν – linear velocity along transverse axis of hull-fixed reference

system
τττττ – vector of propulsive moments and forces
τττττd – vector of demanded propulsive moments and forces
ϕi – i-th propeller orientation angle
φ – trim angle
ψ – course angle
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On 4 February 2005,
Mechanical Faculty,

Gdańsk University of Technology,
organized the Scientific Conference :

Mechanika
on the occasion of 60th anniversary of its activity.

Such conferences were earlier arranged in the years
1995, 1997 and 1999. Their idea was to promote achieve-
ments of scientific workers from mechanical faculties of
the technical universities located in North Poland, i.e. in
Gdańsk, Gdynia, Szczecin, Koszalin, Bydgoszcz, Olsz-
tyn, Białystok and Elbląg., as well as of the Institute of
Fluid Flow Machinery, Polish Academy of Sciences,
Gdańsk. It was mainly expected to draw interest of indu-
strial enterprises of that region to those achievements.
However effects of the attempts appeared unsatisfactory
as technological parks, industrial fairs and branch confe-
rences have become more effective occasions for contacts
between scientific and industrial circles.

As a result of the situation, this-year Conference was
devoted to mutual presentation of selected research results
and discussion on prospects of development of mechani-
cal sciences within the frame of developing international
cooperation.

In compliance with the Conference’s program 35 papers
were presented during three topical sessions :

Representatives of the Conference’s organizer -
- with 17 papers - contributed the most

to the elaboration of the presented papers.

The remaining ones were prepared by authors from :

the Faculty of Ocean Engineering and Ship Technology –
– Gdańsk University of Technology, Olsztyn Technical
Agricultural Academy, Białystok University of Techno-
logy, Technical University of Szczecin, Warmia-Mazury
University, Institute of Fluid-Flow Machinery of PAS –
– Gdańsk, Koszalin University of Technology, Polish Na-
val University, the State Higher School of Engineering in
Elbląg, and ALSTOM company.

MECHANIKA 2005

Techniques and engineering processes
of manufacturing (12 papers)
Drives and energy systems (12 papers)
Computer methods in mechanics (11 papers).


