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INTRODUCTION

Computer simulation has presently become a common tool.
Simulators are used in didactic process, scientific research, and
training courses, especially for operators. This way they sub-
stitute real technical devices, for economical and safety reasons.
Today operational and maintenance conditions of machines are
closer and closer to those represented in simulators. Educatio-
nal process of to-be operators of machines starts from using
the simulators.

The simulation makes it possible to represent difficult and dan-
gerous operational situations and to learn to give an appropriate
response to hazards. A boundary between a real situation and
simulated one becomes obliterated. A simulation must be close
to reality in order an operator always could consider a given
situation as real one. By continuous improving the simulators
a higher and higher level of education and safety can be ensured.

Developments in process automation and control have made
it necessary to have at one’s disposal a model of a given pro-
cess [8, 9, 12].

By comparing a model of a given process with its real run
it is possible to determine an instantaneous point of operation
select appropriate control parameters and generate a correct
message for operator, that rises safety level of the process. Si-
mulation has also found wide application in training of sea-
-going ship’s operators, both navigators and marine engineers.
Hence simulators have become an indispensable instrumenta-
tion of maritime academies.

Simulation approach has also its important place in for-
ming new scientific theories and widening the knowledge. In

this way one looks for confirmation of laws in engineering,
physics, economy and medicine. An expected chance for spa-
ce missions is also checked by means of simulations.

In this paper has been presented the problem of modelling
heat flow processes by using Z - transform applied to diffe-
rential equation of a modeled process. This facilitates elabo-
rating the digital models on which the work of any simulator
is based.

SIMULATION MODELLING

During process simulation one tends to exactly represent
statical and dynamical features of a given process. A simula-
tion model should appropriately respond to external signals,
and in the case of some kinds of simulators it should provide
real-time responses. Real processes are complex and depen-
ding on many parameters. Only the simulation models based
on differential equations are capable in providing a high con-
formance with real processes [10,14]. To find solutions of such
equations is time-consuming. Modelling the objects of complex
parameters leads to partial differential equations [1, 3, 4, 11].
For this reason one often introduces simplifications in expense
of accuracy of process representation. For example, either sim-
ple algebraic equations are introduced, or process statical and
dynamical features are separately considered . However the so
seperated dynamical term does not account for all variables of
the object in question.

Applying another approach one substitutes finite difference
equations for differential equations, that impairs accuracy of
solution. In solving partial differential equations by means of
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the finite difference method a condition for stability of solution
is introduced [13]. For instance the heat transfer equation :

(1)

obtains, after digitization respective to time and spatial varia-
ble, the following form of response in successive time instants :

(2)

To reach a higher calculation accuracy a digitizing step,
both in the time and space domain, is made shorter  and simul-
taneously the following stability condition has to be satisfied :

(3)

The time step T is imposed by the assumed digitizing step
∆x. The application of a variable digitizing step is necessary
to accelerate a response being always of recurrent type. How
to find a compromise between simulation accuracy and its du-
ration time is an open question. During simulation process
much time is usually devoted to graphical presentation of
a model.

This author has proposed to combine the advantages
of solving differential equations and finite difference ones

in order to determine process models.

The digitization is applied respective to the time variable t
only. Equations in such a form can be solved with the use of
the transform Z. The time variable t passes into z and becomes
a parameter. The so obtained equation can be solved respective
to spatial variables as continuous one by integrating it and ap-
plying the known methods for solving partial differential equa-
tions, e.g. the method of separation of variables or that of suc-
cessive integral transformations [5]. In this phase dynamic re-
lations of modeled process is not solved. Now the inverse trans-
formation Z of the initial function is made to obtain its course
respective to time.

The proposed approach makes it possible to obtain a solu-
tion equivalent to continuous one. This way the digitization
in the domain of spatial variables as well as the necessity to
satisfy the associated stability condition, is avoided. The di-
gitization in the time domain only enables to choose indpen-
dently a time step limited only by an assumed solution accu-
racy. The inverse transform Z is calculated by expanding the
function into numerical series by means of the following for-
mula [6]:

(4)

If an expansion of a given function into Taylor series re-
spective to the variable p exists then it is always possible to
determine a solution. This is much easier to do than to use the
Laplace transform [2, 7, 10]. The final solution contains all
process variables and the time variable in a discrete form. The
result is yielded in the form of numerical series, which leads
to simple procedures of numerical programming; the calcula-
tion error depends on digitizing the function respective to time,
only.

In each computational step the process parameters take con-
stant values. In Eq.(1) the parameter a is constant and not de-
pendent on time and position. The parameters can be changed
in successive computational steps. The equation is reduced to
a differential equation of constant coefficients, and a linear form
of a given model is obtained.

EXAMPLE:
HEAT TRANSFER THROUGH A WALL

Heat transfer through a flat wall occurs in many ship sys-
tems and technical devices. The phenomenon is described by
Eq.(1) which can be solved by using the proposed method.
After application of the transform Z the Eq. (1) takes the follo-
wing form :

(5)

where :

After transformation one can obtain a parabolic 2nd order
differential equation of constant coefficients. Its solution is as
follows :

(6)

where :

(7)

In order to solve Eq.(5) the following
boundary conditions have been defined :

1. Temperature on the inner side of the wall varies
in compliance with the assumed function :

(8)

2. The outer side of the wall is insulated, hence :

(9)

The solution of Eq.(5) is described
by the following formula :

(10)

The wall’s outer side temperature
is described by the formula :

(11)

Finally, it is necessary to calculate
  the inverse transform Z by using the relation (4) :

(12)

where :
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The inverse transform is obtained this way :

(13)

A choice of k value is realized in accordance with the following principle :

k = 1 for odd values of n   ;   k = 2 for even values of n

The exciting function U0(z) may be arbitrary, however this leads to the operation of convolution. If U0(z) is assumed a step
function then the response is a sum of terms of given series. This way the mentioned operation of convolution can be avoided.
For realization of other functions the approximation by a staircase function is advised. Such approximation method is used for
digital control algorithms.

In the time domain Eq.(11) takes the form :

 (14)
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After dividing by the series an  the response at discrete instants is obtained. For the exciting step signal it amounts to :

(16)

The coefficients Dk,m are derived from the recurrence algorithm
based on the Pascal triangle principle, namely from the formulae (17 and 18) :
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(18)

For m=0 the Euler numbers are yielded [15] :

(19)

The successive values of the function are as follows :
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Below in the figure results of the example calculations
 performed by using the described method are presented.

RECAPITULATION
The presented method has many advantages, namely :

Simulation time is very short since any particular term of
the series represents a solution.

Calculations can be extended by means of non-zero initial
conditions and arbitrary boundary conditions. This does not
impair accuracy of the model.
A simulation step may be chosen from a wide variability
range. It makes calculation time shortening possible that is
demanded during simulation to disregard its already known
fragments.

In some selected cases the model in question enables to
determine a response value at n-th instant  with disregar-
ding the preceding ones. The so obtained solution is equi-
valent to continuous one.

NOMENCLATURE

a – coefficient of temperature equalization [m2/s]
an – coefficients of numerical series
A, B – integration constants
c – specific heat of a material [J/kgK]
D – coefficients of expanded form of a initial function
n – natural number
r1, r2 – zero loci of a partial differential equation
t – time[s]
T – digitizing period [s]
U – temperature function
Uo – initial values
w – wall thickness [m]
x – spatial variable
z, p – arguments of a function in the complex variable domain
λ – thermal conductance [W/mK]
ρ – density [kg/m3]
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Dynamic characteristics of heat transfer through the wall
of 0.1 m in thickness, the excitation U0(t) = 1[deg], for the following

materials : 1 – copper; 2 – aluminium; 3 – brass; 4 – steel.
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