NAVAL ARCHITECTURE

Stability of free-floating ship

Part I1

Maciej Pawtowski
Gdansk University of Technology

ABSTRACT

This is the second part of the paper published in Polish Maritime Research no. 2/2005,
dealing with the calculation problem of righting arms of the free-floating ship, i.e. longitu-
dinally balanced at any heel angle. In such case the righting arms are ambiguous as they
depend on a way the heeling moment acts. Two cases were considered : when the heeling
moment is parallel to the ship plane of symmetry, and the case when it performs the least
work, i.e. when the moment is parallel to the main axis of ship waterline. It was demon-
strated that angular translations (heel and trim) are then the Euler angles associated with

a relevant reference axis. Some cases of the incorrect defining and using of those angles in today design
practice were indicated. The most important features of the curve of righting arms of free-floating ship

were demonstrated.
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FEATURES OF RIGHTING ARM CURVE

Knowing metacentric radii of a free-floating ship one can
easily find the remaining characteristics of its curve of righting
arms. They are analogous to those known from the classical

theory of ships.
Hence, the metacentric height % is equal to :
h=%4,GZ=BM - BZ 25)
where :
BM - metacentric height according to Eq. (12)

BZ =—-rn - height of ship centre of gravity over its centre of
buoyancy (Fig. 2)

r=GB - radius-vector of ship centre of buoyancy relative
to its centre of gravity, and

n - versor normal to ship waterline according to
Eq.(6) or (20).

Eq. (25) can be obtained immediately by considering the
buoyancy action line in the rotation plane (Fig.6) for the heel
angle increased by d¢. The metacentric height can be also ob-
tained by differentiating the righting arm GZ, acc. to Eq.(10),
respective to the heel angle in the ship-fixed reference system.

The derivative is given by the formula :

GZ' = e"(rxn) + e:(r'xn) + e:(rxn") = BM + r'n

where the sign [ '] stands for differentiating respective to ¢.
It can be demonstrated that the first term equals zero, the
second gives the metacentric height BM, and the third is equal
to r-n. Hence the formula is identical with Eq. (25).

ps| \ y

Fig. 6. Ship rotation plane

Work done by the heeling moment M
is expressed by the formula :

o o
L=[Mdo=A[Gzdo=Al, 26)
0 0
where :
A - ship buoyancy

lq - dynamic arm.
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It can be observed that the area under the curve of righting
arms, called the dynamic arm, is proportional to the work of
heeling moment.

Considering rotation of the rotation plane (Fig.6) by the an-
gle d¢, one can easily demonstrate that the differential GZ d$ =
= d(BZ) is an increment of the segment BZ due to vertical
translation of the point Z, as the buoyancy centre B translates
horizontally relative to ship's waterline. Hence the known
formula for the dynamic arm lq = BZ — a, is obtained, where
a =BG - the height of the gravity centre G over the buoyancy
centre of ship in the upright position (i.e. for ¢ = 0). The equa-
tion has simple physical interpretation — the dynamic arm is
equal to the vertical increment of the distance between the cen-
tre of gravity and centre of buoyancy. It can be useful in chec-
king the calculation accuracy of the righting arm curve.

Worth mentioning that the curve of righting arms of free-
-floating ship complies with the theorem of minimum potential
energy, i.e. ship's heel (understood as a rotation of the plane of
rotation) by a given angle demands work done to be minimum.
This is an important feature of the curve. To prove it let's obser-
ve that to incline the ship from its position of longitudinal
equilibrium is not possible without applying a trimming mo-
ment and doing an additional work that could increase its po-
tential energy. Hence it results that righting arms of a free-flo-
ating ship are at the most equal to or smaller than those of
a fixed-trim ship, that is clearly illustrated in Fig.1. If it is not
the case, it means that some errors appear in the calculation
algorithm.

Cross-curves of stability

The hull form arm, i.e. the arm of buoyancy force relative
to the initial location of the centre of buoyancy, shown in Fig.6,
is given as follows :

Ig = GZ + a‘sind (27)

For a free-floating ship which changes its trim during he-
eling, the hull form arms depend on the height of centre of
gravity over BP. Because of trim changes the idea of cross-
-curves of stability does not apply, strictly speeking, to a free-
-floating ship. Let's observe that z - axis fixed to the ship does
not lie in the rotation plane which is inclined to it by the angle
0. Projection of the axis z to the rotation plane agrees with the
axis BoZ (Fig.6)4 . Therefore, by shifting the centre of gravity
along Oz-axis by the quantity Azg it moves before the rotation
plane by the distance Ax, = Azgsin®. As a result the ship beco-
mes unbalanced and it must trim in the vertical plane by the
angle doy = Axo/BMp, where BMy is the longitudinal meta-
centric radius at a given heel angle ¢. The ship can be balanced
only by changing its trim, without changing its heel angle. In
this case the relationship between both trim angles is the same
as in Eq. (23) but without minus sign , i.e. doiy = dBcosd. Hence
the trim correction is d® = doip/cosd. From Fig.6 it can be sta-
ted that the new righting arm is :

GZ1 = GZ — Azg-cosO-sing + (D/V) doy  (28)

where : D - moment of deviation
of ship waterline in &n - coordinate system (Fig.4).

For normally occurring trim values the function cos6 can be
omitted as practically being equal to 1. Two first terms of Eq. (28)
are the same as for fixed-trim ship. The last term, (D/V) doo ,
denoted now by Al, accounts for the effect of trim on the righ-
ting arm curve of a free-floating ship. Taking into account that
do = Axp/BMp, one obtains :

Al = AzgsinO-tgy (29)
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Hence it can be observed that it is possible to find the righ-
ting arm curve for a new location of the centre of gravity by
means of cross - curves of stability for free-floating ship provi-
ded additional information on the run of the angles 6 and  in
function of the heel angle ¢ is available , which makes it possi-
ble to calculate the correction Al. Let's observe that the correc-
tion Al disappears not only when 6 = 0, as it could be expected,
but also when % = 0, i.e. when the ship's floatation axis is paral-
lel to the rotation axis. Moreover from Eq. (29) it results that
the quotient Al/Azg is not dependent on a value of changes of
the height of centre of gravity over BP; therefore in order to
calculate the correction Al it is enough to know a course of the
quotient Al/Azg = sinBtgy, in function of the heel angle ¢. With
the use of the quotient, Eq. (28) for the new curve of righting
arms obtains the following form :

GZ| = GZ — Azg (sing — Al/Azg) (30)

To improve calculation accuracy it is advisable that cross-
-curves of stability are calculated in the form of the righting
arm curves GZ for a selected, typical location of ship's centre
of gravity. In such case the correction Al is small, hence it can
be often neglected. Cross-curves of stability are usually pre-
sented in the form of the diagram : GZ = GZ (V, ¢ = const).

The diagram showing the differential quotient A/Azg =
= sinBtgy should be presented in the similar way, in function
of the buoyancy V, for a fixed ¢.

OTHER DEGREES OF FREEDOM

In ship hydrostatics in order to describe ship inclination
relative to water, are used two mutually indpendent angles
which can be interpreted as degrees of freedom, e.g. the analy-
tical angles @ and 6 which describe orientation of waterline
relative to ship. By using them all other angles between vario-
us planes and axes can be expressed.

However the analytical angles are not convenient to descri-
be angular translations of ship's hull. To this end three natural
angles (in dynamics called the Euler angles) are used. In static
problems two angles are sufficient to describe angular transla-
tions as any third angle is not necessary due to lack of yaw
which means that nodal line orientation is constant in the sea
plane. The above discussed angles ¢ and 0 associated with Oy-
-axis and PS (playing the role of plane of nodes) exemplify the
Euler angles. As there are two other axes, one can choose de-
grees of freedom associated with the remaining axes.

For instance, in NAPA software as well as many other com-
puter programs™ the heel angle is defined as the slope angle of
trace of water in stations, relative to Oy - axis, hence it is the
angle @, whereas the trim angle is rotation of the ship around
this trace, denoted by 6y . Hence they are Euler angles associa-
ted with x-axis, commonly used in ship dynamics. The nodal
line is the trace of water on midship section, fixed in space.
The angle 6y is equal to that of slope of Ox-axis relative to
water- level. As cos (90° + 6y) = i'n, then : sinBy = cosotgh, or
simpler :

€1y

The versor n can be directly expressed by means of the Eu-
ler angles. Dividing sinBy by tgby one obtains : cosby = coso/
/cos@, hence : n, = cosa, = cosBycos@. By substituting them in
Eq.(6), the components of the vector n take the following form :

(32)
As ny = - sing, hence : sin¢ = cosOxsing, from which it

results that : ¢ <@, which has been already obtained from Eq.(7);
both angles are equal to each other in case of no trim. From the

tg0y = cos-tgh

n = (-sinBy , -cosOy-sin@ , cosOy cosQ)



formula for cosa it results that : ¢ < o, hence : ¢ < 0. The angle
@ =, in case of no trim or when the heel angle equals 90°.

In the case of the reference axis Oz,
the Euler angles are :

» the inclination angle o by which the axis z is deflected from
the vertical, given by Eq.(5); it is identical with the slope
angle of BP relative to waterline

» as well as the trim angle v, i.e. the ship rotation angle aro-
und Oz - axis .

The edge of intersection of BP and water level forms

a nodal line as its orientation is fixed is space. Both the angles

and the nodal line is shown in Fig.3. The angle  is equal to the

slope angle of trace of water in the plane z = const (i.e. nodal

line) relative to Ox-axis .

This way one obtains as follows :

tgy = - tg/tgo

From Eqgs.(5) and (33) it results that tgow can be taken as a vec-

tor composed of tge and - tgf. Hence : tgp = tgocosy, and :

tgh = - tgosiny. By substituting them in Eq.(6) the compo-
nents of the vector n take the following form :

(33)

n = (siny-sina , - cosy-sina. , cosat)  (34)

As : ny = - sing, hence : sind = cosysina, from which it
results that: ¢ < a; both the angles are equal to each other only
in case of no trim.

It is not indifferent which reference axis (and the Euler an-
gles associated with it) is chosen to calculate righting arm cur-
ve because location of the rotation plane in which the ship has
to be balanced depends on the axis chosen. During balancing
the ship, a change of trim angle does not influence the rotation
angle.

In the case of Ox reference axis the rotation plane is a ver-
tical section perpendicular to water-level and parallel to water-
-trace on frame sections (Fig.7); in the case of Oy-axis — it is
perpendicular to water-trace on PS (Fig.2), and in the case of
Oz-axis — perpendicular to water-trace on BP (Fig.8). In other
words, in the case of the reference axis x the rotation plane is
parallel to nodal line, and in the two latter cases — perpendicu-
lar to nodal line. The three planes of rotation are not identical
which makes that for a free-floating ship righting arms depend
on the choice of reference axis. In all the cases the rotation
plane is fixed in space, perpendicular to heeling moment vec-
tor, vertical, and crossing ship's centre of gravity. The perma-
nent orientation in space is associated with the permanent di-

Fig. 7. Rotation plane of free-floating ship which trims
around trace of water on midship section

rection of nodal line in sea-level, due to the lack of yaw. Du-
ring heeling the buoyancy centre moves along the curve of
buoyancy centres located on the rotation plane whose features
have been already discussed. For this reason the righting arm
curve is a function of the rotation angle of rotation plane, fur-
ther marked M. In other words, the heel angle of the ship is
identical with the rotation angle of the rotation plane.

Fig. 8. Rotation plane of free-floating ship which trims around Oz- axis

In the case of Ox-axis the rotation angle M cannot be iter-
preted simply in geometrical terms. It is also difficult to realize
such heeling model physically, that can be observed in Fig.7.

As a result the reference axis is not located in the rotation
plane. The rotation angle and heel angle are mutually related
by the formula : dn = d@cosBy, hence the rotation angle n =
= JcosBxd@, from which it results that : 1 < @, and that for ¢ =
= 90° the rotation angle of rotation plane is a little smaller than
90° (M <90°) .

Generally, differences between the angles 1 and ¢ are mar-
ginal as cosfy is practically equal to 1, nevertheless both the
angles are not identical. For Oy-axis the rotation angle n is
identical with the angle ¢, and for Oz-axis — with the angle o
In two latter cases shown in Fig.2 and 8, the reference axis is
parallel to the rotation plane and it rotates together with the
plane.

It can be mathematically demonstrated that the rotation pla-
nes associated with particular reference axes are differently si-
tuated relative to the ship. To this end it is sufficient to demon-
strate that versors normal to the planes, called rotation axes,
are different.

When x-axis is a reference axis the vector normal to rota-
tion plane is given by the formula : e = e;xn, where e, — versor
of trace of water on frame sections. The versor e differs from
the versor e; = (cos0, 0, sin0) as for an arbitrarily inclined ship
the water-traces on PS and midship section are not mutually
normal. As ey = (0, cos@, sin@), hence the versor of rotation
axis is as follows :

e = (cosBy , - sinBy'sing , sinBx-cos®)  (35)

When Oz- axis is a reference one the versor e normal to
rotation plane is parallel to the vector : kxn. Accounting for
that the length of the vector |kxn| = sinc., one obtains as fol-
lows :

e =(cosy , siny , 0) (36)

which can be directly observed from Fig.3. The versor differs from
the two remaining by that it is parallel to BP and waterline —
— therefore parallel to common edge of both planes, i.c the
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trace of BP on waterline. Let's observe that for oc = 0 the rota-
tion axis e is undefined as the above mentioned planes are pa-
rallel and their common edge does not exists; the product kxn
is also undefined as both versors are parallel.

As rotation axis in ship's upright position is undefined its
choice is arbitrary. It is usually assumed that for o = 0 the an-
gle y =0, i.e. that in the initial position the rotation axis coin-
cides with the trace of PS on waterline, however not necessari-
ly. As the rotation axis an arbitrary axis on waterline can be
chosen, especially its main inertia axis. From the previous con-
siderations on the floatation axis it follows that in the latter
case it must permanently coincide with the rotation axis (the
angle x =0, i.e. f = e) for every angle of heel Eq. (36) is valid
regardless of the choice of rotation axis for .= 0 (an axis fixed
in space).

The rotation axis is determined by a direction of heeling
moment action in a ship-fixed reference system. As for the
same analytical angles @ and 0 the rotation axes are differently
located relative to ship depending on an assumed reference axis,
the rotation planes are also different, and hence the righting
arms are different. This can be clearly stated from Eq.(10) where
the righting arm GZ depends on r , e and n. For the same an-
gles ¢ and 6, the versor n is the same but the rotation planes
have different e and r, which makes GZ arms different. More-
over if in physical space the rotation planes are the same as in
Fig.2, 7 and 8, rotated by the same angle 1, then the analytical
angles are different, which gives different curves of righting
arms in function of the rotation angle n taken as ship's heel

angle.

X

e(y)
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i
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-
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Fig. 9. Top view of the ship heeled by the angle ¢ = 90°

The case of the ship heeled by 90° is interesting as diffe-
rences between various reference axes can be then distinctly
observed. In the case of the reference axis Oy at the angle ¢ =
= 90° PS is horizontal, and the rotation plane crosses ship's
gravity centre and buoyancy centre (Fig.9), which means that
the ship is longitudinally balanced. As the plane is motionless
in space the entire figure should be horizontally rotated around
the point G (in this case to the left) by the angle of inclination
relative to the axis z. The righting arm is negative and equal to
the horizontal distance between the points G and B.

For the axes x and z the rotation planes in Fig.9 cover each
other — as they cross the point G parallel to the axis z. As the
buoyancy centre is not located on the plane, the ship would so
trim (in this case by bow) as to make the centre to be located
on the rotation plane.

In both cases the righting arm would be the same, equal to
the horizontal distance between the gravity centre and transla-
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ted buoyancy centre. However the heel angle 1), in the sense of
the rotation angle of the plane of rotation, would be different.
For the axis x the angle | will be less than 90°, even by
a few degrees, if trim at large heel angles is significant, which
is possible especially in the case of a damaged ship; and for the
axis z the angle n = o = 90°.

The previous considerations dealing with the metacentric
radii, floatation axes and curve of righting arms do not lose
anything in value if to replace the differential d¢ with the diffe-
rential dn, and to substitute n for ¢ . The directed angle fdo
is inclined by the angle 7 to the appropriate rotation axis e
defining the axis & in Fig.4. The axial component of the angle
dn = dacosy, is the rotation angle of the rotation plane. The
component doy normal to the rotation axis is given by the for-
mula analogous to Eq. (23) :

- dBy , for the reference axis Ox
(37)
- dyr'sina,, for the reference axis Oz

doy =do-siny=dn-tgy=

From the above given equation
two conclusions analogous to the previous ones, result :

» the more deflected the floatation axis from the rotation axis
the greater trim changes during heeling, and

» when y = 0, i.e. when the floatation axis is parallel to the
rotation axis, the ship trim does not change due to rotation
of the waterline itself. As opposed to the reference axis Oy,
there is no problem with determining the rotation axis at
90° heel for the remaining reference axes.

In the case of the reference axis Ox the rotation axis of the
midship section around the normal id@ has the horizontal com-
ponent dn = d@cosBx which is axial one. The angle idp has
also the vertical component equal to - d@sinOy = - dntg0y.

In the case of the reference axis Oz the vertical component
of the rotation angle of BP around the normal kdy, equals
dycosa. The vertical component makes the angle ¥ changing
by dy as a result of the change of orientation of rotation axis
(relative to the hull), caused by the rotation of the waterline
alone. The angle dy is equal to the vertical component of the
rotation. Hence one obtains :

- dn-tgby , for the reference axis Ox

dxo = (38)

- dortgy/tga., for the reference axis Oz

In the second part of Eq.(38) the identity appearing in Eq.
(37) was utilized. The remaining comments concerning equi-
-volume waterlines are still valid also for other reference axes.
In considerations dealing with cross-curves of stability the an-
gle ¢ should be obviously replaced with a relevant angle n.
The quantity Axy = Azge,, where e, is z-component of the
relevant rotation axis e. The differential quotient amounts to :

Al/Azg = e tgy.

RIGHTING ARM CURVE
OF MINIMUM STABILITY

As previously mentioned, most heeling moments affecting
the ship is parallel to PS, therefore a free - floating ship takes
such position relative to its rotation plane as to make trace of
water on PS normal to it. Therefore the question arises which
position the ship takes when direction of the moment is not
associated with its orientation relative to ship's hull. In other
words, which reference axis should be then chosen. In order to
unambigously answer this question it is necessary to know the
mechanism of taking position by the ship relative to its rota-
tion plane in the case of a free-heeling moment.



In the case of a heeling moment not associated with the
hull, such, for instance, as that resulting from shifting a weight
on ship, or taking a weight to any place on ship, the ship in
question rotates in such a way as to make potential energy of
the heeled ship minimum [13]. In other words, the ship heels
in such a way as the work associated with its heel is minimum.
As moment work is proportional to the dynamic arm the mini-
mum value of potential energy corresponds with minimum of
the dynamic arm. From the classical ship theory it is known
that dynamic arm depends on a course of metacentric radii in
function of the heel angle, which — for a free-floating ship —
— means : in function of the rotation angle of the rotation plane.

Hence, in general case :

lg= [BM:sin (n - v) dv -a (1 -cosn)  (39)
0
where :
v - dumb variable of integration, varying from 0 to n

(the assumed rotation angle of rotation plane)
BM - metacentric radius given by Eq.(12)
a=ByG - constant value.

Obviously the integrand in Eq. (39) decides on minimum
dynamic arms, which takes its miniumum value for minimum
metacentric radii in function of rotation angle. And these appe-
ar when instantaneous floatation axis is permanently parallel
to the rotation axis (f = e), i.e. when the angle y = 0. Hence
a free-floating ship under influence of a free-heeling moment
takes such position relative to its rotation plane as to make the
instantaneous axis of floatation normal to the rotation plane.

A few conclusions yield from that :

7

« From Eq.(15) it results that the rotation axis coincides —
— then and only then — with the floatation axis when the
deviation moment D = 0. The floatation axis is then the
main inertia axis of the waterplane, for which the transverse
inertia moment is minimum. When the ship heel is being
changed a new floatation axis rotates relative to the previous
one by the angle d, = d, which results only from the change
of orientation of the main inertia axis of waterline since
dyy = 0 due to zero value of the angle y, which can be
deduced from Eq.(38).

As the floatation axis is permanently parallel to the rotation
axis Eq.(11) is reduced to the form : dn = doy = do.. And,
this in turn means that the rotation angle of rotation plane is
equal to the angle contained between the actual waterplane
and the initial one. Hence the curve of righting arms is
a function of the angle o, and Oz - axis is the apropriate
reference axis.

X3

A

7

« As the angle y is equal to zero for any angle o the correc-
tion Al takes zero value, which can be seen from Eq. (29).
Therefore righting arm curve can be found on the basis of
cross-curves of stability by neglecting the correction as in
the case of even-keel ship.

+ Fora given angle o it is necessary to find such value of the
angle of rotation around the versor ny, \ , as to obtain the
centre of buoyancy located in the rotation plane containing
the ship centre of gravity, and perpendicular to the longitu-
dinal axis of inertia of waterline.

+ Righting arms are then as small as possible and such righ-
ting arm curve is called the curve of minimum stability. Any
other curve can have the same or greater arms.

Worth mentioning that NAPA software as well as many
other computer programs used in West countries for ship stabi-

lity calculations have no possibility to calculate the righting
arm curve of minimum stability as such mode of calculations
is there unknown at all.

CONCLUSIONS

This paper presents the theoretical background for deter-
mining the righting arm curve for a free-floating ship, under
assumption that the righting moment has constant direction in
space. It is also highlighted what is meant by the heel angle
and how ship's longitudinal balance is understood. Results of
the performed considerations can be summarized as follows :

2 Mode of calculation and choice of a reference axis ( Euler
angles) considerably influence the results of calculation
of the righting arm curve, hence they should be obligatori-
ly defined. Such recommendations are not included in
the current rules, which sometimes leads to great discre-
pances between calculation results obtained from different
sources.

< Righting arm curves should be calculated — as a rule — for
a free-floating ship balanced in an appropriate rotation pla-
ne fixed in space and passing through the ship centre of
gravity. The righting arm curve is then a function of the
rotation angle of the rotation plane around the normal axis
(rotation axis).

< The rotation plane of an intact ship is perpendicular to tra-
ce of water on PS, being a nodal line,due to the assumed
character of heeling moments resulting mainly from hori-
zontal, wind-generated forces. A rotation angle is the slope
angle of y-axis relative to water-level, and a trim angle is
the slope angle of trace of water on PS relative to BP. They
are Euler angles associated with y-axis.

2 For a damaged ship which mainly heels under influence of
vertical forces the rotation plane is perpendicular to the main
inertia axis of waterline, being a nodal line. A rotation an-
gle is the angle o contained between the initial waterline
and water-level, and a trim angle is the angle contained
between trace of water-level and trace of PS on the initial
waterline. They are Euler angles associated with the ship-
-fixed axis normal to the initial waterline. The calculations
yield the righting arm curve of minimum stability.

S The notion of cross-curves of stability is valid also for
a free-floating ship heeled around the main inertia axis of
instantaneous waterline. In other cases the calculated righ-
ting arm curve should be corrected by introducing the cor-
rection which accounts for an influence of change of trim,
resulting from change of height of ship's centre of gravity.

< It is advisable to perform calculations of the righting arm
curve by means of the equi-volume waterplane method
(Krilov-Dargnies's) which in natural way tracks translation
of buoyancy centre during heeling [4]. The method has not
been used so far in calculation practice, though it appears
not only more accurate and well numerically conditioned,
but also it significantly shortens time of calculations (about
20 times) in comparison with bouyancy methods. Therefo-
re it is worth implementing into common practice.
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NOMENCLTURE
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— height of gravity centre over buoyancy centre in upright
position of ship

— buoyancy centre

— transverse metacentric radius

— longitudinal metacentric radius

— height of gravity centre over buoyancy centre

— direction of rotation axis (unit vector normal to rotation
plane)

e, — versors (unit vectors) of trace of water on PS and on

midship plane, respectively
— versor (unit vector) of floatation axis
— freeboard
— gravity acceleration
— ship gravity centre

metacentric height

— righting arm

k — versors (unit vectors) of the ship-fixed reference system
whose origin is in the point K (intersection point of the
plane of symmetry, PS, midship plane and base plane BP)

— righting arm and dynamic arm, respectively

length, breadth and mean draught of ship, respectively

— upward pointing versor (unit vector) nomal to waterline

— volumetric displacement of ship

— angle between initial waterline and water-level

— angle between trace of water on PS and midship plane

— ship buoyancy (weight of displaced water)

— correction of righting arm obtained by means of cross-
curves of stability, accounting for oblique translation of
gravity centre relative to rotation plane, due to changing
the height of ship gravity centre over BP

— rotation angle of plane of rotation

— slope angle of trace of water on PS relative to x-axis
of ship

— water density

— slope angle of trace of water on the stations relative to
y-axis of ship

— angle of PS inclination from the vertical

— angle between floatation axis and rotation axis

— angle between water-level trace line and PS trace line on
initial waterline.

Footnotes

ByYZ reference system is fixed to the rotation plane and its ori-
gin is located in the initial position of the buoyancy centre B,.
e.g. such as STATAW and SEA software systems used by CTO
and PRS.

In general case the nodal plane is a plane parallel to waterline of
ship in the upright position, which rotates together with it. Its
normal versor n is the same as that of initial waterline. The angle
o is determined by : cosct = ny'n, and  is the angle between
trace of water and trace of PS in nodal plane.

Acronyms

BP  —ship's base plane

PS  —ship's plane of symmetry

CTO - Ship Design & Research Centre, Gdansk
PRS — Polish Register of Shipping
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