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ABSTRACT

Problem of calculation of righting arms of the free-floating ship, i.e. longitudinally balan-
ced at any heel angle, was formulated. In such a case of particular interest for a ship in
the damage condition, the righting arms are ambiguous as they depend on a way the
heeling moment acts. Two cases were considered : when the heeling moment is parallel to
the ship plane of symmetry, and the case when it performs the least work, i.e. when the
moment is parallel to the main axis of ship waterplane. It was demonstrated that angular
translations (heel and trim) are then the Euler angles associated with a relevant reference

axis. Some cases of the incorrect defining and using of those angles in today design practice were indica-
ted. The most important features of the curve of righting arms of free-floating ship were demonstrated.
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INTRODUCTION

Rules of the classification societies require the intact ship
stability to be investigated for the ship floating at even keel.
The rules, however, do not clearly state how to calculate the
damaged ship stability, which often leads to large discrepances
in obtained results.

For the undamaged ship it is practically meaningless whe-
ther the stability calculations are performed for the ship ha-
ving a fixed trim, constant in function of the heeling angle, or
for the free-floating ship which changes its trim depending
on its longitudinal equilibrium state. This is due to a small
asymmetry of the ship relative to its midship section plane.
However for the damaged ship the problem is important as it
significantly influences the course of the righting arm curve
for the heeeling angles greater than the entrance angle of the
deck into water (Fig.1). The righting arm is understood here
as the distance between the action line of buoyancy force and
that of gravity force, occurring in still water, at a given he-
eling angle.

The influence of calculation assumptions is especially im-
portant in the case of flooding compartments far off the mid-
ship, which is understable due to the then occurring high asym-
metry and a small entrance angle of the deck into water. More-
over the influence very strongly increases along with the ratio
L/B decreasing. Hence it is greater for catamarans and SWATH
units. The differences between righting arms may even reach
a few hundred percent. For this reason the regulations should
clearly define a way of carrying out calculations : whether at
a fixed or free trim. It should be remembered that the final aim
of stability calculations is to determine an expected final state
of a considered ship under action of disturbing moments — and
as a result — to correctly assess stability safety of the ship.
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Fig. 1. Righting arm curves for a free-floating damaged ship
and that having a fixed trim [1]

It is obvious that the routine stability calculations should
be performed for a free-floating ship. However in such com-
monly accepted case the problem of correctly understood ship
heel angle arises because then it is an ambiguous notion, which
is manifested in existing various definitions of that angle. Most
often the heel angle is assumed to be the slope angle of water-
-level trace line on the frame planes, further marked @, or the
slope angle of the baseplane (BP) relative to water-level , fur-
ther marked . The first of the angles is loosely associated with
correctly defined ship heel angle, whereas the second is the
heel angle of the ship having minimum righting arms.

HEEL ANGLE OF FREE-FLOATING SHIP
The problem of correct defining the heel angle of the free-

-floating ship has been recently solved [2+4]. Namely, the ship
heel angle, further marked ¢, is understood as the angle rota-
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tion of the ship plane of symmetry (PS) around the intersection
line of water surface and PS, i.e. the angle of rotation around
the water-level trace line on PS, in other words — this is the
inclination angle of PS from the vertical. At the same time the
angle is equal to the slope angle of the axis y relative to water
surface. The definition stems from the assumption that the ship
heels under action of the heeling moment of fixed direction in
space, and parallel to PS. If the ship floats freely it heels in such
a way as to be logitudinally balanced all the time. It means that
the direction of the righting moment is fixed in spacel) and the
same applies to the heeling moment. The conclusion immedia-
tely follows that the curve of buoyancy centres is then exactly
flat and situated on the rotation plane perpendicular to the he-
eling moment vector, and containing the ship centre of gravity.

A necessity to define the heel angle of free-floating ship is
usually not felt — many surveyors and designers are just surpri-
sed that any problem of this kind exists at all. Hence various
definitions of the angle in question have been still assumed,
which obviously results in ambiguity of calculation and makes
it not possible to compare different computer softwares.

HISTORICAL OUTLINE

Why a body floats in a liquid has been known already in
antiquity since the times of Archimedes. However in which way
to assess and investigate stability of floating bodies has been
recognized only after discovery of the Newtonian laws. In 1746
Bouguer introduced the notion of metacentrum and metacen-
tric height considered as a measure of initial stability. In 1749
Euler introduced a formula for metacentric radius, and a theo-
rem for equi-volume waterplanes. In 1796 Atwood published
a method for calculation of the righting arm at a given heel
angle [5]. Nonetheless for over a hundred years only the initial
metacentric height GM was used to assess ship stability. Only
the ship stability accidents at the end of 1o century revealed
importance of the freeboard and necessity of applying the cur-
ve of righting arms in assessing stability of ships.

The metacentric height, which is not an unimportant index
of stability, does not make it possible to directly assess either
a range of the curve of righting arms nor on a value of the
maximum righting arm. Here it is worth mentioning the wide-
ly described case of sinking the HMS Captain in 1870, whose
metacetric height GM = 0.79 m [6]. The ship capsized during
a storm in the Bay of Biscay, whereas the accompanying bat-
tleship Monarch of a similar size and characteristics survived
unharmed despite having its metacentric height GM = 0.73 m,
i.e. smaller than that of the first ship. The fact was very surpri-
sing for the then naval architects. It is very easy to explain the
accident if one observes that the freeboards of the two ships
much differred to each other : the Captain had the freeboard
F =1.98 m and the Monarch - F =4.27 m. As a result, despite
the smaller metacentric height of the Monarch, its curve of
righting arms was of much better parameters than that of the
Captain, whose GZmax = 0.55 m instead 0of 0.25 m, ¢rpax = 40
deg instead of 19 deg, and the stability range angle ¢, = 70 deg
instead of 54 deg.

The Captain's accident has finally proved that the meta-
centric height is an insufficient measure of safety against cap-
sizing and it has made it necessary to examine ship’s stabilit}:
also at large heel angles. As a result, at the end of the 19"
century the curves of righting arms, called the Reed s curves in
memory of their propagator, began to be used for the ship sta-
bility assessment. The first stability criteria, given by Rahola
[7], appeared as late as in 1939. The well-documented recom-
mendations dealing with a minimum size of the curve of righ-
ting arms have been elaborated on the basis of the analysis of
the curves of righting arms of both for capsized ships and sta-
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ble ones. At the end of the 1960s those criteria were adopted
by IMCO (Intergovernmental Maritime Consultative Organi-
zation, presently IMO (International Maritime Organization),
and they have been valid until now [8].

Though the curve of righting arms has been applied to as-
sess stability of intact ships, stability of damaged ships has been
further controlled by means of the metacentric height and fre-
eboard. In the SOLAS conventions including the last one of
1974 the residual freeboard of as low as only 3 inches and the
metacentric height of 2 inches have been assumed permissible.
With such parameters the curves of righting arms usually show
marginal values. A change took place as late as in 1990 when
criteria for the curve of righting arms were introduced for da-
maged ships, in the form of the SOLAS 90 criteria [9]. How-
ever it is worth remembering that the criteria have not repre-
sented any important progress as they resulted from an admi-
nistrative decision. Therefore they have only an alleged, but
not real, relation to actual safety of a ship in damage condition.
A breakthrough in that regard has happened during the last six
years [10,11].

FORMULATION OF THE PROBLEM

Almost all of the commonly known calculation methods of
the curve of righting arms concern the ship floating on even
keel. This means indirectly that the buoyancy centre is assu-
med not to translate longitudinally during ship’s heeling. It has
been no necessity to consider earlier a different situation as the
calculations dealt only with intact ships for which the assump-
tion has been well satisfied. However the fact cannot be ne-
glected any longer in the situations when the buoyancy centre
translates longitudinally due to an asymmetrical distribution
of buoyancy relative to the plane of rotation, as in the case of
semi-submersible platforms arbitrarily orientated relative to
wind direction, ships of low L/B ratio, or ships in damage con-
ditions, and then the calculations should be carried out for
a free-floating object. Determination of the curve of righting
arms becomes in such cases ambiguous and the problem must
be defined. Especially the way in which the righting moment
acts should be defined.

It should be said that angular motions of a free-floating ob-
ject are not considered in the basic ship theory as this is a 3-D
motion. And, such motion is spatial and requiring good spatial
imagination. For this reason as well as for making calculations
easier the vectorial calculus is applied in this paper.

Calculations of the righting arms curve for free-floating
ship is carried out under the following assumptions :

a) a pure heeling moment is statically exerted on the ship.
It means that ship inclinations are equi-volumetric and the
horizontal position of the ship gravity centre remains con-
stant (the moment cannot induce any translational motion
hence change location of ship gravity centre on the sea le-
vel)

b) the heeling moment vector is strictly horizontal. If this is
not the case a vertical component of the moment, able to
rotate the ship around its vertical axis, will exist

¢) the heeling moment direction is fixed in space and paral-
lel to PS. As the moment is simultaneously parallel to the
water-plane hence it is also parallel to the trace line of wa-
ter on PS. Therefore the intersection edge of PS and the
water-plane is also fixed in space. The edge determines
orientation of the ship at the sea level as well it defines the
direction of the heeling moment %

d) the ship is in static equilibrium, i.c. the sum of forces and
moments acting on it equals zero. Hence ship’s weight is
equal to its buoyancy, and the statically applied heeling mo-



ment is balanced by the righting moment of the same direc-
tion and opposite sense

the righting moment is formed by the couple of forces :
i.e. the gravity force applied in the ship’s centre of gravity
and the buoyancy force applied in the ship’s centre of bu-
oyancy — the forces are equal and of opposite sense to each
other. The moment’s vector is horizontally directed, per-
pendicular to the vertical plane determined by the gravity
force and buoyancy force.

From those assumptions some consequences follow :

As in the state of equilibrium directions of the moments are
the same the centre of buoyancy must be situated on the
plane perpendicular to the direction of action of the heeling
moment (i.e. on the rotation plane), and on which the cen-
tre of gravity is located. As the direction of the heeling
moment action is, under the assumption, fixed in space,
hence the rotation plane is also fixed in space. The versor
perpendicular to the rotation plane, further marked e, is
hence constant and stands for the rotation axis.

For ship heels at a fixed trim the centre of buoyancy need
not to be located on the rotation plane, therefore the mo-
ment acting on the ship has not a constant direction at the
horizontal plane.

The rotation plane is vertical, motionless in space, perpen-
dicular to the direction of the moment action (trace of wa-
ter on PS), and passing through the ship gravity centre G
motionless at the horizontal plane.

It is the rotation plane about which the buoyancy centre of
free-floating ship moves. Hence the curve of buoyancy cen-
tres is strictly flat in space. For ship heels at a fixed trim the
curve of buoyancy centres is the projection of the spatial
curve onto the rotation plane.

The trace of water on PS determines the direction of the he-
eling moment. The ship heel angle ¢ is the rotation of PS
around the trace of water on PS, i.e. the deflection angle of
PS from the vertical. As Oy-axis is perpendicular to PS the
angle ¢ is simultaneously the slope angle of that axis against
the water-level. The angle ¢ can be interpreted as the rota-
tion angle of Oy-axis around the trace of water on PS, in the
rotation plane.

In order the ship to be balanced at any heel angle ¢ it has
also to rotate around the versor normal to PS, i.e. the Oy-
-axis, in such a way as to bring the centre of buoyancy on
the rotation plane (Fig. 2). The ship rotation angle in PS,
further marked 0, is called the trim angle — this is the defi-
nition commonly used in ship hydrostatics. A change of
the trim angle 6 does not influence the heel angle ¢. The
two angles are the Euler angles associated with Oy-axis.
The third angle associated with the rotation of Oy-axis pro-
jection onto the horizontal plane (i.e. yaw) is not present as
the rotation plane is fixed in space. Under the above given
assumption b) any yaw-inducing moments are not conside-
red in ship hydrostatics.

The righting arm GZ is the arm of the couple of forces for-
ming the righting moment, i.e. the distance, measured in
the rotation plane, between the action line of gravity force
and that of buoyancy force.

As the righting moment is all the time parallel to the trace
of water on PS, the righting moment work is the integral of
the moment, respective to the heel angle ¢. Simultaneously
this is the least work which is to be performed in order to
heel the ship up to a given angle ¢ . In other words, for

a ship of a fixed trim or that not fully balanced the work of
righting moment is greater.

Fig. 2. Rotation plane of free-floating ship which trims in PS

It can be observed that the projection of Oy-axis onto the

horizontal plane is perpendicular to the trace of water on PS.
Hence the presented model of the heeling moment action stric-
tly corresponds to the heeling moment due to a shift of cargo in
ship’s transverse plane. This deals also with the heeling mo-
ment of ro-ro ships in the damage condition, resulting from the
accummulation of water on the car deck when a symmetrical
midship compartment has been flooded. For the same reason
the curve of righting arms measured by means of the Di Belli
method”
inclinations. Finally, the heeling moment of fixed direction in
space, parallel to the trace of water on PS, is an accepted ideali-
zation of the wind-induced moment.

is strictly consistent with the above given model of

BASIC RELATIONSHIPS

A right hand side coordinate frame Oxyz, shown in Fig.3,

fixed to the ship, is assumed. The point O is identical with the
point K, Oy-axis points port, and Oz-axis — upwards.

Fig. 3. The right hand side coordinate frame Oxyz

An arbitrary attitude of the waterplane
can be described by the equation :

z =Ty + xtgd + ytgo (D)

in which three independent parameters appear. These are :

+ the angle 0 called the trim angle which is the slope angle

of the trace of water on PS relative to Ox- axis
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+ the angle @ which is the slope angle of the trace of water on
the midship plane relative to Oy-axis, and
+ T, - draught of Oz-axis.

The above mentioned angles are positive when a positive
increment of z corresponds to a positive increment of x (or y) ,
as shown in Fig.3. Therefore the trim angle 6 > 0 is positive
when the ship is trimmed by bow, and the angle ¢ > 0 is posi-
tive when it is heeled a-port. Both the angles are easy to be
measured as :

tgh = ATDR/Lpp and tgo = AT p/B
where :
ATpr — difference of bow and stern draughts
measured at the respective perpendiculars

— difference of port and starboard draughts
measured midships.

The angles @ and 6 unambiguously describe position of the
ship against water-level (or water-level against the ship) and
are called the analytical angles. From the analytic geometry it
results that the vector R normal to the waterplane given by (4)
has the components :

R =(tgb, tgo, 1) (2

which points downwards and its absolute value equals :

R =/1+tg’0+tg’p 3)

Hence the versor n normal to the waterplane
and pointing upwards is equal to :

n=-R/R “)

The angle o contained between the water-level and the base
plane BP (or initial waterplane) is one of the heel angles taken
for calculation of the curve of righting arms. The angle betwe-
en the planes is the same as that between the versors n and k
normal to them. As a result, cosot = Kk - n. Therefore :

cosot=1/R =1//1+tg’0+tg’@

Hence :

tgoy/tg’0 +tg’Q )

The sign of the angle o is the same as that of the angle ¢.
Taking into account that 1/R = cosc. the formula (4) yields the
following components of the versor n :

n = (—tghcosa , —tg@cosa , cos) (6)

The heel angle ¢ is equal to the inclination angle of PS from
the vertical. The angle is the same as that of Oy-axis relative to
water-level. Hence cos (90° + ¢0) = j - n = ny. And, sing =
= tgpcosa, or simpler :

tgd = cosOtgp (7

The rotation plane rotates around the rotation axis paral-
lel to the direction of the heeling moment action, defined by
the versor e. The rotation angle is equal to the angle ¢ . The
heeling moment direction is parallel to the water-level trace
line on PS, whose versor e; = (cos0,0,sin0), see Fig.3. Hence
e=ej.

Righting arm
In the course of heeling the ship its displacement remains

constant and its buoyancy centre shifts in the rotation plane
perpendicular to the rotation axis. Therefore the following is

yielded :
e'r=0 (8)
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for any heel angle ¢, where :

r=(Xg—XG,YB— YG, ZB — Zg) — buoyancy centre radius
vector relative to the ship gravity centre r = GB.

The righting moment is given by the formula :
M=r-nA &)
where :
A = pgV - ship buoyancy.
The vector is parallel to the rotation axis e, hence :
M=e-(r-n)A
Therefore the righting arm GZ = M/A
is given by the formula :
GZ=e-(r-n)

which is a function of the heel angle ¢ defined by (7). It is
worth mentioning that the angle ¢ < o, which can be observed
directly from the formula cosot = cosOcos( obtained by divi-
ding sin¢ by tgd. From (7) it also results that ¢ < ¢. Therefore
the actual rotation angle ¢ is never greater either than the angle
o or the angle @, which have been taken as the heel angles of
free-floating ship, so far.

(10)

Metacentric radii

The buoyancy centre of the free-floating ship moves along
a curve in the rotation plane which rotates as a disc around the
rotation axis motionless in space. As the action lines of the
buoyancy force are always vertical they are perpendicular to
the actual waterplane. When changing the ship heel by d¢ the
buoyancy force lines rotate also by the angle d¢ in the rotation
plane, and their respective waterplanes — by the angle dot; aro-
und the instantaneous axis of waterplane rotation, called the
ship floatation axis f. The relationship between the differen-
tials is given by the following formula, [4 ] :

dovycosy = do (1)
where :
x  — the angle defining situation of the floatation

axis relative to the rotation axis e = ey,
being the PS trace line on waterplane.

The equation (11) reflects the fact that small angles have
vectorial features. Hence the angle d¢ is nothing else but the
projection of the waterplane rotation angle da; onto the rota-
tion axis e. In general case the angle doi; is not equal to the
change of the slope angle do. of waterplane relative to BP; the
equality occurs only when the floatation axis f is parallel to the
intersection edge of BP and water-level (see Fig.3).

The metacentric radius is understood as the curvature ra-
dius of the curve of buoyancy centres in the rotation plane;
it depends on the angle ¢. Translation of the buoyancy centre
along the arc of the curve of buoyancy centres amounts to ds =
=rrdor; = BMd¢. On accounting for the formula (11), the meta-
centric radius can be determined by the formula :

Ty
cosy,
where :
r, = (1/V)yI? + D?
f — instantaneous ship’s floatation axis passing

through the floatation centre F (the waterplane
centre of gravity)
\Y — ship’s hull volumetric displacement



Irand D¢ — transverse and deviation (cross-product) iner-
tia moment of the instantaneous waterplane,
respectively, associated with the floatation axis
and floatation centre F.

The quantity rris a proportional coefficient
between the buoyancy centre translation ds and the angle do;.

The centre of buoyancy translates in the rotation plane, in
parallel to the instantaneous waterplane (water-level). There-
fore the buoyancy centre translation vector dr = (n - e)ds.

Floatation axis

As it can be observed the metacentric radius of the free-
-floating ship , at a given heel angle, depends on location and
orientation of the instantaneous floatation axis f. If the water-
plane is rotated by the angle dot; the transverse component of
the buoyancy centre translation, BC, relative to the floatation
axis (Fig. 4) is proportional to Iy, and the longitudinal compo-
nent of this translation, AB,— to Dyg, which results from the
Euler’s theorem of equi-volume waterplanes; this is the reason
that the expression for the resultant translation AC, equal to
ds =redaty , appears in (12).

Fig. 4. Waterplane top view

It is required the resultant translation to be normal to the
direction of heeling moment action (the rotation axis e). In
order to obtain this the angle C in Fig.4 must be equal to %,
which results from the properties of the angles having corres-
pondingly perpendicular arms. Therefore the floatation axis
slope angle relative to the rotation axis has to satisfy the follo-

wing equation : tey = D¢/l (13)
The angle % has the same sign as that of the waterplane
deviation moment (in Fig.4 - positive). It should be remembe-
red that the moments D¢ and I¢ also depend on %. By applying
the relationships resulting from the Mohr circle [4,12], known
from the theory of strength of materials, they can be represen-
ted as follows: Dg=D', and Iy=1+ a'. The equation (13) obta-
ins then the form : D' — (I + a')tgy = 0, where the mark ,,"'”
stands for the quantities associated with the rotated coordinate
system (€', ') whose axis &' coincides with the floatation axis
f, and its origin is located in the floatation centre F; (the system
is not shown in Fig. 4). The quantities marked ,,'” are expres-
sed by means of the quantities taken from the system (§, 1) :

D' = Dcos2y + asin2y, = rsin(2y + 2%)
a' = acos2y — Dsin2y = rcos(2y + 2x)
where : a = Y2(Igg — Iyl = Y2(Ige + Lyyy) and
D = Igp, Izg, Iy - waterplane deviation moment, trans-
verse and longitudinal inertia moment,
respectively, in the system En (Fig.4) whose origin coinci-

des with the floatation centre F, and the axis & is parallel to
the rotation axis e = e (a trace of PS on the waterplane).

The quantities D' and a' determine the parametric equation
of the Mohr circle shown in Fig.5. When applying the introdu-
ced notation the equation (13) gets the following form :

rsin(2y + 2y) — [I + rcos(2y + 2y)]tgx, =0 (14)
where :
r=+a’+D? , 2y, =arctg(D/a)

2y =2y, if a> 0, in the opposite case : 2y = 2y, + 180°

The equation (13) having the quantities marked ,,'” is easier
to be solved, and the equation (14) more simple for the geome-
trical interpretation shown in Fig.5; where a and vy, are assu-
med negative.

D 20Ny

0L, . IN\2/ (L

o

Inertia
moments [

Deviation moments D
s

Fig. 5. Mohr circle and geometric characteristics of waterplane

When cos2y and sin2y appearing in (13) is expressed by
tgy the equation (13) can be reduced to the simple 1° order

tion :
equation D= (I—a)tey (15)
Therefore : tg), = D/l
where : || < arcsin(1/) — see Fig.5.

As the angle 7 is known, the quantities Dg=D"and [f=1+a',
necessary to express the radius on the basis of (12), as well as
direction of the floatation axis, are defined. The floatation axis
versor is given by the formula :

f = ecosy + (n - e)siny (16)

The equation (13) results from the asssumption that : e - dr =
=0, i.e. that the buoyancy centre translation in the ship-fixed
coordinate system is normal to the rotation axis. It would be
this way if the rotation axis were fixed to ship; however the
axis is fixed in space but this does not mean it is fixed to the
ship. It can be observed that when changing the heel also, in
general, the trim has to be changed to balance the ship, which
results in changing the orientation of the axis e; = (cosf , 0 ,
sinB) relative to ship, determined by a trace of water on PS.

After differentiation of the equation (8) the following is
obtained : e - dr =—de - r, i.e. that the buoyancy centre transla-
tion in the hull-fixed coordinate frame is not strictly normal to
the rotation axis. It should be intuitively obvious : the buoyan-
cy centre translation in the ship-fixed frame has to be oblique
to it as the buoyancy centre is to be permanently located in the
rotation plane which changes its orientation relative to ship
during inclinations. When this is accounted for, the following
relationship for the angle y between the floatation axis and
rotation axis is obtained [4] :

D
tgy = = (17)
I,,-BZV V(BM, -BZ)
where :
BZ = —r - n —is the height of the gravity centre over the buo-
yancy centre (Fig.2)

BMp, — is the longitudinal metacentric radius repre-

sented by the bracketed term in (17).

As the term BZV is negligibly small in comparison with the
longitudinal inertia moment of waterplane, Ly, the equation
(17) practically yields the same solution as the equation (15).
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Hence it can be observed that to determine the longitudinal
radius of free-floating ship at a given heel angle it is necessary
to know three geometrical characteristics of waterplane, viz.
its deviation moment and transverse and longitudinal inertia
moments in the &N coordinate system associated with the rota-
tion axis e = e (a trace of PS on the waterplane) and the buoy-
ancy centre. In calculating these characteristics it should be
accounted for that the water trace lines on frame planes are not
normal to the water trace line on PS. Denoting this angle by
90° + B the following is obtained : cos(90° + ¢) = e - e,
where : e =(0, cos@, sin@) is unit versor of the trace of water
on frame planes (Fig.3).

Hence :
sinf} = —sinOsing (18)

The way of calculation of the geometrical characteristics
of the waterplane arbitrarily heeled relative to ship is discussed
in [4] and [13].

When the floatation axis f is known it is easy to find the
analytic angles @ and 0 describing ship’s location relative to
water at a new heel angle. Namely, by changing the slope of the
waterplanes relative to each other, by the angle Ao , the rota-
tion of the versor n around the floatation axis by the angle Ao,
is induced. Hence the new versor n; is given by the formula :

(19)

As the new versor n is known, the new analytical angles
corresponding to the versor can be easily found by using the
formula (6). Namely, tg0 = —ny/n,, and tg@ = —ny/n,. Because
the translation dr and the new waterplane slope angles are
known, it is very fast to find a balanced location of buoyancy
centre at the new heel angle enlarged by the angle Ao .

The versor n can be directly expressed by the angles 6 and
0 serving as degrees of freedom. To this end, in the formula (6)
the expression coso, = cosOcosd as well as that for tgd given
by (7) should be accounted for. The following is immediately
obtained :

n = (—sinBcos , —sind , cosOcosd)

n; = ncosAda + (f - n)sinAa;

(20)

Knowing the new versor n, one has as before : tgd = —ny/n,,
and sin¢ = -ny. It is not necessary to find tgp =-ny/n,, as in the
first approximation the equation of new waterplane (in the ship-
-fixed frame) can be represented by the formula :

nx(X —Xp) + ny(y — yp) + n(z—zp) =0
where :
XF, YF, ZF - the coordinates of the previous floatation centre.

e2))

The equation (21) is more convenient than (1) , as tgp and
T, tend to infinitely large values along with the heel angle in-
creasing. The equation (1) is necessary to start calculations.
The waterplane given by (21) is neither equi-volume nor ba-
lanced one. Correct values of draught and trim can be found by
means of the method of successive approximations so as to
maintain ship displacement constant and equal to an assumed
value, and to make the equation (8) satisfied. The calculations
become significantly shorter in case of making use of the pro-
perties of equi-volume waterplanes of free-floating ship.
Within a finite interval of the heel angle A¢ , such waterplanes
roll on the surface of a cone whose parameters can be determi-
ned in advance [4]. The rolling waterplanes adhere to the cone
along an instantaneous floatation axis.

Mechanism of equi-volume heels

An infinitesimal rotation of waterplane around the floata-
tion axis f can be considered as resulting from two rotations :
ship’s rotation by the angle d¢ around the rotation axis
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e = e (trace of water on PS), and ship’s rotation by the angle
doO around the normal to PS. The directed angle jdO is inclined
by the angle ¢ relative to water-level. As small rotations have
vectorial properties the directed angle fdo; is the resultant of
two components : parallel and normal to the rotation axis e :

fdoi; = (d¢ , — dBcoso) (22)

The components are defined in the En coordinate frame
(see Fig.4). The normal component to the rotation axis, equal
to — dBcosd is further denoted dow. The directed angle fdo; is
inclined by the angle ¥ to the rotation axis (&-axis). It can be
seen in Fig.4 that the positive normal component dot; corres-
ponds to the positive angle , and the trim change is negative
(by stern), therefore the normal component of the opposite sign
must be applied. The projection of doi; onto the rotation axis
yields from the relationship (11). Taking into account the rela-
tionships inherent to rectangular triangles, one can determine
the normal component do; in three different ways :

dow = doysiny = dotgy = — dBcosd (23)

From this formula it results that :

2 the more inclined the floatation axis from the rotation axis,
the greater changes of ship trim during heeling, which is
consistent with intuition

S when g =0, i.e. f=e, ship trim does not change due to the
waterplane rotation itself as in the case of fixed-trim ship

< for ¢ =90° (PS is then horizontal), % = 0, i.e. the rotation
axis (which does not then exist in the sense of trace of wa-
ter on PS) determines the floatation axis f.

The rotation angle of PS around the normal , equal to jdo ,
has also the vertical component : — dBsin¢. It makes the angle
% changing as a result of a change of orientation of the rotation
axis (relative to ship hull), which occurs in the course of trim-
ming. The change of the angle %, which results from the chan-
ge of orientation of the rotation axis only, is further denoted by
dy,. Hence the angle dy,, =— dBsin¢. Accounting for the equa-
tion (23), one obtains :

dyo = dousinytgd = dotgytgo (24)
If for a new waterplane the floatation angle x changes by
dy the new floatation axis rotates against the previous one by
the angle dyr = dy — dyx,, equal to the difference of both the
changes. When the angle dy¢> 0 is positive then the new floa-
tation axis f shifts towards the heel , i.e. it departs from the
rotation axis.
The equi-volume waterplanes roll on a cone whose axis is
inclined relative to them by the angle € determined by the fol-
lowing formula :

tge = dy¢/doy

To find the formula is very simple : it is enough to observe
that tge is the ratio of the radius and the generatrix of the cone.
When the angle dy¢> 0 is positive the cone is located above
the waterplanes, otherwise — below them. The vertex of the
cone is located in the distance /, of the generatrix from the
floatation centre F, given by 1 = — dn'r/d)s, where dn'k is the
translation of the floatation centre perpendicular to the floata-
tion axis (when 1 > 0, the vertex is located fore). Taking into
account that dn'r = rpdotone obtains :

1 = —rpdoy/dys = — rp/tge
where :

rr = dl¢/dV — differential metacentric radius
(curvature radius of the curve of floatation centres).



From the formula it results that the cone base radius at the
level of the floatation centre equals the differential metacentric
radius.

The normal waterplane rotation component dor) represents
the ship trim angle measured in the vertical plane passing thro-
ugh the trace of water on PS. If ship heel is enlarged by d¢, the
buoyancy centre translation perpendicular to the rotation angle
is proportional to Dd¢, where : D - waterplane deviation mo-
ment in the &N coordinate frame (Fig.4) .

The translation must be compensated by the trim Iy,do.
Equating them to each other one gets doty = (D/Iyy,)do. Accoun-
ting for that tgy = doy/d¢, one obtains the formula (15). A more
exact solution can be obtained by using the metacentric formula
for do, = (D/VGMp )dd, where : GMp = BMp, — BZ is the longi-
tudinal metacentric height. As tgy = do/do, the above gives
the formula (17) provided before without derivation. The for-
mula accounts for the rotation plane slope change defined in
the hull-fixed coordinate frame, which results from the ship
trim change.

(to be continued)

NOMENCLATURE

a - height of gravity centre over buoyancy centre in
upright position of ship

B - buoyancy centre

BM - transverse metacentric radius

BM, - longitudinal metacentric radius

BP - baseplane

Bz - height of gravity centre over buoyancy centre

e - direction of rotation axis (versor normal to rotation
plane)

e, e - versors of trace of water on PS and on midship plane,
respectively

f - versor of floatation axis

F - freeboard

g - gravity acceleration

G - ship gravity centre

GM - metacentric height

GZ - righting arm

ij,k - versors of the ship—fixed coordinate frame whose

origin is in the point K (intersection point of the plane
of symmetry, PS, midship plane and base plane BP)

1, 14, - righting arm and dynamic arm, respectively

LB, T - length, breadth and mean draught of ship,
respectively

n, - upward pointing versor nomal to waterplane

PS - ship plane of symmetry

SOLAS - Safety of Life at Sea
SWATH - Small Waterplane Hull

T, - draught of z-axis

WEGEMT - European Association of Universities in Marine
Technology

\% - volumetric displacement of ship

o - angle between initial waterplane and water-level

B - angle between water trace lines on PS and midship
plane

A - ship buoyancy (weight of the displaced water)

Al - correction of righting arm obtained by means of

cross-curves of stability, accounting for oblique

translation of gravity centre relative to rotation plane

at changing the height of ship gravity centre over BP

rotation angle of plane of rotation

- slope angle of trace of water on PS relative to x-axis
of ship

- water density

- slope angle of trace of water on the stations relative

to y-axis of ship

- angle of PS inclination from the vertical

angle of vanishing stability

- angle between floatation axis and rotation axis

- angle between water-level trace line and PS trace line
on initial waterplane

[enlin]
'
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D Fixin space” does not mean : fixed relative to the ship hull coor-
dinate system.

In case of the objects arbitrarily situated relative to the heeling
moment vector or wind direction (e.g. semi-submersible floating
units) the comments concerning PS should be applied to the refe-
rence plane initially situated perpendicularly to the wind direc-
tion and rotating together with the object in question. For the ship
unsymmetricaly flooded this is the plane parallel to the main in-
ertia axis of the waterplane in ship’s upright position.

In the Di Belli method, a heel angle of ship model, induced by
shifting a weight along an arm perpendicular to PS, is measured.
The heel angle is the inclination angle of the arm against water-
-level.
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