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of steam turbine power plant

Justyna Ślęzak-Żołna
Gdańsk University of Technology

ABSTRACT

In the paper a neural simulator of steam power unit is presented as an example of appli-
cation of artificial neural networks (ANN) for modeling complex technical objects. A set of
one-directional back-propagation networks was applied to simulate distribution of main 
steam flow parameters in the cycle’s crucial points for a broad range of loading. A very
good accuracy and short computation time was obtained. The advantages make the simula-
tor useful for on-line diagnostic applications where short response time is very important. 
The most important features of the simulator, main phases of its elaboration and a certain 

amount of experience gained from solving the task was presented to make the practical application of the 
method in question more familiar.
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INTRODUCTION

Steam power unit or ship power plant is a very complex 
object. To know its technical state is crucial for carrying out 
its operation in an optimum way, in which diagnostics is of 
a great importance.

Today, apart from safety, the taking care of operational pro-
cess quality to obtain long-term reduction of cost has become 
a priority. It consists in expanding times between overhauls at 
simultaneous maintaining the efficiency of devices on a con-
stantly good level. This is on-line diagnostics which makes 
continuous controlling the technical state of objects under 
operation possible. As it brings large economical profits the
diagnostics becomes more and more important and its dyna-
mical development can be thus explained.

Therefore is needed a device which would be able to accu-
rately determined operational parameters of a given object so 
fast as to make it possible to compare them with current ones. 
To achieve that determination time of a correct operational 
standard should be of the order of milliseconds (resulting 
from sampling frequency of measuring systems). Heat flow
diagnostics of steam power units is based on advanced analy-
tical models. However because of their long computation time 
they can be used in off-line mode only. It means that periodic 
control of technical state of an object can be performed on the 
basis of earlier collected data.

The neural simulator operates as a black box and artificial
neurons acts here instead of sophisticated models. Its response 
process consists in simple mathematical operations. Due to this 
fact a neural simulator is more primitive than an analytical one 
but it provides standard operational parameters of a given object 
very fast and with good accuracy that justifies its application
to on-line diagnostics.

PHASES OF ELABORATION
OF THE NEURAL SIMULATOR

Choice of a simulated object

A standard steam power unit of 200 MW output fitted with
a modernized TK 200 turbine was selected as the object to be 
simulated (Fig.1). Such selection has been justified by the wide
application of units of the kind in Polish electro-energy system.

Training data acquisition

In the ANN method a fundamental thing is to have an 
appropriate set of training data as the rules written in neural 
model structure are generated on their basis. During training 
the network finds only relations between a given “input” and
“output”, contrary to an analytical model elaborated on the 
basis of universal laws of mathematics and physics where 
experimental data serve only to control if theoretical laws are 
in compliance with reality.

Hence to apply the ANN method it is necessary to collect 
in advance a huge amount of experimental data for training 
the network.

For lack of operational data of a real steam power unit this 
author made use of DIAGAR software [2] which served as 
a source of data for elaborating the neural simulator in question.  
Such situation where an analytical simulator provides training 
data is very advantageous as it makes it possible to generate an 
almost arbitrary set of images for training the network. 

Fig.2 shows schematic diagram of computations of the 
object taken into account in DIAGAR software. The main 
steam jet is marked red and regenerative steam extractions are 
signed with Roman numerals.
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Fig. 1. Simplified schematic diagram of the steam power plant, where : B – Boiler, C - Constant pressure condensers, D – Degasifier, DP - Drip pumps,
G - Electric generator, HP - High Pressure unit of condensing turbine, HRH - HP regenerative heaters, LP - Low Pressure unit of condensing turbine,

MP - Medium Pressure unit of condensing turbine, RH - LP regenerative heaters, SC - Steam cooler, SI - Steam injectors,
VC - Cooler of vapours from stuffing boxes, WP - Water supply pump, WT - Water supply tank .

Preparation of the training data set
The training data set consists of independent and dependent 

operational parameters of the power unit [1], namely :

Set of independent parameters :

which define loading state of the steam cycle, see Tab.1.

Set of dependent parameters :

The heat flow parameters of working medium are determi-
ned in 176 points of the cycle. As a result the data set covered 
a wide range of the power unit’s work, and amounted to 6300 
combinations defining various loading states.

 Turbine set’s power output
 Fresh steam pressure
 Fresh steam temperature
 Superheated steam temperature
 Pressure in condenser,

 Mass flow rate (m)
 Pressure (p)
 Temperature (t)
 Enthalpy (h).

Tab. 1. Set of the parameters defining loading states of the power unit [5]
(Parameters of rated working state are marked red.) .

The task consisted in training the network in order to de-
termine a set of diagnostic (dependent) parameters in response 
to a given set of independent operational parameters of the 
power unit.

  
Set of independent operational parameters of the unit

Power
Fresh 
steam 

pressure
Fresh steam 
temperature

Superheated 
steam 

temperature
Pressure in 
condenser

Number of 
combinations

N [MW] po[bar] T1[°C] T2[°C] pk[bar] 6300

120 110 510 510 0.04

140 120 520 520 0.05

160 130 530 530 0.06

180 140 540 540 0.07

200 150 550 550 0.08

560 560 0.09

0.10
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Choice of structural arrangement
of the network and algorithm of its training

During the last 20 years neural networks have been deve-
loped very dynamically. Their structures have been improved 
and new algorithms elaborated. However choice of optimum 
parameters has still remained a time-consuming process as it is 
realized with the use of trial-and-error method. The structures 
and algorithms of training the networks of which the neural 
simulator is consisted, were preliminarily selected on the basis 
of theoretical knowledge [3,4] and the published comparative 
analyses [3].

The most important element of the selection process was 
the testing of effectiveness of particular structures in solving 
the task in question.

Finally, the structure having two processing layers : a hidden 
layer of activating sigmoidal functions and an output layer of 
linear functions, was selected. The series of trial trainings [5] 
revealed that the most effective training algorithm for the task 
in question is that of Levenberg-Marquardt (LM). This is one 
of the fast convergent algorithms which not only converge after 
a small number of training iterations but also are much superior 
regarding network’s response accuracy than other algorithms. 
However the advantages are achieved at expense of high re-
quirements for RAM memory of used computer.

Training process of the network
To train the one-direction network under control the error-

-back-propagation algorithm is usually applied. The error value 
determined in one iteration serves as the basis to correct weights 
and thresholds for the next iteration. This way a continuous 
improvement of network’s response quality is achieved. The 
training terminates when response accuracy determined by 
comparing the response with an assumed standard, is satis-
factory. However many problems have been met in practice, 
namely :

 Too small capacity of RAM memory
of the applied computer

 To obtain satisfactory accuracy of the simulator a very 
large set of training data was required. It resulted in very 
large dimensions of the training matrices (5 x 6300 and  
17 x 6300). The next element was a large capacity of me-
mory demanded by the LM algorithm. A remedy for such 
situation was to limit the number of simulated points of the 

Fig. 3. Schematic diagram of the network’s structure [5],
where :

a1 - response matrix of 1st neural layer (hidden one)
a2 - response matrix of 2nd neural layer (network response)

b1 - vector of weight coefficients for 1st neural layer
b2 - vector of weight coefficients for 2nd neural layer

n1 - matrix of neurons in 1st layer
n2 - matrix of neurons in 2nd layer

P - matrix of network training images
Q - number of network training vectors (images), Q = 6300

R - training vector of 5 elements, R=5
S1 - number of neurons in 1st layer for each training vector (assumed value)
S2 - number of neurons in 2nd layer for each training vector (assumed value)

W1 - matrix of weight factors for 1st neural layer
W2 - matrix of weight factors for 2nd neural layer .

steam cycle down to those most important and to split the 
simulator structure into a greater number of modules.

 Difficulties in obtaining a satisfactory accuracy
of the network’s response

 The to- be- solved problem consisted in simulating distri-
bution of parameters of a real object. Functions of the kind 
often have a very irregular run, with many discontinuities 
resulting from the character of physical phenomena occur-
ring in the power unit, which do not represent only regular 
thermodynamical relationships but also many known and 
unknown disturbances and small irregularities. If a distri-
bution of a given parameter was correct the network was 
able to be trained in generating correct responses. However 
in some load intervals when the irregularities were revealed 
(e.g. when the set values of the unit’s operational parameters 
were very different from those at rated load) the network’s 
responses appeared loaded by a greater error.

 Such situation can be illustrated by the simulation of heat 
flow relationships at the first steam extraction, see Fig.4.
Generally, the steam thermodynamical relationships at this 
point of the cycle are very complex and sensitive to many  
factors, that has resulted in much greater difficulties in ob-
taining a satisfactorily accurate response from the network.  
Therefore this point of the cycle has been treated in a special 
way : it was taken out from the remaining extractions and 
trained separately. The approach made it possible to vacate 
some capacity in RAM memory. Also, the computation time 
was shortened thus it was possible to increase number of  
training iterations. However for some loading states of the 
unit the network was not capable of reducing the response  
error, satisfactorily. As a result the obtained accuracy of the 
network appeared very different, see Fig.5.

 Necessity of application of the networks consisted
of many neurons

 Complexity of the problem requires the network to be con-
sisted of many neurons. In the cases when the network was 
not capable of reducing the error the number of neurons was 
increased. The operation usually improved abilities of the 
network however it was connected with some drawbacks, 
namely :

  increased loading on the processor – computation time was 
greater

  substantially increased loading on RAM memory
  risk of worsening the network’s capability of genera-

lizing.

Fig. 4. Regenerative steam extraction
from the first stage of HP turbine (the shaded area) .
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The generalizing capability of the network consists in co-
ping with data sets not included in its training process, which 
is of fundamental importance for its usefulness to simulate 
phenomena and dependent on the number of neurons, having 
its optimum value.

 Necessity of extending the training process
The second method of reducing the error is the extending 

of training time, apart from the increasing of number of neu-
rons. This is justified only when the reduction goes on. During
training process it often has happened that the network has 
reduced the error very slowly though the maximum possible 
number of neurons (with respect to RAM memory capacity) 
was applied. Then the only way to improve accuracy of the 
network’s response was to increase number of iterations that 
extended training time.

Summing up one can state that in the case in question the 
capabilities of the used hardware (a typical personal computer) 
were of decisive importance; however they did not substantially 
influence the quality of the elaborated simulator though an ad-
ditional time outlay was necessary.

FEATURES OF THE SIMULATOR

The simulator was composed of 12 neural networks. Each of 
them was separately optimized. Due to the hardware limitations 
it was necessary to split all the simulated points of the steam 
cycle into 3 groups (modules), see Fig.2 and 6.

 The main steam jet contains the points 1 through 21 located 
between the boiler and condenser including the flow part
of the turbines.

 The first steam extension is in the point 22 where 3 steam
jets are mixed together : the regenerative steam extension 
from the first stage of the turbine, the steam from the sealing
of HP turbine casing and that from the sealing of control 
valves.

 The remaining extensions (points 23 through 30) are loca-
ted in the remaining steam extension pipelines leading to 
relevant regeneration heat exchangers.

Fig.6 illustrates the procedure of information flow during
the simulation process. Each of the networks operates separa-
tely and provides only one parameter and only within a given 
group of the cycle’s points. In all the 30 points the distribution 

of 4 parameters, i.e. p, m, t, h, can be simulated, or an arbitrary 
module and a parameter can be selected to obtain the pressure 
parameters from p1 to p21. The user can also select one of the 
simulated cycle’s points to know a concrete parameter value.

CONTROL OF OPERATIONAL
ACCURACY OF THE SIMULATOR

Great attention was paid to continuous control of operation 
of the neural networks as they represent rather primitive algori-
thms (not including any interpretation of physical phenomena). 
Also, much work was done to reliably present the simulator’s 
accuracy, especially as it appeared to be very different, depen-
ding on a concrete cycle’s point, simulated parameter and as- 

sumed state of loading.
Fig.7 presents distribution of values of the relative error of 

mass flow simulation for the main steam jet and all combina-
tions of training data.

During simulation of the parameters an error value is 
automatically displayed provided its precise determination is 
possible at all. If a set of load parameters does not belong to that 
of training data then an expected value of the error is given.

A more precise verification of operational quality of the
simulator was performed by using the DIAGAR analytical 
simulator since its responses could be taken as a standard for 

Fig. 6. Schematic diagram of the simulator’s modular structure [6],
where :

h - enthalpy in a given point of cycle [kJ/kg] (resultant)
h1 - h21 - enthalpy put out by 1st module of simulator : main flow

h22 - enthalpy put out by 2nd module of simulator :
1st regenerative steam extraction

h23 - h30 - enthalpy put out by 3rd module of simulator :
remaining regenerative steam extractions

m - mass steam flow rate in a given point of cycle [kg/s] (resultant)
m1 - m21 - mass steam flow rate put out by 1st module of simulator : main flow

m22 - mass steam flow rate put out by 2nd module of simulator :
1st regenerative steam extraction

m23 - m30 - mass steam flow rate put out by 3rd module of simulator :
remaining regenerative steam extraction

N - assumed output of steam power unit [kW]
p - pressure in a given point of cycle [bar] (resultant)

p1 - p21 - pressure put out by 1st module of simulator : main flow
p22 - pressure put out by 2nd module of simulator :

1st regenerative steam extraction
p23 - p30 - pressure put out by 3rd module of simulator :

remaining regenerative steam extractions
pk - assumed value of pressure within condenser [bar]

Po - assumed value of fresh steam pressure [bar]
t - temperature in a given point of cycle [°C] (resultant)

t1 - t21 - temperature put out by 1st module of simulator : main flow
t22 - temperature put out by 2nd module of simulator :

1st regenerative steam extraction
t23 - t30 - temperature put out by 3rd module of simulator :

remaining regenerative steam extractions
To - assumed value of fresh steam temperature [°C]

Tp - assumed value of superheated steam temperature [°C] .

Fig. 5. Distribution of the relative error of pressure simulation training
at the first steam extraction, for the whole set of training data.

The mean error : 0.04 %, the maximum error : 0.65% [5] .
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the neural simulator. This way at the expense of some additional 
efforts response uncertainty of the network could be reduced 
to a minimum. Such operation was performed for the first
steam extraction and due to its specificity an additional set of
testing data was taken from the DIAGAR and on its basis the 
network’s generalization accuracy was determined for this 
module. In Fig.8 is presented an example of the results of the 
above described operation for distribution of mass flow rate
at the first steam extraction. A testing data set not contained in
the training data but belonging to the same loading range, was 
put into the network.

SUMMARY

  The neural simulator of the steam power unit was elaborated 
to investigate possibility of its application to an on-line 
diagnostic system for so complex objects as steam turbine 
power plants are.

  The presented simulator is a tool of the following features :

  simple in use
  fast in operation : determination time of one parameter 

in 30 points of the cycle amounts to 30 ms
  sufficiently exact
  inexpensive : to its manufacturing only a set of ope-

rational parameters of a considered object, MATLAB 
software and a typical personal computer is required.

  On the basis of the performed task were also analyzed some 
practical aspects of the neural modeling method, consti-
tuting its merits and drawbacks related to the considered 
application. The most important merit is the possibility 
of omitting the long analytical modeling process, hence 
lowering the modeling cost; and, the most important draw-
back is that the neural model does not include any physical 
interpretation of phenomena.

  Modelling by means of neural networks is realized on the 
basis of existing operational or statistical data. In the case 
when character of a phenomenon is complex and multidi-
mensional, and first of all not quite recognized, as well as
when availability of the data is high, then such conditions 
can be taken as very favourable for neural modelling.  
In some cases the method is the most suitable, and someti-
mes the only possible. In other cases it can be useful as an 
aiding element for analytical models.

  The tasks assigned to advanced diagnostic systems applica-
ble to large technical systems make that so different appro-
aches as analytical methods, hidden ones (neural networks) 
or fuzzy logic, are used for them. Their mutual interaction 
is often very favourable for accuracy and credibility of an 
obtained result, i.e. assessed technical state of an object.
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Fig. 7. Distribution of simulation error of enthalpy parameter
for the main steam jet (21 points of the cycle) [5] .

R
el

at
iv

e 
er

ro
r [

-]

Area of relative error of mass simulation training for
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Fig. 8. Results of testing the network’s generalization capability
for mass flow rate at the first steam extraction .
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