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ABSTRACT

The paper presents an analysis of measurements taken on ship hull blocks to assess their 
feasibility for the final stage of assembly in a dry dock or on a slipway. The analysis 
requires first to check if blocks were manufactured within tolerances assumed in design and 
then to compare if two neighbouring blocks can be joined to each other. As each block is 
measured in a different coordinate system it is necessary to make transformations and bring 
results to a common CAD model without loss of accuracy. An algorithm for optimizing the 
transformation process to obtain better results, is proposed. The optimization is aimed at 

minimizing the sum of distances between transformed points and corresponding points in a CAD model. 
Description of the optimization method and example of its application is also presented. The problem of 
transformation of measurements or coordinate systems is more general as it can be found, apart from 
shipbuilding , e.g. in civil engineering, cartography, robot control, pattern recognition, medical imaging.

Keywords: co-ordinate system transformation; ship hull measurements; 
ship hull assembly; computer aided design (CAD)

INTRODUCTION

The dimension control of pre-fabricated hull structural units 
and blocks is very important in the process of building ship’s 
hull. It is crucial for the shipyard to be sure that units and blocks 
being brought to a dry dock or slipway have dimensions within 
assumed tolerances and that they do not require corrections as 
the time necessary to join them should be as short as possible. 
Corrections of units and blocks, conducted outside workshop 
where they have been manufactured, are very time consuming. 
Moreover it slows down the final hull assembly which is usually 
a bottleneck in every shipyard production process.

Two comparisons should be done to check dimensions of the 
units and blocks. It is first necessary to check if the dimensions 
are within design tolerances. If yes, then two neighbouring 
blocks should be checked against each other to know where 
differences occur and of what size they are. This information 
may influence the way in which the neighbouring units and 
blocks are joined.

Prefabricated elements are usually measured by means of 
modern laser-optic instruments. Results of the measurements 
are presented as a set of coordinates of points in three 
dimensional space. To verify the dimensions it is necessary 
to compare location of measured points with a CAD model. 
Thus the measured points must be brought to the CAD model 
coordinate system. This requires an isometric transformation 
of the measurement results to be performed. Usually such 
transformation is done intuitively by an experienced specialist 
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who checks the dimensions. To avoid human errors and make 
the process faster an algorithm intended to be implemented 
as a computer program and hence to solve the problem, is 
proposed.

MEASUREMENTS – ACCURACY, 
DIFFICULTIES

Measurements must be done with proper accuracy. 
Accuracy is one of the main characteristics of measuring 
instrument. Only measurements taken with the use of a proper 
accuracy instrument may be further analyzed. Unfortunately 
most popular instruments used in land surveys or at construction 
sites are not precise enough for shipbuilding purposes.

Measurements of ship’s hull units and blocks are difficult. 
There are two main reasons of the difficulties. The first reason 
is location of measured points within unit or block. Measured 
points are usually not located at the edges, but inside and 
they are hidden behind stiffeners, longitudinal or transverse 
elements. The second reason is position of a given unit or 
block against its neighbourhood. Prefabricated units and 
blocks are often stored close to each other as shown in Fig. 2, 
because of limited space in shipyard. In such cases certain 
measurement points may be accessible only from one side of 
a unit or block and the rest from the other side. Taking direct 
measurements is rather impossible in narrow gaps between 
units and blocks or in hidden locations therefore additional 
techniques must be applied. It is very important not to lose 
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accuracy while applying the techniques because it may lead 
to incorrect results.

If one unit or block is measured from different positions 
it is also very important to properly relate both series of 
measurements to each other. It is achieved either by choosing 
certain points common for both series of measurements or 
by establishing a common coordinate system with the use of 
measuring instrument functions.

There are many different measuring techniques, e.g. with 
application of visible laser, invisible laser, with reflector, 
without reflector, automatic search, scanning etc. Each of 
them has its advantages and disadvantages. However the 

problem is not discussed in this paper. Attention is focused on 
transforming results of measurements to assess if prefabricated 
units and blocks are suitable for further assembly. It is assumed 
that measurements are taken with a satisfying accuracy. 

TRANSFORMATION OF MEASUREMENTS 

Measurements of each unit or block are taken in different 
coordinate systems. The coordinate system is arranged 
according to local situation where the measurements are 
taken. All measured points have corresponding points in the 
design and in the other unit or block with which it will be 

Fig. 1. Units and blocks of ship’s hull in an exploded view

Fig. 2. Prefabricated ship’s hull units and blocks in positions in which they are measured
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joined. Therefore the transformation is constrained by the 
following:
• it must keep distances between measured points within 

a unit or block,
• it must not lose accuracy.

The purpose of the transformation is to obtain the best fit 
between measured points and points taken from CAD model 
or the other unit or block. In other words, the transformation 
of measurement results is aimed at minimization of the sum 
of distances between corresponding points. 

The problem of transformation of measurements is very 
similar to the shape recognition or pattern recognition problem. 
In the shape recognition problem, however, we search for 
transformation of one set of points to best fit to the other set 
of points in situation we do not know if the two sets of points 
correspond to each other. Results of the best transformation 
show how much similar the two sets of points are. In the case 
of question we know that points in the two sets correspond to 
each other and we search for an optimum transformation.

Shape recognition problem
Shape recognition is a well known problem. In most general 

form its definition is as follows:

Definition 1
Given two sets of points A {a1, a2, a3, …, ak} and C {c1, c2, 

c3, …, cm} in d-dimensional space, where k is not necessarily 
equal to m, find the similarity transformation parameters 
giving the minimum value of the squared distance between 
corresponding points in these two point sets.

Since the1980s different solutions of the problem were 
described in many sources e.g. [1, 2, 3, 5, 7, 8, 9, 10].

There are several kinds of the problem depending on:
• known/unknown correspondence between points in the two 

sets
• equal/unequal number of points in the two sets (phantom 

points)
• only distance preserving transformation allowed/scaling 

transformation allowed.

Flick & Jones [5] give a very general formulation of 
a d-dimension to d-dimension mapping problem with the 
possibility of omission, phantom and unknown transformation. 
Their basic idea is to write down the probability equation for the 
image based on a given object by all the possible matchings, and 
then to find the best parameters and the best matching by using 
the maximum probability principle. However, due to the large 
number of parameters in the equation and the computational 
complexity in doing all the possible matchings, a solution is 
generally intractable unless the number of points is small. 

When the correspondences between the point sets are 
unknown a priori a popular approach to solving the problem 
is the class of algorithms based on the Iterated Closest Point 
(ICP) technique introduced by Besl [3] and Zhang [11]. ICP is 
attractive because of its simplicity and performance. Although 
the initial estimate does need to be reasonably good, the 
algorithm converges relatively quickly. 

Arun et al. [1] address the „absolute orientation problem” 
of finding the least squares solution of a rotation and translation 
of rigid body transformation. The algorithm [1] sometimes 
gives a reflection instead of rotation transformation. Umeyama 
[10] presents a refinement to [1] that always gives a correct 
rotation matrix and also handles scaling transformation. 

Ramos & Verriest [9] point out that while [10] returns a correct 
rotation in the degenerate cases where [1] fails, it does so 
at the expense of larger fitting errors. Ramos & Verriest [9] 
propose a method based on a mixed least squares - total least 
squares solution, assuming noises to be present in both point 
series to be fitted. The methods presented in [1, 9, 10] have 
the disadvantage of requiring both data sets to have the same 
number of points, and that the point-to-point correspondence 
is known a priori. On the contrary, Goodrich et al. [6] solve the 
„approximate geometric pattern matching problem”, based on 
the approximate minimizing of the direct Hausdorff distance 
from the pattern set to the background set, conducted by using 
rigid body transformation. The point sets can be of different size 
and the point-to-point correspondence is not assumed. 

Definition of measurement transformation 
problem 

The problem of measurement transformation is a special 
case of shape recognition problem. In the case in question we 
assume that the correspondence between the points in the sets 
is known exactly and the scaling when transforming one set of 
points into the other, is not allowed. Formal definition of the 
problem is as follows:

Definition 2
Given two sets of points A {a1, a2, a3, …, ak} and C {c1, c2, 

c3, …, ck}, we search for isometric transformation of points 
in the set A which produces minimum sum of distances with 
corresponding points in the set C. We assume that each point 
of the set A has exactly one corresponding point in the set C 
and each point of the set C has exactly one corresponding 
point in the set A. Points are labelled and their coordinates in 
3-dimensional space are known.

For us, isometric transformation is a composition of 
translations and rotations. We do not allow symmetry (mirror) 
which is also isometric transformation. Formula (1) defines 
isometric transformation matrix I which depends on six 
parameters: x, y, z - coordinates of translation and χ, β, α - 
angles of rotation about X, Y and Z axes.

I(x, y, z, χ, β, α) = T(x, y, z) · R(χ, β, α)     (1)

OPTIMIZATION OF MEASUREMENT 
TRANSFORMATION

According to Definition 2 given in the previous paragraph, 
we must define criterion function for the measurement 
transformation problem. We assume distance to be the metrics 
in 3-dimensional space. The square of the distance is also 
a metrics and it is less complicated for calculation hence the 
criterion function is presented in the form of the formula (2).

(2)

where:
k - number of points in the set C and the set A

Since we transform ai points with isometric transformation 
matrix I(x, y, z, χ, β, α) our criterion function depends on six 
decision variables as presented in formula (3).

(3)

By using the criterion function (3) it is possible to calculate 
an approximate value of the sum of distances between 
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corresponding points in the set C and transformed points in the 
set A. The aim is to find such values of the decision variables 
x, y, z and χ, β, α, which produce the minimum result of the 
criterion function (3).

Other possible optimization criteria 
and constraints

Measurement results of sections and blocks are transformed 
and analyzed to assess if sections and blocks can be joined 
together. Minimum sum of distances between points on seams 
on both joined sections or blocks is the most obvious criterion 
but not the only one to be used. While building the ship’s 
hull it is crucial to keep decks planar and adjusted to axes. 
A measure of how coplanar or how coaxial the sections and 
blocks are, might also be used as an optimization criterion. 
Alternatively, it can be used as a constraint, hence only these 
transformations which yield coplanar and coaxial results within 
certain tolerance, are accepted.

Optimization method
There are many methods to minimize function (3). Briefly, 

they can be divided into two categories: deterministic and 
probabilistic. Deterministic methods are proven to find 
a solution when optimized function has certain properties. 
Not all functions conform to restrictions of deterministic 
methods. 

In our case the criterion function (3) is well defined. To find 
the minimum for the function (3) we use a deterministic method 
– the Newton’s method described by the formula (4).

xn+1 = xn – H-1 · g                          (4)

where:
x - a vector of decision variables.

This is an iterative method described by Bjorck & Dahlquist 
in [4], which requires calculation of the gradient g and Hessian 
matrices H of the function (3). To start, we assume some initial 
values of the vector of decision variables xn and calculate next 
values of the vector of decision variables xn+1. In each step we 
receive values of decision variables, which produce smaller 
result of the function (3). The advantage of the Newton’s 
method is a quick convergence and stability.

Point - to - point correspondence
In case of measurement analysis, exactly one measured 

point must correspond to exactly one point in a CAD model or 
located on the other section or block. The one- to- one- point 
correspondence is a very fundamental assumption. This is so 

important, because in contrast to the shape recognition problem, 
it is not the aim to check whether the point sets resemble each 
other, which is always true, but to precisely state the minor 
differences between point sets. In case of shape recognition, 
it is a perfect match if the two patterns of size of about 10 
meters have distances between corresponding points of about 
30 mm. In case of measurement transformation it is of a great 
importance if to minimize this distance from 30 mm to 10 mm, 
is possible at all.

Labels in point sets allow to control the correspondence 
between points in the two sets. Assigning labels is time 
consuming, but prevents from mirror matchings. As the 
constructions in question are usually symmetric, sometimes 
about two axes, it is quite easy to lose orientation without 
a proper labelling. The labelling also prevents from matching 
sections or blocks which are similar in shape but are not to 
be joined. Clear labelling system of measured points helps in 
storing and retrieving measurement results.

Application example results
The above described method was implemented in a program 

used for visualization and checking of measurements of ship’s 
hull units and blocks. Measurements of two neighbouring 
sections of a ship’s double bottom were taken as an example. 
Fig. 3 shows a view of both sections.

Tab.1 presents comparison of measured points and points 
from CAD model of the portside section, where measurement 
transformation was done by intuition. Tab. 2 presents the 
same comparison, but the transformation was optimized by 
the program.

Tab. 3 presents comparison of measured points and points 
from CAD model of the starboard section, where measurement 
transformation was done by intuition. Tab. 4 presents the 
same comparison, but transformation was optimized by the 
program.

In both cases the optimized transformation is better. In the 
case of the portside section the sum of distances is only slightly 
smaller and the maximum distance between points decreased 
from 19,36 mm to 17,50 mm. In the case of the starboard 
section the difference is more significant. The sum of distances 
is two times smaller and the maximum distance decreased from 
30,05 mm to 17,21 mm. 

DIRECTIONS OF FUTURE RESEARCH 

Further research investigations are expected to be conducted 
in two main directions: the automatic recognition of measured 
points and the automatic selection of points to be measured. The 

Fig. 3. Neighbouring sections of a ship’s hull double bottom with measured points marked with numbers
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Tab. 1. Comparison of measured points and points from CAD model of the portside section – intuitive transformation

CAD model points Transformed measured points Comparison
Label X Y Z Label X Y Z dX dY dZ dist
101 133400 0 0 01 133413.87 0.00 0.00 -13.87 0.00 0.00 13.87
102 130200 0 0 02 130194.79 1.10 0.18 5.21 -1.10 -0.18 5.32
103 128400 0 0 03 128384.61 0.68 2.49 15.39 -0.68 -2.49 15.60
104 125200 0 0 04 125202.71 0.00 3.83 -2.71 0.00 -3.83 4.69
105 122000 0 0 05 122000.00 0.00 0.00 0.00 0.00 0.00 0.00
106 133400 0 1950 06 133409.37 15.59 1944.57 -9.37 -15.59 5.43 18.98
107 130200 0 1950 07 130192.01 0.54 1950.39 7.99 -0.54 -0.39 8.02
108 128400 0 1950 08 128380.91 0.16 1953.21 19.09 -0.16 -3.21 19.36
109 125200 0 1950 09 125195.10 -0.51 1950.17 4.90 0.51 -0.17 4.93
110 122000 0 1950 10 121995.62 0.00 1951.82 4.38 0.00 -1.82 4.74

Sum of dist 95.51
Tab. 2. Comparison of measured points and points from CAD model of the portside section – optimized transformation

CAD model points Transformed measured points Comparison
Label X Y Z Label X Y Z dX dY dZ dist
101 133400 0 0 01 133417.11 -3.66 0.15 -17.11 3.66 -0.15 17.50
102 130200 0 0 02 130198.04 -0.65 -0.14 1.96 0.65 0.14 2.07
103 128400 0 0 03 128387.86 0.00 1.90 12.14 0.00 -1.90 12.29
104 125200 0 0 04 125205.95 1.21 2.77 -5.95 -1.21 -2.77 6.67
105 122000 0 0 05 122003.24 3.11 -1.52 -3.24 -3.11 1.52 4.74
106 133400 0 1950 06 133412.34 9.14 1944.74 -12.34 -9.14 5.26 16.23
107 130200 0 1950 07 130194.97 -4.02 1950.07 5.03 4.02 -0.07 6.44
108 128400 0 1950 08 128383.87 -3.32 1952.62 16.13 3.32 -2.62 16.68
109 125200 0 1950 09 125198.06 -2.10 1949.11 1.94 2.10 0.89 3.00
110 122000 0 1950 10 121998.57 0.30 1950.29 1.43 -0.30 -0.29 1.49

Sum of dist 87.11
Tab. 3. Comparison of measured points and points from CAD model of the starboard section – intuitive transformation

CAD model points Transformed measured points Comparison
Label X Y Z Label X Y Z dX dY dZ dist

111 133400 0 0 11 133400.00 0.00 0.00 0.00 0.00 0.00 0.00
112 130200 0 0 12 130185.96 -0.76 -2.74 14.04 0.76 2.74 14.33
113 128400 0 0 13 128375.40 -1.28 -0.42 24.60 1.28 0.42 24.64
114 125200 0 0 14 125186.42 -2.56 -0.45 13.58 2.56 0.45 13.83
115 122000 0 0 15 121986.27 0.00 0.00 13.73 0.00 0.00 13.73
116 133400 0 1950 16 133401.79 0.00 1948.05 -1.79 0.00 1.95 2.65
117 130200 0 1950 17 130178.92 2.05 1945.82 21.08 -2.05 4.18 21.58
118 128400 0 1950 18 128370.33 3.71 1947.05 29.67 -3.71 2.95 30.05
119 125200 0 1950 19 125180.79 0.43 1949.68 19.21 -0.43 0.32 19.21
120 122000 0 1950 20 121980.13 3.76 1950.81 19.87 -3.76 -0.81 20.24

Sum of dist 160.26
Tab. 4. Comparison of measured points and points from CAD model of the starboard section – optimized transformation

CAD model points Transformed measured points Comparison
Label X Y Z Label X Y Z dX dY dZ dist

111 133400 0 0 11 133415.46 -1.34 1.56 -15.46 1.34 -1.56 15.60
112 130200 0 0 12 130201.42 -0.35 -1.38 -1.42 0.35 1.38 2.01
113 128400 0 0 13 128390.86 0.32 0.83 9.14 -0.32 -0.83 9.19
114 125200 0 0 14 125201.88 1.84 0.60 -1.88 -1.84 -0.60 2.70
115 122000 0 0 15 122001.72 -0.47 0.86 -1.72 0.47 -0.86 1.98
116 133400 0 1950 16 133417.13 1.56 1949.62 -17.13 -1.56 0.38 17.21
117 130200 0 1950 17 130194.26 -0.24 1947.19 5.74 0.24 2.81 6.39
118 128400 0 1950 18 128385.67 -1.77 1948.31 14.33 1.77 1.69 14.54
119 125200 0 1950 19 125196.13 1.77 1950.73 3.87 -1.77 -0.73 4.32
120 122000 0 1950 20 121995.47 -1.32 1951.67 4.53 1.32 -1.67 5.01

Sum of dist 78.95
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points to be measured are now clearly indicated in measurement 
instructions which are a part of the workshop design. The points 
are chosen by designers and production engineers who design 
techniques of the assembly process.

As the ship hull sections and blocks are manufactured it 
seems possible to use some new marking method to make the 
points of interest for measurements distinguishable, e.g. paint 
of a special kind, magnetic or radio location etc. This way, the 
time-consuming pointing of each measured point by means of 
a mirror or a pole, could be omitted.

The automatic selection of measured points requires to have 
knowledge about construction. In order to choose appropriate 
points this knowledge should be built into the program which 
makes decisions instead of a human being. It is difficult but 
might be possible by applying knowledge engineering and 
artificial intelligence. The other solution could be obtained by 
using the scanning of entire section or block. The comparing of 
entire elements may eliminate choice of points to be measured. 
However the precise scanning of large elements is a problem. 
Moreover, sections and blocks in a shipyard are usually 
stored close to each other or close to other constructions like 
scaffolding, cranes etc. In such conditions separating scanned 
element from surroundings is a serious task.

CONCLUSIONS

• Optimization of measurement transformation of ship 
blocks is very important for the assessment if blocks were 
manufactured within assumed tolerances and if they can 
be assembled in a dry dock or on a slipway. The presented 
method was implemented to the computer program for 
visualisation and assessment of measurements of ship 
blocks. Transformation of measurements is done while 
reading results of measurements in 3-dimensional model 
of a ship hull. Since the iterative optimization method 
converges quickly, in about 5 iterations usually, the results 
are immediate. 

 The method has the following advantages:
- easy for implementing (derivatives of only trigonometric 

functions and polynomials) 
- quick convergence, immediate results – it requires only 

a few (about 5) iterations to find a minimum,
- it eliminates analysis of how to align measurement 

results with a CAD model,
- it eliminates human errors when transforming 

measurements results into a CAD model.

• The only disadvantage of the method is that it requires exact 
correspondence between measurement points and CAD 
model points.

• This method is also assumed to be applied to a possible 
future research. The transformation of measurements is 
necessary and not dependent on a way the measured points 
are selected. From the user point of view, the application of 
the method which automatically transforms measurements 
to get the best fit with CAD model, saves time and makes 
results clear to be assessed.
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