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INTRODUCTION

Chemical compounds of oxygen and nitrogen (NOx) emitted 
to the atmosphere with the exhaust gas from a ship engine are 
a source of pollution of the marine environment. In order to 
prevent negative effects on the environment, the International 
Marine Organisation adopted Annex VI to the MARPOL 73/78 
Convention. This Annex forces the ship owners to reduce the 
emission of NOx down to the agreed limits defined in the NOx 
Technical Code [1]. According to these regulations, each ship 
engine with power exceeding 130 kW is to have a certificate 
which confirms the compliance of the level of NOx emitted by 
the engine with the limits in force. Obligatorily, this certificate 
is to be prolonged after a certain time period, which is done 
by comparing selected engine parameters which are decisive 
for NOx emission with the records collected in a technical file 
specially created for this purpose. Any changes in the engine 
structure or control system which go beyond the scope defined 
in the technical file require new measurements performed 
directly on the ship. Unfortunately, the ship power plant is 
not equipped, as a rule, with a proper exhaust gas analyser, 
which makes performing these measurements extremely 
difficult. Moreover, the measurements of NOx concentration 
are to be done at precisely defined engine operation points. 
For the main engine, this means withdrawal of the ship 
from operation for the time of measurement, a requirement 
which leads to remarkable increase of operating costs. The 
regulations of the NOx Technical Code make it possible to 
use a simplified method of measurement, compared to that 
used in land applications, which requires the measurements 
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at 4 points of engine operation only. This approach, however, 
results in decreased accuracy of the measurements. That is why 
Code regulations permit the possibility to exceed the assumed 
emission limits by 10% in case of measurements performed 
on an engine supplied with diesel oil, and 15% for an engine 
supplied with heavy fuel oil.

The above situation is the reason why numerous research 
centres search for alternative methods for evaluating the level 
of NOx emitted by an internal combustion engine. Kyrtatos 
at al. [2] proposed a “software sensor for exhaust emissions 
estimation” built based on a multi-zone, thermochemical model 
of NOx production in the cylinder chamber of an engine. This 
model takes only into account the Zeldowicz mechanism of 
NOx production [3]. A continuation of this method is a zero-
dimensional, thermochemical model proposed by the author 
of this article [4, 5]. It was worked out based on the Konnov 
model [6] and includes 724 chemical reactions between 83 
compounds taking part in the fuel combustion process in the 
engine cylinder. The results of the investigations confirm the 
applicability of the model for evaluating the NOx emission 
level, but only with respect to a given engine. Extending 
the model application range requires the implementation of 
more complicated calculation algorithms, which goes beyond 
calculating abilities of the computers available on ships. The 
cost of modelling can be reduced by the use of an Artificial 
Neural Network (ANN) as a general-purpose approximator of 
complicated calculation algorithms. The ANN training method 
proposed by Werbos [7] and bearing the name of the error 
back propagation method makes it possible to use the ANN 
in various branches of knowledge. Wang et al. [8], Oladsine 

Jerzy Kowalski, Ph.D.
Gdynia Maritime University 

ABSTRACT

The article presents results of a study on the possible application of artificial neural networks (ANNs) to 
the evaluation of NOx concentration in the exhaust gas of a marine two-stroke Diesel engine. A concept 
is presented how to use the ANN as an alternative to direct measurements carried out on a ship at sea. 
Methods of proper ANN selection, configuration and training are presented. Also included are the results 
of laboratory tests, performed to obtain data for ANN training and tests, and the results obtained from 
modelling certain processes with the aid of selected ANNs. As a result of the performed investigations, an 
ANN was constructed and trained to calculate NOx concentration in the Diesel engine exhaust gas based 
on the engine operation parameters measured with an average error of 1.83% , and the fuel consumption 

measured with an average error of 1.12%.

Keywords: artificial neural network; marine two-stroke engine; 
NOx concentration; Annex VI to Marpol Convention

POLISH MARITIME RESEARCH 2(60) 2009 Vol 16; pp. 60-66
10.2478/v10012-008-0023-7



61POLISH MARITIME RESEARCH, No 2/2009

et al. [9], and Hafner et al. [10] used ANNs for adjusting 
piston engines, while Stephan et al. [11] - for controlling the 
combustion process in the power plant boiler. Yang et al. [12] 
and Ramadhas et al. [13] used ANNs for predicting the cetane 
number for the mixtures of fuels, while Lee et al. [14] used 
ANNs for modelling the range of fuel injection to the engine 
cylinder chamber. ANNs were also used in the combustion 
process models to reduce the cost of the algorithm calculation 
[15] – [21], and for determining specific fuel consumption [22, 
23], combustion process temperature [24], air/fuel equivalence 
ratio [25], the emission of carbon oxide and hydrocarbons [26] 
– [28], and even failures of piston engines [29].

The article presents the application of the ANN to modelling 
the combustion process in a two-stroke piston engine in order to 
assess the level of NOx emission in the exhaust gas. Selection 
of the model input data is described, along with the ANN 
structure and the method used for its training. The description 
of laboratory tests and results of calculations performed using 
selected ANN configurations are included.

NOX PRODUCTION IN THE ENGINE 
CYLINDER CHAMBER

Compounds belonging to the NOx group are produced in the 
engine cylinder chamber as a result of oxidation of the nitrogen, 
taken from the air and combusted fuel, in high-temperature and 
high-pressure conditions. The nitrogen oxidation reactions are 
reversible, but the rate of the NOx decomposition reaction is 
relatively slow and decreases with the decreased temperature 
of the combustion process. This factor is a source of „freezing” 
of the NOx’s, which, undecomposed, are released to the 
atmosphere as a result of engine cylinder scavenging. Many 
years’ investigations over the NOx production Combusted 
mixtures with diverse parameters revealing various chemical 
mechanisms the chemical mechanisms which explains the 
process of production of those compounds during combustion. 
Based on the thermal mechanism, named the Zeldowicz 
mechanism [30], we can conclude that the main parameter 
affecting the amount of NOx compounds produced during 
the combustion process is the temperature. The Zeldowicz 
mechanism, consisting of only 3 reversible chemical reactions, 
has a clearly dominating effect on the amount of NOx produced 
in the conditions observed during the combustion in the cylinder 
chamber of a supercharged piston engine. Among other facts, 
this is confirmed by the results of investigations presented in 
[30] and [31]. Prolonging the process of combustion of the 
combusted mixture in high-temperature conditions increases the 
amount of produced NOx, until the equilibrium concentration is 
reached [32]. According to the conclusions formulated in [33], 
the next parameter in the combustion process which affects the 
amount of the produced NOx is the pressure, the increase of 
which results in the decrease of molar NOx concentration in 
the burned mixture. The investigations performed by Lyle at al. 
[34], show the effect of the air content in the burned mixture 
on the amount of the produced NOx’s. For rich mixtures, 
the dominating mechanism of NOx production in the engine 
cylinder chamber regions in which relatively small air content 
is observed is the Fenimore prompt mechanism. But increasing 
the air content above the stoichiometric mixture level leads to 
the increase of the NOx content in the burned mixture, caused 
by the domination of the thermal mechanism. Further increase 
of the air content results in cooling the burned mixture and the 
resultant decrease of the NOx content. Kuo [35] presented the 
dependence of the NOx concentration in the burned mixture 
on fuel composition and combustion rate. The obtained results 
confirm the effect of the fuel composition on the combustion 

rate and NOx concentration in the mixture, but this effect is 
not unambiguous. 

Based on the above presented discussion we can conclude 
that the amount of NOx produced in the burned mixture is 
mostly affected by: 
� temperature of the combustion process
� pressure of the combustion process
� time duration of the combustion process
� composition of the burned mixture.

During the combustion process, these parameters 
change periodically in the piston engine and cannot be 
measured directly on-board. That is why, leaving aside direct 
measurements, the evaluation of the level of NOx emission in 
sea conditions should be executed by measuring other engine 
operation parameters which affect the above listed combustion 
process parameters. Author’s investigations in this area [36] 
confirm that the measurements of engine operation parameters, 
performed at sea using a standard measuring instrumentation, 
are sufficient for evaluating the level of NOx emission from 
the engine when a relevant thermochemical calculation 
algorithm is applied. Unfortunately, the application of such an 
algorithm requires large computing powers, usually unavailable 
on-board [6], [37] – [39]. Consequently, the application of 
a calculation algorithm to replace direct measurements of 
NOx concentration in the engine exhaust gas seems to be 
questionable. On the other hand, the use of a properly trained 
ANN as a approximating the thermochemical algorithm can 
provide opportunities for evaluating the NOx concentration 
with a predetermined accuracy in the exhaust gas emitted by 
the engine in operation. 

MODEL INPUT DATA 

According to the ANN theory [40], the ANN input 
data should reveal mutual independence. That means that 
any change of the value of one input data must not affect 
another data delivered to the ANN model input. That is why 
the ANN input data which model the amount of the NOx 
emitted by the engine are to be selected in such a way that 
they describe the above-named engine combustion process 
parameters, which affect NOx concentration in the engine 
exhaust gas, in a most comprehensive way. The selected 
parameters should also be able to be measured on the ship 
at sea, and should be mutually independent. The complexity 
of the physicochemical processes taking place during engine 
operation can make meeting these conditions, especially 
the last one, impossible. When analysing the above selected 
parameters which affect the amount of NOx produced in the 
burned mixture we can conclude that the composition of the 
burned mixture in the engine cylinder depends directly on 
initial mixture concentration, defined by the parameters of 
the air and fuel delivered to the cylinder. Of high importance 
is also the concentration of the components in the burned 
mixture, which depends on the injection characteristics, 
available in modern designs of two-stroke engines with 
electronic valve timing [41] in a form of injection pressure 
measurement results. The time of mixture combustion in the 
cylinder depends on the rotational speed of the engine, for the 
assumed constant setting parameters of the valve timing or 
camshaft timing. The pressure of the combustion process can 
be indirectly determined by engine indication. Only selected 
indicator diagram parameters characterising the quality of the 
combustion process were used for modelling purposes. The 
temperature of the combustion process, different in different 
regions of the cylinder chamber and changing with angular 
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crankshaft position, cannot be directly measured during 
engine operation at sea. Therefore it is to be described by 
the parameters of fuel injection and cooling system, and the 
temperature of the engine exhaust gas. 

Following the abovementioned discussion, 15 model input 
data were selected:
	 temperature of the scavenging air
	 humidity of the scavenging air
	 fuel consumption
	 air/fuel equivalence ratio
	 rotational speed of the engine
	 mean indication pressure
	 maximum indication pressure
	 angular crankshaft position at the maximum indication 

pressure
	 maximum injection pressure
	 angular crankshaft position at the maximum injection 

pressure
	 fuel temperature before the injection pump
	 exhaust gas temperature
	 water temperature at cooling system inlet
	 water temperature at cooling system outlet
	 water pressure in the cooling system.

It is noteworthy that for the ship at sea the fuel consumption 
is frequently determined in a very inaccurate way, by checking 
levels in fuel tanks every 24 hours. Although sufficient for fuel 
management purposes, such a measurement may turn out too 
inaccurate to be used in the proposed model. That is why a fuel 
consumption analysis oriented of engine combustion process 
parameters was done. This analysis made it possible to select 
parameters which can be used as ANN input data to determine 
the fuel consumption. In this case 16 model input data were 
selected, which were:
� temperature of the scavenging air
� pressure of the scavenging air
� fuel temperature before the injection pump
� fuel pressure before the engine
� exhaust gas temperature
� exhaust gas pressure
� mean indication pressure
� maximum indication pressure
� pressure in the cylinder at the initial injection point 

(7° before the top dead centre position of the piston)
� angular crankshaft position at the maximum indication 

pressure
� maximum injection pressure
� angular crankshaft position at the maximum injection 

pressure
� range of angular crankshaft positions during fuel 

injection
� water temperature at cooling system inlet
� water temperature at cooling system outlet
� water pressure in the cooling system.

The input data for ANN training, and the output data for the 
verification of the results of modelling were collected during 
tests performed on the L-22 laboratory engine installed in the 
Marine Engine Laboratory, Gdynia Maritime University. This 
is a one-cylinder two-stroke crosshead Diesel engine with loop 
scavenging, supplied with Diesel oil (Lotos EuroDiesel EKO 
Z, the density of which is 829.6 kg/m3 at the temperature of 
15ºC) and supercharged by an independently driven Roots 
blower. A detailed description of the laboratory stand is 
given in [42] and the basic engine parameters are collected 
in Tab. 1.

Tab. 1. Basic engine parameters 

Nominal power [kW] 73.5
Maximum rotational speed [rev/min] 600
Cylinder bore [mm] 220
Piston stroke [mm] 350
Compression ratio [-] 18.5

The data were recorded during 3 investigation sessions, 
each of which included 10 observations of engine operation 
at two rotational speeds equal to 200 rpm and 360 rpm. The 
measurements in those sessions were done:
� every 5 minutes from engine start, during its cold start with 

the load of 25% of the nominal torque
� when the engine was loaded from 75% down to 25% of 

the nominal torque, according to the schedule presented 
in Tab. 2

� during engine operation at the load equal to 25% of the 
nominal torque, for changing air/fuel equivalence ratio.

The engine loads (T), as percents of the nominal torque (Tn) 
and engine rotational speeds (n) are given in Tab. 2.

Tab. 2. Engine operation cycles during data recording 

No. 1 2 3 4 5 6 7 8 9 10 11
T [% Tn] 75 70 65 60 55 50 45 40 35 30 25
n [rpm] 200

No. 12 13 14 15 16 17 18 19 20 21 22
T [% Tn] 75 70 65 60 55 50 45 40 35 30 25
n [rpm] 360

During the laboratory tests, 228 data sets were collected 
for different engine operation points.

ANN CONSTRUCTION AND TRAINING 

Evaluating the emission level from a marine piston engine 
can be classified as a regressive problem [40], which can be 
solved using the ANN of multilayer perceptron (MLP) or radial 
basis function network (RBF) type. The application of these two 
networks was tested by the author [43]. The obtained results 
made it possible to formulate conclusions which then were 
used for selecting the MLP ANN as most suitable for further 
investigations. The structure of the selected ANN, shown in 
Fig. 1. consists of the input layer, the hidden layer, and the 
output layer. The input and output layers are composed of 

Fig. 1. Structure of MLP ANN 
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neurons: one neuron for each input and output parameter. The 
hidden layer can have an arbitrary number of neurons. It is 
noteworthy that a number of hidden layers can be used, but the 
proof presented in [40] accepts one hidden layer as sufficient 
for good approximation of each continuous function.

Each neuron in the ANN converts the input signals by 
adding them up, taking into account the weight coefficients, 
according to the following formula:

(1)

where:
f – nonlinear function, named the activation function
x – input signal value

w – input signal
n – input signal number
y – output signal value.

ANN training consists in adjusting input signal weights in 
a way which makes it possible to obtain the assumed output 
signal.

The presented investigations included construction, training 
and tests of three ANN variants:
a. for evaluating the level of NOx emitted by the test 

engine
b. for evaluating the fuel consumption in the test engine
c. for evaluating the level of NOx emitted by the test engine 

with the aid of the resultant fuel consumption obtained from 
ANN variant b as input data.

Fig. 2. Results of calculations for the ANNs meeting the adopted criteria
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Each ANN consisted of 15 neurons in the input layer 
(16 neurons in variant b) corresponding to particular input data, 
one neuron in the output layer corresponding to the output 
signal, and from 10 to 25 neurons in the hidden layer. The 
data collected during the laboratory tests were standardised 
to the value between 0 and 1 and then randomly divided into 
two sets, in proportion 80% to 20%. The first set was used 
as training data and the second - as verifying data. The ANN 
was trained using the Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) method, one of fastest quasi-Newtonian methods of 
ANN training [44, 45]. The logistic function was used as the 
activation function in the hidden layer, and the linear function 
- in the output layer. Each ANN configuration corresponding 
to a different number of neurons in the hidden layer was 
trained 10 times, and each time the training and verifying sets 
were randomly selected. Such an approach made it possible 
to reduce the possibility of incorrect ANN training, as caused 
by possible presence of local extrema in the approximated 
functions. The calculations were performed using the code 
STATISTICA. In total, 480 ANNs were trained and tested in 
these variants.

RESULTS OF INVESTIGATIONS 

For analysing purposes, one best trained ANN was selected 
from each tested ANN configuration using the following 
criteria:
� the error must not exceed 10% for a possibly large number 

of data sets,
� the mean square error calculated for all collected data sets 

is the smallest.

Fig. 2 shows the results of calculations for all analysed 
engine load variants, obtained using the ANNs meeting both 
of the above formulated criteria. These ANNs are best trained, 
and include, respectively, 12, 15, 16, 22, 24, and 25 neurons 
in the hidden layer.

Fig. 3. Mean square errors and maximum errors of the results of ANN 
calculations: variant “a”, different numbers of neurons in the hidden layer 

Fig. 3 presents mean square errors and maximum errors of 
the results of calculations approximating NOx concentration in 
the engine exhaust gas. The calculations were done with the aid 
of the best trained ANNs, one from each tested configuration, 
using the measured fuel consumption as the input data 
(variant a). Horizontal lines in the figure represent the 10% 
error criterion. Marks are also added to facilitate the selection 
of the best ANN with respect to the mean error.

According to the presented criteria, it turned out that the best 
ANN is that with 24 neurons in the hidden layer, for which the 
mean square error within the entire analysed range of engine 
loads did not exceed 1.83% and the maximum error was 8.5%. 
It is noteworthy that changing the number of neurons in the 
MLP ANN hidden layer within the 10-25 range does not visibly 
increase the accuracy of modelling, as no clear trends connected 
with these changes were observed both for the mean square 
error and the maximum error. 

An inaccurate fuel consumption measurement, performed 
on a ship, was a motivation for approximating this parameter 
using ANN. Fig. 4 presents mean square errors and maximum 
errors of these calculations done using the best trained ANN 
from among all ANN configurations used for approximating 
the fuel consumption based on 4 engine operation parameters 
discussed in Section 4.

Fig. 4. Mean square errors and maximum errors of the results of ANN 
calculations: variant b, different numbers of neutrons in the hidden layer. 

The results presented in Fig. 4 suggest selecting the ANN 
with 13 neurons in the hidden layer as most suitable for 
approximating the fuel consumption in the test engine. The 
mean square error of the results obtained using this ANN was 
1.12% while the maximum error was 3.7%.

Fig. 5 presents mean square errors and maximum errors of 
the results of calculations done using the best trained ANNs to 
approximate the NOx concentration in the engine exhaust gas, 
one ANN from each tested configuration. Two horizontal lines 

Fig. 5. Mean square errors and maximum errors of the results of ANN 
calculations: variant c, different numbers of neutrons in the hidden layer
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limit the area of 10% error criterion. These ANNs were trained 
and tested using the data obtained from the measurements on 
the test engine, in which the measured fuel consumption was 
replaced by the results obtained using the best trained ANN 
from variant b (ANN with 13 neurons in the hidden layer).

The smallest mean square error was obtained for the ANN 
with 12 neurons in the hidden layer. This error was equal to 
2.1% with respect to the measured values. Unfortunately, 
in each analysed ANN at least one calculated result error 
exceeded 10%, i.e. the level permitted by the regulations of 
the NOx Technical Code [1]. It is the ANN with 20 neurons in 
the hidden layer which is the closest to meet this requirement. 
For this ANN only one result error from among all analysed 
engine loads exceeded 10% and was equal to 11.74%. For this 
ANN, Fig. 6 shows the results of calculations for all analysed 
engine load variants. The continuous lines mark the assumed 
error limits. The presented results of calculations show that 
only one result error exceeds the assumed limit. This situation 
may be explained by the presence of a gross error, possibly 
generated during the measurements and then not eliminated, 
or, what is more likely, excessively small number of input data 
used for ANN training.

Fig. 6. Results of calculations for the best trained ANN 
with 20 neurons in the hidden layer, variant c.

CONCLUSIONS 

The article presents a concept and structure description of 
the ANN approximating the NOx concentration in the exhaust 
gas of a marine Diesel engine. The presented results provide 
opportunities for formulating the following conclusions:

� The ANN constructed for the given input data is sufficient 
for approximating the NOx concentration in the exhaust 
gas of the marine Diesel engine working under the analysed 
load conditions. 

� An ANN was constructed which makes it possible to 
calculate the NOx concentration in the exhaust gas of the 
marine Diesel engine with an error not exceeding 10% for 
all examined loads. Six ANN’s of this type, with 12, 15, 16, 
22, 24, and 25 neurons in the hidden layer, were constructed 
and properly trained. The results closest to the measured 
data were obtained for the ANN with 24 neurons in the 
hidden layer.

� An ANN was constructed which makes it possible to 
calculate engine fuel consumption with an error not 
exceeding 3.7% for all analysed loads. This ANN had 13 
neurons in the hidden layer.

� An attempt to construct an ANN calculating NOx 
concentration in the engine exhaust gas in which the 
applied fuel consumption would be obtained from ANN 
approximation with 13 neurons in the hidden layer ended 
with failure. The ANN which most accurately approximated 
NOx concentrations had 20 neurons in the hidden layer, and 
for one engine operation point, from among all analysed 
load variants, produced an error exceeding 10% of the 
measured value. 
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