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INTRODUCTION 

Development of diagnostic methods make it possible to 
undertake more and more difficult diagnostic tasks. To them 
belongs the need of diagnosing technical objects and devices in 
the case of incomplete measurement information and failures 
of sensors. Thermal-and-flow measurements of sophisticated 
power object belong to the most difficult. They are always non-
stationary. Their results are influenced by many independent 
operational parameters of object, its size as well as arrangement 
of sensors and way of their attachment. 

The diagnosing of energy conversion processes in 
ship power plants, both motor and steam turbine driven, is 
especially difficult because of their complex structure and 
interdependence of their operational parameters. This paper 
presents investigations on the problem of recognition of 
correctness of gathered measurement results. Examples based 
on characteristics of a land steam power plant are given. 
Complexity of the power plant makes it possible to draw 
conclusions which would be valid, at least to a certain extent, 
also for ship power plants. 

For a long time the problem of quality of results of 
measurements carried out in power plants has been a subject of 
interest of researchers and practitioners in the field of operation 
of complex systems [1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 
18, 19, 20, 21, 22, 23].

Among the methods intended for solving the problem, it is 
compensation calculus which plays important role [19]. 
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Measurement information often concerns sum of influence 
of several devices at once. As showed in [7], in the case of 
a complex power object in which disturbances in work of 
one device propagate to other devices, to separate component 
measurement signals is possible. The observation can be used 
to identify sensors. Unserviceability of a sensor influences 
result of measurement of only one quantity and does not find 
any reflection in indications of other sensors. 

The distinguishing of sensor failure from operational 
degradation of component devices of thermal cycle constitutes 
one of the most important tasks of thermal-and-flow diagnostics 
of steam power plants. The results of simulative calculations, 
given in further part of this paper, answer the following 
questions: 
	 how much detailed can be diagnostics of a considered 

subsystem of devices? 
	 is it possible to distinguish a sensor failure from degradation 

of a device?

The answer is of a great importance for designers of 
measuring systems and for users of diagnostic systems. The 
investigations on diagnostic relations based on the method of 
artificial neural networks (ANN), intended for the finding of 
incorrectness in measurements, are presented in further part 
of the paper. 

Determination of degradation symptoms on the basis of 
measurements - on the one hand - and a model of correct 
performance - on the other hand - is one of more important 
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operations in thermal-and-flow diagnostics. The correct 
performance is described by the so called reference state. It is 
a functional model since object-dependent variables determined 
with its help are functions of independent parameters, i.e.: 
structure, geometry and independent variables. The functional 
model makes it possible to determine the reference state for all 
operational points of the object in question. 

It is not possible to perform measurements without errors, 
whereas erroneously indicated symptoms lead to an erroneous 
diagnosis. Hence it is important to determine an acceptable 
level of error, after exceedance of which a given measurement 
result should be rejected. Methods and procedures for detecting 
measurement errors and uncertainties are to take into account 
also varying load conditions of power plant, as it gives chance 
to distinguish changes in measurement results, caused by 
a measurement error, from normal changes of parameters 
resulting from changeable loads, external conditions and 
actions of operators. 

SELECTED SPECIFIC CONDITIONS 
OF MEASUREMENTS 

The author’s attention is further focused on the high-power 
steam turbine cycle shown in Fig. 1. In it can be distinguished 
several points in which measurement data are ambiguous from 
the point of view of thermal-and-flow diagnostics [10, 15]. In 
them for instance the mixing of fluxes of different working 
media occurs, hence to distinguish influence of degradation 
of various component devices of the cycle on the basis of 
measurements of only one quantity, is difficult. Whereas 
measurement data taken form various measurement points 

make such differentiation possible. The mutual interaction 
brings prospects for searching for diagnostic relations in spite 
of lacking results of certain measurements [10, 15]. 

The differentiation of degradation causes among those 
dealing with the thermal cycle devices and those dealing with 
set of measuring instruments is made additionally difficult 
due to the overlapping of measurement uncertainty onto 
measurement results obtained in the above described way. 

The investigations, described in the further part, which lead 
to building a method for detecting degradation of measuring 
instruments, are based on simulative calculations of degradation 
of component devices of complex thermal cycles and measuring 
instruments as well.

RESULTS OF SIMULATION 
AND IDENTIFICATION 

OF DEGRADATION BY THE ANN 

Computational simulations lead to determination of 
degradation signature composed of symptoms. Each of the 
symptoms determines deviation of value of thermal-and-flow 
parameter corresponding with it (e.g. mass flux, pressure, 
temperature) or characteristics (of e.g. efficiency, flow capacity 
of particular component elements) from its reference value 
characteristic for non-degraded object. In the considered case 
such degradation signature was selected. 

The signature together with relevant cause of degradation 
was used for training the artificial neural network intended for 
identifying the causes of degradation. The signature forms input 
to the network, and combinations of degradations represented 
by relevant zero-one series (0 – no degradation; 1 – occurrence 

Fig. 1. Schematic thermal cycle diagram of a high-power unit with indicated measurement points 
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of degradation) form output from the network. Taking into 
account experience gained from the preceding investigations 
[8, 10, 15], one assumed that to obtain a better accuracy, several 
ANNs, each of them focused on identifying only one cause 
will be applied instead of one ANN intended for identifying 
all causes of degradation. 

The ANN was assumed to have structure of multi-layer 
perceptron with application of step transition functions [2]. It 
ensures to get result in the form of „0” or „1”, in compliance 
with the above described nomenclature of degradation causes. 
Hence, operation error of the ANN consists in incorrect 
determination of the quantity „0” or „1”. For effective 
operation of such network application of a large number of 
neurons in intermediate layer of the network is required. Their 
maximum number results from a number of training samples. 
In the case in question it was possible to apply a few hundred 
of neurons. 

Operational degradation was simulated by means of 
calculations with application of appropriate 1-D computational 
methods adjusted to reliable measurements. In the calculations 
both degradations of devices and measurement instruments 
were simulated. And, were taken into account degradations 
of geometry of blade system and sealing system of groups of 
HP and IP stages of turbine cylinders as well as degradations 
of sensors usually placed at extraction pipelines. The set of 
geometrical quantities taken into account in the simulation is 
presented in Tab. 1. To them was attached a set of measuring 
instruments fastened to extractions and subjected to degradation. 
Finally, the set of 37 units in number, of devices and measuring 
instruments subjected to degradation, was obtained. 

In the simulative calculations the following was assumed: 
�  unchanged geometry of all devices of the thermal cycle, 

beyond currently investigated subsystem
� geometry changes represent possible operational failures, 

either of partial or maximum values, of the devices in 
question (0 ÷ 100% degree of degradation)

� load conditions of the power unit are represented by 
8 independent parameters: mass flow rate of live steam 
supplying the unit, live steam inlet pressure, live steam 
inlet temperature, secondary steam inlet temperature, 
condensation pressure, degasing pressure, primary injection 
flux, secondary injection flux.

� searching for degradation symptoms is carried out among 
the following parameters which can be either measured or 
determined on the basis of measurement: 
� output of the power unit
� specific heat consumption
� pressure and temperature values in the extractions 

marked 1 through 7
� steam flow capacity coefficients and efficiency 

indices.

Computational simulations lead to the forming of 
a degradation signature composed of symptoms. Eeach of the 
symptoms determines deviation of value of respective thermal-
and-flow parameter (mass flow rate, pressure, temperature, 
or characteristics) from its reference value (i.e. characteristic 
for non-degraded object). The signatures consisted of 66 
symptoms. Description of the quantities comprised in the 
signature is given in Tab. 2. 

For the simulating of degradations of measurement 
instruments, was used the observation described in [8], which 
concerns lack of propagation of sensor errors into indications 
of measurement instruments located in other parts of thermal 
cycle. This way, sensor’s unserviceability is able to change 
only one symptom in degradation signature. For the simulation 

it was assumed that sensor’s indication error can vary within 
the range of ± 2%. Fig. 2 shows a fragment of the signature 
which describes degradation of the sealings in 4-th group of 

Tab. 1. Geometrical parameters of devices and measuring instruments 
subjected to degradation, selected for simulation 

No Geometrical parameters and measuring devices 
subjected to degradation 

1 Clearance in nozzle box gland of HP control valves 

2 Clearance in external glands of HP cylinder 

3 Clearance in glands of 1-st HP stages group

4 Surface roughness of 1-st HP stages group

5 Leading edges destruction of 1-st HP stages group

6 Clearance in glands of 2-nd HP stages group

7 Surface roughness of 2-nd HP stages group

8 Leading edges destruction of 2-nd HP stages group

9 Clearance in nozzle box gland of IP control valves

10 Clearance in external glands of IP cylinder

11 Clearance in glands of 3-rd IP stages group

12 Surface roughness of 3-rd IP stages group

13 Leading edges destruction of 3-rd HP stages group

14 Clearance in glands of 4-th IP stages group

15 Surface roughness of 4-th IP stages group

16 Leading edges destruction of 4-th HP stages group

17 Clearance in glands of 5-th IP stages group

18 Surface roughness of 5-th IP stages group

19 Leading edges destruction of 5-th HP stages group

20 Clearance in glands of 6-th IP stages group

21 Surface roughness of 6-th IP stages group

22 Leading edges destruction of 6-th HP stages group

23 ÷ 37 Temperature and pressure sensors 
at extractions 1 ÷ 7

Fig. 2. An example fragment of signature for twofold degradation 
concerning the sealings of 4-th group of stages and the temperature 

measuring instrument at 2-nd extraction. (Note: meaning 
of the successive parameter numbers is in accordance 

with the signature description given in Tab. 2).
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turbine stages and is modified by simultaneous occurrence 
of unserviceability of the temperature sensor located at the 
extraction 2. 

Hence, 37 ANNs, each intended for identifying only 
one cause of degradation, were trained and tested. It was 
peliminarily stated that the identification of degradation of 
particular sensors and geometrical parameters was faultless 
[7]. The investigations on indentification of this kind have been 
extended to multiple degradation cases. 

Tab. 2. Description of the quantities used to form symptoms of which full signature of degradation 
of the flow system of HP and IP turbines in question, is consisted 

No of 
symptom Symptom based on: No of 

symptom Symptom based on:

1 Power 34 Mass flow rate at the 5-th extraction 

2 Specific heat consumption 35 Mass flow rate at the 6-th extraction 

3 Pressure behind the control stage 36 Mass flow rate at the 7-th extraction

4 Steam pressure at the 1-st extraction 37 Efficiency of control stage 

5 Steam temperature at the 1-st extraction 38 Capacity coefficient of control stage 

6 Steam pressure at the 2-nd extraction 39 Efficiency of the 1-st stages group 

7 Steam temperature at the 2-nd extraction 40 Capacity coefficient of 1-st stages group 

8 Steam pressure at the 3-rd extraction 41 Efficiency of the 2-nd stages group 

9 Steam temperature at the 3-rd extraction 42 Capacity coefficient of 2-nd stages group 

10 Steam pressure at the 4-th extraction 43 Efficiency of the 3-rd stages group 

11 Steam temperature at the 4-th extraction 44 Capacity coefficient of 3-rd stages group 

12 Steam pressure at the 5-th extraction 45 Efficiency of the 4-th stages group 

13 Steam temperature at the 5-th extraction 46 Capacity coefficient of 4-th stages group 

14 Steam pressure at the 6-th extraction 47 Efficiency of the 5-th stages group 

15 Steam temperature at the 6-th extraction 48 Capacity coefficient of 5-th stages group 

16 Steam pressure at the 7-th extraction 49 Efficiency of the 6-th stages group 

17 Steam temperature at the 7-th extraction 50 Capacity coefficient of 6-th stages group 

18 Live steam mass flow rate 51 Capacity coefficient of 1-st stages group for extractions 

19 Live steam pressure 52 Efficiency of the 2-nd stages group for extractions 

20 Live steam temperature 53 Capacity coefficient of 2-nd stages group for extractions 

21 Secondary steam mass flow rate 54 Efficiency of the 3-rd stages group for extractions 

22 Secondary steam pressure 55 Capacity coefficient of 3-rd stages group for extractions 

23 Secondary steam temperature 56 Efficiency of the 4-th stages group for extractions 

24 Mass flow rate at the 1-st stages group 57 Capacity coefficient of 4-th stages group for extractions 

25 Mass flow rate at the 2-nd stages group 58 Efficiency of the 5-th stages group for extractions 

26 Mass flow rate at the 3-rd stages group 59 Capacity coefficient of 5-th stages group for extractions 

27 Mass flow rate at the 4-th stages group 60 Efficiency of the 6-th stages group for extractions 

28 Mass flow rate at the 5-th stages group 61 Capacity coefficient of 6-th stages group for extractions 

29 Mass flow rate at the 6-th stages group 62 Capacity coefficient of 1-st stages group for extractions 

30 Mass flow rate at the 1-st extraction 63 Efficiency of HP cylinder 

31 Mass flow rate at the 2-nd extraction 64 Capacity coefficient of HP cylinder 

32 Mass flow rate at the 3-rd extraction 65 Efficiency of IP cylinder 

33 Mass flow rate at the 4-th extraction 66 Capacity coefficient of IP cylinder 

Finally, the following degradations were considered in 
various combinations:
� single–time one – one kind of geometry or one degraded 

sensor
� twofold one – all combinations of two simultaneously 

degraded quantities out of the set of sensors and kinds of 
geometry of devices

� threefold one – all combinations of three simultaneously 
degraded quantities out of the set of the quantities in question.
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In the case of single-time degradations three intermediate 
values within the range between zero degradation and 
maximum one (i.e. 25%, 50% i 75% of its maximum value) 
were taken into account. In the case of multi-time degradations 
only maximum values of degradations of particular quantities 
were considered. 

The ordered sets of simulation results were used for training 
the ANNs in order to made them tought in detecting geometrical 
degradations. 

Size of databases for models

The prepared combinations of single-time, twofold and 
threefold degradations, associated with 37 geometrical 
quantities sufferring operational degradation and measuring 
instruments subjected to degradation, are presented in Tab. 3. 
Each of them is represented by the vector of 37 components. 
Number of combinations of possible particular degradations in 
which only one scale of degradation and one set of independent 
variables have been taken into account, results from the 
following combinatorial relations: 
� single-time (37

1) = 37

� twofold (37
2) = 666

� threefold (37
3) = 7770.

During planning operations for simulative calculations 
the sets of data and results were split into the part used for 
training and that used for testing. Size of the so obtained sets 
is presented in Tab. 3. It is equal to the number of performed 
simulative calculations of degradations. 

In the database not intended for using in training all the 
degradation sets contain both full scale of degradation and 
partial one (of 50 % of its maximum value) of the geometrical 
quantities. 

Tab. 3. Size of simulation sets – models of degradation of component 
devices of the thermal cycle within the HP and IP cylinders, 

obtained for the determined set of independent variables 

Characteristics of 
partial databases 

Database used 
for training 

Database used 
for testing 

Total size of the 
database 8584 17612 

Size of the database 
for single-time 
degradations 

4 * 37 = 148 2 * 37 = 74

Size of the database 
for twofold 

degradations
1 * 666 = 666 3 * 666 = 1998

Size of the database 
for threefold 
degradations

1 * 7770 = 7770 2 * 7770 = 15540

IDENTIFICATION OF DEGRADATIONS 
BY THE ANN TRAINED ON THE BASIS OF 

SIMULATION RESULTS 

To identification of degradations the ANNs of a multi-layer 
perceptron kind were applied, like e.g. in [8, 10, 13]. 

In building a diagnostic relation based on the ANN methods 
one can apply: 

� one global network which determines degradation code in 
the form of vector

� a set of networks each of which identifies only one cause 
of degradation. 

The second solution is more favourable because of a lower 
demand for computer memory as well as a shorter training 
period as compared with the first case, at maintained similar 
accuracy [9]. Hence, 37 ANNs were subjected to investigations 
on identification of degradations; each of them was intended 
for the identifying of only one geometrical or measuring cause. 
The teaching inputs and outputs of the ANNs are presented 
in Fig. 3. 

Fig. 3. Inputs and outputs of one ANN (out of 37 dedicated ANNs) dedicated 
to fulfil role of a diagnostic relation which identifies degradation of one, 

out of 22 (see Tab.1), geometrical dimension of component devices of 
steam power unit or one, out of 15, (see Tab. 1, items No. 23 through 37), 

measuring instrument located at the cycle’s extractions. 

Knowing from simulations, an expected response of the 
ANN one can assess correctness of neural calculations. 

Single-time degradations were identified faultlessly both 
for the cases used for training and those not used for training, 
Tab. 4, as obtained also in [7, 10, 15]. Hence in this case it is 
possible to distinguish, without any trouble, degradations/faults 
of a measuring instrument from operational degradations of 
geometry of elements. Identification of multifold degradation 
cases is more difficult. The results of identification of such 
degradations, obtained from testing, are presented in Tab. 4. The 
number of considered cases, given in the denominator of each 
fraction, shown in Tab. 4, determines number of combinations 
between degradations beginning from single-time ones to 
threefold ones. 

Identification errors, in consequence, distinctions between 
faults of measuring instruments and geometry degradations, 
are small. Hence it is possible to use the ANN methods for 
the combine diagnosing of devices and measurements of 
complex power systems. The described ANN can be taken as 
neural diagnostic relations capable of identifying locations of 
degradations.  

IDENTIFICATION OF DEGRADED 
MEASURING INSTRUMENTS PRESENTED 

ON THE EXAMPLE TAKEN FROM 
OPERATIONAL PRACTICE 

The trained, above described, neural networks which 
identify degradation of devices and measuring instruments, 
were tested by using a few examples of measurement data 
obtained from current power unit operation. The set was 
solely tested of the ANNs each of which identified only one 
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degradation on the basis of the processing of the complete 
degradation signature. 

It concerns results of the measurements whose illustration in 
the form of the expansion line based on pressure and temperature 
values recorded at extractions of high-power turbine, has been 
presented in Fig. 4. Such run of the current state expansion line 
(the red line in Fig. 4) and its comparison with the run of the 
reference state line (the blue line in Fig. 4) can be met during the 
monitoring performed short time after steadying the reference 
state. This is the case when component devices of thermal 
cycles are usually not yet degraded but degradations may occur 
in measuring system. Such graphical presentation makes the 
assessing of performance of the diagnostic relation elaborated 
to identify location of degradation, easier. The relation is based 
on transformation of the complete signature of degradation, 
that is the measurements possible to be found on the entropic 
diagram of expansion (Fig. 4) and the remaining quantities 
which build the degradation signature and are calculated from 
measured quantities. The result of operation of the neural 
relation indicates that degradation of the temperature measuring 
instrument at 3-rd extraction, occurs (see item 9 of Tab.1). It 
was identified by the ANN no. 31 of the set of neural networks. 
The calculation results of the remaining ANNs were equal to 

„0”, this means that the degradations attributed to them have 
not been occurred at all.

SUMMARY 

� The performed tests based on the simulations and selected 
operational measurements showed that the application of 
artificial neural networks as diagnostic relations which 
are capable of identifying locations of degradations of 
component devices of thermal cycles of steam power 
units and locations of degraded measuring instruments, is 
rational. The tests based on simulations are characterized by 
a small value of identification error. The tests making use of 
current measurement results show that to identify defected 
measuring instruments is possible. However possible 
identification of a kind of degradation of component devices 
of turbine thermal cycles has not been so far confirmed by 
observations after disassembly of the turbine under repair 
as until now such operation has not been performed. 

� To simulate degradations of a larger size seems to be 
necessary. However to do it a better computer hardware,
especially as regards its greater operation memory, is required. 
Development of computers provides such prospects. 

Tab. 4. Functioning quality of the network intended for the identifying of kind of degradations within HP and IP cylinders of high-power turbine

Fig. 4. Illustration of the expansion line determined for the parameters measured at extractions 
and achieved after a short period of operation of the power unit
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