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INTRODUCTION 

The motion of a vessel is mainly provoked by the excitations 
coming from sea waves. The nature of the wind undulation, 
along with difficulties in determining precisely the initial 
conditions for the motion of sea waves, are the reasons why 
the dynamics of the sea waves can be only modelled within the 
framework of the stochastic theory [6,7]. The basic quantity 
in the stochastic theory of sea motion is the function η(x, y, t) 
which characterises the altitude of the sea surface with respect 
to the undisturbed reference state. The function η(x, y, t)
is a random function of time and position [1]. Probabilistic 
properties of this function are partially derived based on the 
results of measurements and partially from the hydrodynamic 
theory of waves. It is usually assumed in dynamic analyses 
that the process of sea undulation is stationary, ergodic, 
and Gaussian [8]. These assumptions facilitate developing 
mathematical models, and their effect can be assessed via 
identification and estimation. At those assumptions, the process 
η(x, y, t) is characterised for an arbitrary fixed point (x, y) by 
the spectral density gη(ω). Having known the spectral density 
of the Gaussian random function η(x, y, t), for instance, we 
can find the wave time scale Ts and height hs. The time scale 
is defined as the average time between successive instants at 
which the average calm sea level is exceeded, while the wave 
height represents the expected value equal to one third of the 
highest wave height.

The dynamic model comprises a deterministically 
defined non-deformable object which is subject to the action 
of a wave, the state of which is described in stochastic 
formulation. The forces which act on the multihull vessel 
come from irregular waves.
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WAVE-EXCITED MULTIHULL 
VESSEL MOVEMENTS 

For the vessel treated as a rigid object moving at constant 
speed v and arbitrary angle with respect to the direction of sea 
waves, its movements can be described by the mathematical 
model having the form a set of second-order differential 
equations (1). Local movements of the object around its 
equilibrium position are its response to the excitations coming 
from sea undulation. 

If the model of the dynamic system is a linear model of 
a vessel, then the equations [5]:

(1)

where: 
I = M + A – inertia matrix
M – elements of generalised mass matrix for the 

construction
A – elements of hydrodynamic mass- added mass 

matrix
B – hydrodynamic damping matrix
C – hydrostatic stiffness matrix
η – generalised displacement vector
F(t) – vector of exciting forces and moments,

can be analysed as a set of two uncoupled groups of mutually 
coupled equations. We assume the existence of the coupling 
via linear and nonlinear damping coefficients and hydrostatic 
elasticity coefficients.

In our analyses the examined object is idealised as the linear 
dynamic system with six degrees of freedom, which are: 
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longitudinal moments (surging), η3 - linear vertical movements 
(heave) and η5 -angular longitudinal movements (pitch). 

The second group comprises the equations which describe 
antisymmetric (transverse) movements, including: η2 - transverse 
linear movements (swaying), η4 - transverse angular movements 
(rolling), and η6 - horizontal angular movements (yawing). 

In our final discussion we will neglect η1 - linear longitudinal 
movements (surging), which are usually analysed using models 
with one degree of freedom. Consequently, in our case the 
mathematical model consists of 5 differential equations.

Our goal is to derive stochastic differential equations. 
Therefore in order to simplify the division of movements, let 
us introduce new variables given by the relation (2):

 (2)

For the symmetric and antisymmetric movements selected 
by us the developed set of differential equations (1) takes the 
form:

 (3)

� longitudinal oscillation (surge) - η1
� transverse oscillation (sway) - η2
� heaving - η3
� rolling - η4
� pitching - η5
� yawing - η6

The coordinate system fixed to the catamaran is shown in 
Fig. 1.

Fig. 1. Scheme of the physical model of the catamaran 

The first group of equations comprises symmetric 
(longitudinal) movements, which include: η1 - linear 

Having solved this set of equations we get the solutions for acceleration coordinates  and  for symmetric movements, and 
 for antisymmetric movements (see the scheme shown in Fig. 2).

Fig. 2. Schematic division of multihull vessel motion equations in the linear model of the dynamic system 
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Constructional aspects (symmetry) of multihull vessels 
make it possible to analyse group-coupled movements of 
the vessel, thus reducing the number of state variables in the 
equations.

EXTERNAL RANDOM EXCITATIONS 

Exciting forces 

Fig. 3 shows a sequence of actions aiming at the assessment 
of the generalised exciting forces.

The exciting forces come from the water undulation and 
the diffraction of waves, consequently they can be presented as 
functions of the wave velocity potential φW and the diffraction 
potential φD [10]:

(4)

where:
mF
v

 for m = 1, 2, 3 – orthogonal projections of the external 
forces

mF
v

 for m = 4, 5, 6 – orthogonal projections of the vector of 
moments of the external forces

S – catamaran’s wetted surface
mnv  – u n i t  v e c t o r s  i n  t h e  d i r e c t i o n 

perpendicular to surface S for 
m = 1, 2, 3, 4, 5, 6.

The process F(t) in the equation (1) can be presented as 
a multidimensional homogeneous Markov process which 
corresponds to the vector Y(y1, y2,... yn) in the phase space, 
where Y = F(t).

If we assume that the excitation F(t) has the form 

then we arrive at the stochastic differential equation in the 
form:

Fig. 3. Schematic procedure for determining the exciting forces in the mathematical model 

	 for symmetric movements:

(5)

	 for antisymmetric movements: 

(6)

where:
W – “white noise”
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Si – coefficients of linear filters (determined from the 
correlation function of the excitation, or from its spectral 
density).

Using relevant linear filters we replace the “white noise” 
process, for which the spectral density is constant, with the 
densities corresponding to different wave spectra. 

Deriving the set of state equations 

State equations are one of possible ways in which the 
mathematical model of a dynamic system can be represented. 
The system output for time tn depends not only on the system 
input at time tn, but also on past inputs at all times ti(ti < tn).

An alternative method of describing the dynamic system 
to that represented by the state equations is the transmittance, 
which assumes that the initial state is equal to zero.

The operator transmittance, also referred to as the transfer 
function G(s), is the ratio of the Laplace transforms of the 
system’s output and input signals when the initial conditions 
are equal to zero. The transmittance describes general stationary 
characteristics of the linear system with one input and one 
output, irrelevant of the type of excitation. For systems described 
by linear differential equations with constant coefficients, the 
transmittance is a rational function of the complex variable s 
and can be presented using the ratio of two polynomials (10).

When deriving the set of state equations we adopt the 
following assumptions:

 the resultant movement of the object on an irregular wave 

is the superposition of its movements on regular waves

 only the head sea effect is taken into account, and it is the 

source of the following movements: η1 - surge, η3 - heave 
and η5 - pitch.

With the use of the equation (1), the wave-excited motion 
of an object is given by the following state equation:

 (7)

where :

 (8)

I, B, C – matrices 3x3

(9)


 it is assumed that the response, in the form of generalised 
forces Fi = (i = 1, 3, 5), to the excitation coming from the 
wave of the height ξ(t) can be approximated by the system 
whose transmittance has the form:

(10)

where:
 F(F1, F3, F5), 
 b0(b01, b03, b05), b1(b11, b13, b15), b2(b21, b23, b25), 
 a1(a11, a13, a15), a2(a21, a23, a25).

The relation (10) can be written using the following set of 
state equations:

(11)

(12)

where: 
h0, h1, h2 - constants defined by coefficients in equation (10)
 f1(f11, f13, f15), f2(f21, f23, f25),
 h0(h01, h03, h05), h1(h11, h13, h15), h2(h21, h23, h25).

To obtain the random process of wave height ξ(t) (irregular 
wave), well-known energy spectra (wave spectra) of the wave 
which approaches the object are to be used:

(13)

We approximate the selected spectrum using the spectral 
density function in the form:

(14)

Then, we introduce the shape filter making use of the 
following assumptions:
� In the two spectra (13) and (14) the maxima take place at 

the same frequency and are the same in magnitude 

� 

� The wave height processes are generated by the transmittance 
G(s). If the so-called “white noise” is at input, then it is 
a so-called shape filter. Transmittance G(s) is given by the 
formula [9]:

(15)

The relation (15) corresponds to the following set of state 
equations:

(16)

(17)

where: 
W – “white noise”.

CONCLUSIONS

In the stochastic process of undulation, linear filters can be 
applied for irregular undulation in long time intervals. These 
filters are to be worked out in such a way that the parametric 
excitations generated by the wave can be described using basic 
spectra of Pierson-Moskowitz, ISSC, Jonswap, Striekałow-
Massel or Paszkiewicz type.

The most frequently used wave spectra (in the dimensionless 
form - after parametrisation) are given by the following 
formula:

(18)

where:
Sη(ω) – one-dimensional spectral density function
Tk – time periods
h – wave height.
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An important stage in stochastic undulation modelling 
is selecting the parameters which describe the phenomenon 
and finding unique relations between wind parameters and 
undulation parameters.

The main conclusions which can be formulated based on 
the data presented in the article are the following:
�  For both the wave spectrum, and the spectral density 

function, the maximum takes place at the same frequency 
and is the same in magnitude. 

� The values of the integrals in the infinite interval for the 
wave spectrum and the spectral density function are equal 
to each other.

� After deriving the set of state equations, the further goal 
will be working out and solving  equations for symmetric 
movements.

� In order to obtain the final set of equations we have to 
determine coefficients in the equation  , which 
will be done as part of future continuation of the subject 
matter presented here. 
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