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INTRODUCTION

Deformation of solids is accompanied by internal friction 
[1]. Consequently, even in the region below the proportionality 
limit metals are not perfectly elastic [2]. If tensile strain has 
occurred in an anelastic rod, the complete removal of the load 
will be followed by a gradual decrease in length. When the 
length does decrease with time after unloading, the shortening 
is called “creep recovery”. The anelastic strain, which occurs 
during long-time creep, is basically the same as that which 
occurs during vibratory load, and in both cases the anelastic 
behaviour can be expressed in the same terms [2].

There are various models of anelastic materials and 
damping mechanisms in use [1-3]. When the Kelvin-Voigt’s 
model (spring and dashpot in parallel) of viscoelastic material is 
applied to the rod, its behaviour is easy to deduce. In particular, 
it is obvious that:
� creep recovery at a given time, following partial or complete 

unloading from a given prior load of a given duration, is 
proportional to the stress decrement

� after creep recovery, deformation should cease and the 
dimensions should remain constant.

The governing differential equation that relates stress σ and 
strain ε , the creep compliance I(t) and the relaxation modulus 
G(t) read [3]:

(1)

(2)
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(3)

where: 
q0, 

 q1 – aterial constants in the Kelvin-Voigt’s model
I(t)  – esponse of strain due to a unit step input of stress
G(t)  – response of stress due to a unit step input of strain
δ(t)  – Kronecker delta.

As the relaxation modulus is known, the stress response 
can be determined under any strain loading condition through 
a convolution integral. These equations are:

(4)

or

(5)

with a similar equation for the strain response due to arbitrary 
stress input:

(6)

or

(7)

The one-dimensional constitutive equations can be extended 
to three-dimensional constitutive equations. A general and most 
common form of these are [3]:
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 (8)

 (9)

The stress σij and the strain εkl are second-order tensor 
quantities, and Gijkl are the four-order relaxation modulus. A set 
of similar constitutive equations for strains, when the stress 
history is known, can be obtained.

The aim of the present paper is to derive three-dimensional 
constitutive equations for strains by means of the modified 
Hooke’s law for multiaxial stress in viscoelastic solids [4] 
because its simplicity in the case of homogeneous isotropic 
materials may be advantageous.

STRAIN RESPONSE OF VISCOELASTIC 
SOLIDS TO REMOVAL AND APPLICATION 

OF MULTIAXIAL STATIC LOAD

After a long period of static load resulting in normal and 
shear components σj0 and τk0 (j = x, y, z; k = xy, yz, zx), the 
normal and shear strain components εj0 and γk0 in a viscoelastic 
material can be calculated as those in elastic materials [3,5]:

(10)

where E is the Young modulus, υ is the Poisson’s ratio and

(11)

is the shear modulus. If at t = 0 the load is removed, in 
accordance with the modified Hooke’s law [4], the following 
equations can be applied:

 (12)

and solved with the initial conditions:

 (13)

In Eqs (12), η is the coefficient of viscous damping of 
normal strain and [4]:

 (14)

is the coefficient of viscous damping of shear strain.
The solutions of Eqs (12) have the form:

 (15)

where Aj, Bk , r and s are constants. Substitution of Eqs (15) 
into Eqs (12) yields:

 (16)

so that:

 (17)

From Eqs (13) and (15) one obtains:

 (18)

Hence:

 (19)

It is also easy to prove that sudden application of 
a multiaxial static load producing stress components σj0 and 
τk0 to viscoelastic solids evokes their dimensional changes and 
distortions described by equations:

 (20)

It is noteworthy that in conformity with Eqs (19) and (20), 
after removal or application of multiaxial static loads, the 
strain components in viscoelastic solids vary in course of time 
proportionally to each other.

Eqs (19) and (20) apply to creep recovery following a long 
period at constant stress, or to creep at a particular stress level 
following a long period of zero stress. These, of course, are 
very special cases, but with the modified Hooke’s law we are 
able to handle effectively also other load patterns. Some of 
them are considered below.

THE CASE OF HARMONIC 
IN-PHASE STRESS

The relations between stress and strain in viscoelastic 
materials subjected below the yield point to time-dependent 
loads are governed by the modified Hooke’s law [4]:

 (21)

Under in-phase stress components:

 (22)

the strain components take the form:

 (23)
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In Eqs (22), σja and τka are the amplitudes of stress components 
and ω is their circular frequency. With Eqs (22) and (23), Eqs (21) become:

(24)

Eqs (24) are satisfied if:

 (25)

Eqs (23) and (25) lead to the constitutive equations for strains as follows:

 (26)

and

 (27)

Through Eqs (11) and (14), Eqs (27) become:

 (28)

It means that in-phase stress components produce in homogeneous, 
isotropic viscoelastic materials in-phase strain components.

Introducing the strain vector:

 (29)

and the vector of amplitudes of the stress components:

 (30)

Eqs (26) and (28) can be rewritten in a matrix form:

 (31)
where:

 (32)
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is the matrix of dynamical flexibility of the viscoelastic material 
at the load circular frequency ω.

THE CASE OF HARMONIC 
OUT-OF-PHASE STRESS

When the stress components are given by:

 (33)

where ϕj and ϕk are the phase angles, it is convenient to 
introduce the complex stress components:

 (34)

Here i is the imaginary unity and

 (35)

are the complex amplitudes of the stress components. Then the 
real stress components are represented by the imaginary parts 
of the complex stress components:

 (36)

Consequently, in view of Eq. (31) the strain response of the 
viscoelastic material to the stress (33) can be calculated as:

 (37)

where:

 (38)

is the vector of complex amplitudes of the stress components.

STRAIN RESPONSE OF VISCOELASTIC 
SOLIDS TO MULTIAXIAL PERIODIC 
AND STATIONARY RANDOM LOADS

The solution (37) can be utilized for determination of 
behaviour of viscoelastic materials under multiaxial periodic 
loads. The resulting stress components can be expanded in 
Fourier series:

 (39)

where:
σj0 , τk0 – mean stress components
σjn , ϕjn – amplitude and phase angle of n-th term in Fourier 

expansion of j-th stress component
τkn , ϕkn – amplitude and phase angle of n-th term in Fourier 

expansion of k-th stress component
ω – fundamental circular frequency.

Since Eqs (21) are linear, the principle of superposition can 
be applied. For this purpose we define:
	 the vector of mean stress components:

 (40)

	 the vector of mean strain components:

 (41)

	 the vector of complex amplitudes of n-th terms of the stress 
components:

 
(42)

with

 (43)

	 the matrix of dynamical flexibility of the viscoelastic 
material at the load circular frequency nω:

 (44)

	 the phase angle of n-th terms of the strain components:

 (45)

Under assumption that the material remains viscoelastic, its 
strain response to the stress (39) is described by the following 
equation:

 (46)

where the elements of the vector ε0 are given in Eqs (10).
As the stress is increased above the yield point, the linear 

behaviour of viscoelastic material expressed by the modified 
Hooke’s law (21) is terminated by the onset of plastic flow. 
In the case of uniaxial static tension, the part will yield if the 
uniaxial stress equals the yield strength of the material. For 
biaxial or triaxial static stress, various theories of failure by 
yielding have been developed, for example the distortion-
energy strength theory [3, 5]. This theory is an important one 
because it comes closest of all to verifying experimental results 
[3]. Therefore in [6] an attempt was made to extend its use also 
to the case of multiaxial periodic stress and to model the stress 
components (39) by the reduced uniaxial stress:

 (47)

The mean value σe0 amplitude σea and circular frequency ωe 
of the reduced stress are determined in [6]. Such an approach 
suggests that under multiaxial periodic stress the yield strength 
is not exceeded at a given point if the following condition is 
met:

 (48)

where Re is the tensile yield strength of the material.
Similar condition of avoiding plastic flow in viscoelastic 

solids can be postulated in the cases of multiaxial random 
loads if a uniaxial reduced random stress [6, 7] is taken under 
consideration.

As far as the strain response of viscoelastic solids to random 
loads is concerned, we shall confine ourselves to the solution 
in frequency domain [8, 9]. When the stress components 
represent zero mean stochastic processes that are stationary 
and stationary correlated with each other, and when their power 
spectral densities are given, the power spectral densities of 
the strain components can be calculated from the following 
equation:

 (49)

where H is the matrix (32) of dynamical flexibility of the 
material, and:

 (50)  
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where:
Sεxεx , Sεyεy , Syzxyzx – power spectral densities of the strain 

components εx , εy , ... , yzx
Sεxεy , Sεxεz , Syzxyyz – cross power spectral densities of the strain 

components εx and εy , εx and εz , ... , yzx  
and yzx

Sσxσx , Sσyσy , Sτzxτzx – power spectral densities of the stress 
components σx , σy , ... , τzx

Sσxσy , Sσxσz , Sτzxτyz – cross power spectral densities of the stress 
components σx and σy , σx and σz , ... , τzx 
and τyz.

Within the static, purely mechanical theory of continua there 
are two numbers which may be associated with the deformed 
state of a structure: its mass and its stored energy [10]. This 
association provides the criteria for the comparison of various 
designs. Apart from these numbers, in dynamic problems 
the load frequency and in fatigue design the stress range and 
number of cycles also play an important role. In this context it 
is clear that the physical models of structural materials should 
incorporate their mass density. As a result of application of the 
two-parameter Kelvin-Voigt’s model, the relationships derived 
in the foregoing ignore inertia forces which in many cases 
may not be negligible in comparison with external loads and 
internal forces due to the viscoelastic properties of the material. 
However, the problems dealt with in the present paper have 
been aimed at gaining additional information on the influence 
of dissipative properties on the behaviour of structural materials 
and mathematical solutions within the assumed simpler model. 
Three-parameter models and more comprehensive stress-strain 
relations in viscoelastic materials are discussed, e.g., in [1, 3, 
11, 12].

As to the behaviour of engineering details under vibratory 
loads with inertia forces taken into account, this problem 
has been widely addressed in the literature on vibration of 
continuous systems by exact mathematical treatment and 
numerical methods (see, e.g., [1, 13-15]) and will not be 
considered here.

CONCLUSIONS

� Three-dimensional constitutive equations for strains in 
homogeneous, isotropic viscoelastic solids have been 
derived by means of the modified Hooke’s law.

� Owing to the fact that for homogeneous, isotropic 
viscoelastic materials the ratio of moduli E and G is equal 
to the ratio of damping coefficients η and λ , after sudden 
change of multiaxial static loads the strain components 
vary in time proportionally to each other because the time 
function of normal and shear creep is the same.

� If the stress components in a homogeneous, isotropic 
viscoelastic material are in phase, there are no phase shifts 
between the strain components.

� The matrix of dynamical flexibility of the homogeneous, 
isotropic viscoelastic material has been determined which 
depends on three material constants (Young modulus, 
Poisson’s ratio, coefficient of viscous damping of normal 
strain) and load circular frequency.

NOMECLATURE

E – oung modulus
G – shear modulus, relaxation modulus
H – matrix of dynamical flexibility of the viscoelastic 

material at the load circular frequency ω
Hn – matrix of dynamical flexibility of the viscoelastic 

material at the load circular frequency nω
i – imaginary unity
I – creep compliance
Im – imaginary part
n – natural number
q0 = E, q1 = η – material constants in the Kelvin-Voigt’s model 

of the viscoelastic material
Re – tensile yield strength
Sε – matrix of power spectral densities of the strain 

components
Sσ – matrix of power spectral densities of the stress 

components
t – time
α – phase angle of the strain components
αn – phase angle of n-th terms of the strain 

components
γ – shear strain
γk – k-th strain component (k = xy, yz, zx)
γk0 – k-th strain component at the static load, mean 

value of k-th strain component
ε – normal strain
ε – vector of the strain components
εj – j-th strain component (j = x, y, z)
εj0 – j-th strain component at the static load, mean 

value of j-th strain component
ε0 – vector of mean values of the strain components
η – coefficient of viscous damping of normal strain
λ – coefficient of viscous damping of shear strain
υ – Poisson’s ratio
σ – normal stress
σa – vector of the amplitudes of stress components
σe0 – mean value of the reduced stress
σea – amplitude of the reduced stress
σj – j-th stress component
σja – amplitude of j-th stress component
σjn – amplitude of n-th term in Fourier expansion of σj
σj0 – j-th stress component at the static load, mean 

value of j-th stress component
 – vector of complex amplitudes of n-th terms in 

Fourier expansions of the stress components
σ0 – vector of mean values of the stress components
τ – shear stress
τk – k-th stress component
τka – amplitude of k-th stress component
τkn – amplitude of n-th term in Fourier expansion of τk
τk0 – k-th stress component at the static load, mean 

value of k-th stress component
ϕj – phase angle of j-th stress component
ϕjn – phase angle of n-th term in Fourier expansion 

of σj
ϕk – phase angle of k-th stress component
ϕkn – phase angle of n-th term in Fourier expansion 

of τk
ω – circular frequency, fundamental circular 

frequency
ωe – circular frequency of the reduced stress

)(⋅  – complex quantity

(51)
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