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INTRODUCTION

Fatigue and cracks are important subjects in industrial 
machineries which can lead to catastrophic failures in certain 
conditions. The importance of the early detection of the cracks 
takes researchers to study various aspects of the behavior of 
a structure defected by cracks. One of these aspects is the 
vibration of cracked structures. Crack development in a system 
changes the vibration behavior. With measurement and analysis 
of these vibrations the cracks can be identified well in advance 
and appropriate actions can be taken to prevent more damage 
to the system.

The vibration behavior of cracked structures has been 
investigated by many researchers. Dimaragonas presented 
a review on the topic of vibration of cracked structures [1]. 
His review contains vibration of cracked rotors, bars, beams, 
plates, pipes, blades and shells. Two more literature reviews 
are also available on the dynamic behavior of cracked rotors 
by Wauer and Gasch [2, 3]. 

Cracked beam is one of the structural elements which has 
been studied by researchers. There exist three methods for 
vibration modeling of cracked beams: discrete models with 
local flexibility model for crack, continuous models with 
local flexibility model for crack and continuous models with 
continues model for crack.

For the first time, Dimaragonas suggested the local 
flexibility method for modeling the crack [4]. He assumed the 
crack to be a rotational spring between two healthy parts of the 
beam. The stiffness of this spring obtained from the concept of 
J-integral in fracture mechanics. This local flexibility idea has 
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been followed by several researchers till now. Some researchers 
modeled two healthy half beams discretely and added the 
flexibility of the rotational spring to the flexibility matrix 
of the system [5,6]. While others modeled two healthy half 
beams continuously and used appropriate boundary conditions 
for each part to link them through the rotational spring [7,8]. 
Some other researchers are tried to modify and improve the 
local flexibility model of the crack by adding one or two linear 
springs beside the rotational one [9]. These methods have also 
been extended for beams with more than one crack [10-12]. 
The local flexibility model for the crack is a simple approach 
and has a relative good result in finding fundamental natural 
frequency of a cracked beam. However this method offers 
no solutions for finding the stress at the crack area under the 
dynamic loads, mode shapes in free vibrations and operational 
deformed shape in forced vibrations. 

Another approach to vibration analysis of cracked beams is 
continuous modeling of the crack. Christides and Barr developed 
a continuous theory for vibration of a uniform Euler-Bernoulli 
beam containing one or more pairs of symmetric cracks [13]. 
They suggested some modifications on the familiar stress field 
of a normal Euler-Bernoulli beam in order to consider the crack 
effect. The differential equation of motion and corresponding 
boundary conditions are given as the results. However in their 
model two different and incompatible assumptions have been 
made for displacement and strain fields. Although the accuracy 
of the results in finding the natural frequencies is acceptable 
for some applications their model is not still reliable for more 
accurate analyses such as stress analysis near the crack tip 
under dynamic loading and mode shape analysis. In addition the 
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resulted partial differential equation is complex and dependent 
on some constants which are unknown and must be calculated 
by correlating the analytically obtained results with those 
calculated by finite element in each case. Several researchers 
followed the Christides and Barr approach by modifying their 
method and gained some improvements [14-18]. However there 
still exists the inconsistency between strain and displacement 
fields which causes inaccuracy of the results especially in mode 
shapes and stress analysis.

In this paper a new continuous approach for vibration 
analysis of cracked beams has been presented. The crack is 
assumed to be an open edge crack. A bilinear displacement 
field has been suggested for the cracked beam and the strain 
and stress fields have been calculated. The differential equation 
of motion of the cracked beam has been obtained using the 
Hamilton principle. This partial differential equation has been 
solved with special numerical algorithm based on Galerkin 
projection method. The required constant needed in this 
model can be obtained using fracture mechanics. The results 
of this study are compared with the finite element results for 
verification.

MAIN IDEA AND ASSUMPTIONS

The basic assumption in the Euler-Bernoulli bending 
theory for beams is that the plane sections of beam which are 
perpendicular to the neutral axis remain plane and perpendicular 
to the neutral axis after deformation. In the presence of an 
edge crack, the planes will not remain plane after deformation 
particularly at the vicinity of the crack due to a shear stress near 
the crack tip which leads to warping in plane sections. Thus at 
the vicinity of the crack the displacement field is completely 
nonlinear. For the planes far from the crack tip, the warping will 
be smaller and the displacement filed can be assumed linear. In 
order to have a better sense of the bending in a cracked beam, 
a real model has been produced in this research and the mid 
span crack behavior under a pure bending moment can be seen 
in Fig. 1. The beam is made from a linear elastic material with 
low modulus of elasticity and a U-shape notch at the mid-span 
as a crack.

Fig. 1. A linear elastic cracked beam subjected to pure bending

Near the crack area the plane sections will no longer 
remain plane. With a good approximation it can be supposed 
that each plane section turns into two straight planes after 
deformation. The horizontal line passing through the crack tip 
is called “deviation line” in this research which is shown in 
Fig. 1. Each straight plane section turns into two planes with 

different slopes one beneath and the other above the deviation 
line. The slope difference between these two planes decreases 
while the distance from the crack increases. These two straight 
planes connect to each other through a nonlinear part near the 
deviation line.

In order to find the stress, strain and deformation functions 
for a cracked beam in flexural vibrations a bilinear displacement 
field for the beam has been suggested in this research. In fact 
it is assumed that each plane section turns into two straight 
planes after deformation. The essential assumptions used in 
this research can be listed as follows:
� the beam is slender and prismatic
� the crack is considered to be an open edge notch
� the deformations are supposed to be small
� the plane strain assumption has been used in this research. 

Consequently the displacements along y-axis have been 
neglected

� the stresses are small enough and the crack does not 
grow.

DISPLACEMENT FIELD

On the base of the above assumptions and explanations, the 
following displacement field is introduced for a cracked beam 
in flexural vibrations:

(1)

In which u, v, w are the displacement components along 
x, y and z axes. u0(x, t) is the longitudinal displacement of the 
deviation line along the x-axis and ψ(x, t) is the slope of the plane 
sections below the deviation line. In an Euler-Bernoulli beam 
theory by neglecting the shear stress effect one has ψ(x, t) =
= w,x(x, t). In a cracked beam the shear stress near the crack 
tip cannot be ignored thus ψ(x, t) is different from w,x(x, t).
However far from the crack the shearing stress decreases 
gradually and ψ(x, t) tends to be equal to w,x(x, t)h(z) is the 
unit step function which is equal to zero for z ≤ 0 and 1 for 
z > 0. Accordingly the term w,x(x, t)h(z) can be considered as 
the extra displacement of the plane sections above the deviation 
line. Fig. 2 shows these parameters graphically.

Fig. 2. Deformation filed definition of a cracked beam

The additional displacement of the plane section above 
the deviation line has its maximum value at the crack faces 
and decreases gradually with distance from the crack tip. This 
additional displacement is a nonlinear and complex variable 
with respect to x. Here in this research an exponential regime 
has been assumed for the function ∆(x, z, t) along the x-axis 
as follows:
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(2)

In equation (2) α is a dimensionless exponential decay rate which will be obtained later in this paper, xc is the crack position, 
d is the depth of the beam and sgn(x – xc) is the sign function which is -1 for x < xc and +1 for x > xc. The application of sign 
function is due to the fact that the additional displacement function has a discontinuity at the position of the crack and the sign 
of its value changes when passing through the crack tip.

In order to find ϕ(x, t), zero normal stress condition at the crack faces can be used. The normal strain function can be found 
using equation (2):

(3)

In which the subscript ,x denotes the partial derivative with respect to x. The normal stress at the crack faces should be zero 
so one has:

(4)

To avoid discontinuity at the crack tip and considering the nonlinearity at the crack tip, the function ϕ(x, t) is modified in 
this paper as follows:

(5)

In equation (5) β is a dimensionless parameter and will be discussed later in this paper.

EQUATION OF MOTION

Now the strain field can be extracted from the displacement field. The only nonzero components of the stress field are εx 
and yxy as follows:

(6)

The normal stress energy of the beam can be obtained using the following relation:

(7)

In which V is the normal strain energy function, V is the volume of the beam and E is the modulus of elasticity. 
In this research the cracked beam is assumed to be slender. So the Euler-Bernoulli assumption can be used and one can 

neglect the shear strain energy in compare with the normal strain energy. Similar to a normal Euler-Bernoulli beam the average 
shear strain in each cross section can be assumed to be zero. So the following relation can be hold:

(8)

The kinetic energy of the cracked beam can be also calculated as follows:

(9)

In equation (9) similar to the Euler-Bernoulli beam theory the rotational moment of inertia has been neglected.
Using the Hamilton principle one has:

(10)

Now using equations (6) to (10) and performing appropriate calculations the following equations can be obtained:

(11)
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In equation (11) z is the vertical coordinate of the centroid of 
the cross section and zh is the vertical coordinate of the centroid 
of the healthy part of the cross section as shown in Fig. 3. The 
parameters k3 and k5 are geometrical dimensionless constants 
defined in equation (13).

Fig. 3. A cracked beam parameter definition

And finally the equation of motion for free vibrations of 
a cracked slender beam can be obtained as follows:

(12)

In equations (11) and (12) the parameters k1-6 and κ are 
geometrical dimensionless constants which can be defined as 
follows:

(13)

Where A is the cross section area of the beam, Ac is the 
area of the crack face, Icy is the moment of inertia of the crack 
face about y-axis and Iη is the moment of inertia of the cross 
section about the horizontal axis passing through the centroid 
of the cross section η. 

The equation (12) is the main result of this investigation. In 
a normal beam the geometrical parameter κ is zero and hence 
equation (12) results in the Euler-Bernoulli beam equation for 
slender beams. The dimensionless exponential decay rates 

(α, β) are the only factors which has not been discussed yet. In 
the next section the parameters α and β are calculated.

EXPONENTIAL DECAY RATES α AND β 
CALCULATION

When a pair of bending moments M are applied to the 

cracked beam an additional relative rotation θ* will exist 
between two ends of the beam due to the crack as shown in 
Fig. 4.

Fig. 4. Additional remote point rotation of a cracked beam

It can be shown that for a cracked beam under pure bending 
equation (12) will turn into the following form:

(14)

Solving equation (14) will result in the load-deflection 
relation of a cracked beam under static pure bending. The 
results are as follows:

(15)

In which the constants c1, c2, c3 and c4 will be as follows:

(16)

Now using equation (15) one can obtain the additional 
remote point rotation θ* as follows:

(17)

In equation (17) the parameter κ is a function of β. However 
comparing the finite element results with those obtained by this 
model shows that the parameter β has a very large value and 
accordingly it can be assumed that the parameter β is infinity. 
So in equation (17) one can substitute κ with 

∞→β
κlim .

On the other hand the additional remote point rotation θ* 
has been obtained by empirical methods as follows [19]:
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(18)

Equating the right hand sides of (17) and (18) will result in parameter á values as presented in Fig. 5.

Fig. 5. Exponential decay rate á versus crack depth ratio a/d

In the next section the partial differential equation (12) has been solved and the natural frequencies and mode shapes have 
been calculated.

EIGEN SOLUTION

In order to find the natural frequencies and mode shapes of a cracked beam, the equation of motion presented in equation (12) 
must be solved. However this equation cannot be solved analytically and a numerical method must be used. It can be assumed 
that the solution is a harmonic function so one has:

(19)

In which ω is the natural frequency of the beam. Substituting equation (19) into (12) and assuming EIη to be constant along 
the beam the following eigenvalue problem will be resulted:

(20)

Equation (20) has a special form and contains a singular function and depends on the value of the solution at the crack 
position. Theses anomalies prevent one to use the normal weighted residual solution for this Strum-Liouville problem. In 
a normal Strum-Liouville problem one can easily consider the function X to be in the form of ΣciSi(x) in which Si(x)are the shape 
functions which satisfy the physical boundary conditions. However in this research the results show that such an approach will 

lead to divergence of the results. Since the function e d

xx c−
α−  in equation (20) is not a smooth function it seems that the solution 

specially for larger crack depth ratio tends to have large derivatives near the crack tip. Accordingly extracting the value of X″(xc) 
from X by derivation can lead to large fluctuations in the results and divergence. In order to avoid the divergence problem the 
function X″ and the value of X″(xc) is not extracted from Xby direct derivation. Instead the X″ is discretised independently from 
X and then a constraint equation provided to link X″ to X. 

Considering the above discussion the following relations can be written:

(21)

In which ci and ci′ are two independent set of constants and functions Si(x) are the shape functions which must satisfy the 
physical boundary conditions. Substituting equation (21) into (20) and multiplying two sides of the equation by Sj(x) then 
integrating along the length of the beam one has:

(22)
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Or in the matrix form:

(23)

On the other hand from equations (23) the following relation can be obtained:

(24)

Multiplying two sides of equation (24) by Sj(x), integrating along the length of the beam and writing the equations in the 
matrix form one has:

(25)

Substituting equation (25) into (23) the following equation will be resulted:

(26)

The natural frequencies and corresponding mode shapes for the cracked beam can be calculated solving the matrix eigenvalue 
problem of equation (26). In the next section the results are presented for a simply supported beam with rectangular cross-
section.

RESULTS FOR A SIMPLY SUPPORTED BEAM WITH RECTANGULAR CROSS-SECTION 

In this section the new approach has been applied for free vibration analysis of a simply supported slender prismatic cracked 
beam with rectangular cross-section. In such a beam the exponential decay rate β can be assumed to be infinity and the exponential 
decay rate α can be calculated from equations (17) and (18). The geometrical factor κ and the exponential decay rate α are as 
follows:

(27)

In a simply supported cracked beam the shape functions 
Si(x) can be assumed to be in the form of sin(iđx/l) which satisfy 
the physical boundary conditions. The natural frequency and 
mode shapes can be calculated using eigenvalue problem of 
(26). In this research the number of shape functions N is set to 
be 100. In order to generalize the results the natural frequencies 
of the cracked beam have been divided to the corresponding 
values for a normal beam. Figures (6), (7) and (8) show the 
fundamental, second and third natural frequency ratios of the 
cracked beam respectively. In figures (6) to (8) the natural 
frequency ratios have been plotted versus the crack depth ratio 
(a/d) for several crack positions. 

In figures (6) to (8) the results of finite element (FE) 
analysis are also presented for verification. The finite element 
results have been obtained using ANSYS software. In order to 
have an accurate and reliable model the PLANE183 singular 
element has been used in the cracked area [20]. This element 
is an 8-node quadratic solid singular element which specially 
designed for crack analysis. In this research a fine mesh has 
been used at the vicinity of the crack and dependency of the 
results to the mesh size has been checked. In all of the results 
there is a good agreement between analytical results and those 
obtained by FE analysis. 

As it can be seen in figure (6) the reduction rate of the 
fundamental natural frequency has a direct relation with the 
position of the crack. This rate reduces for cracks which have 
more distance from the mid span of the beam. For the cracks 
at xc/l = 0.1 the fundamental natural frequency only drops 
nearly 1 percent when the crack reaches to the half of the beam 

depth while for the cracks at the mid span this value is about 
15 percent.

The dependency of the reduction of the natural frequency 
to the crack position is also seen in the first few natural 
frequencies. For the cracks at the mid span the second natural 
frequency remains nearly constant with the crack depth because 
this point coincides with the node of the second vibration mode 
of the beam. 

Figures (9) to (11) show the first three normalized mode 
shapes for a cracked beam with a/d = 0.5 and xc/l = 0.1, 0.3, 
0.5. Comparison of the analytic and finite element results in 
this set of figures shows the efficiency of the model presented 
in this research. 

Fig. 6. Fundamental natural frequency ratio of a cracked beam versus 
crack depth ratio (a/d) 
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Fig. 7. Second natural frequency ratio of a cracked beam versus crack 
depth ratio (a/d) 

Fig. 8. Third natural frequency ratio of a cracked beam versus crack depth 
ratio (a/d) 

Fig. 9. First three normalized mode shapes of a cracked beam with xc/l=0.1 
and a/d=0.5 (⎯⎯): Analytical results; (••••): Finite element results

Fig. 10. First three normalized mode shapes of a cracked beam with xc/
l=0.3 and a/d=0.5 (⎯⎯): Analytical results; (••••): Finite element results

Fig. 11. First three normalized mode shapes of a cracked beam with 
xc/l=0.5 and a/d=0.5 (⎯⎯): Analytical results; (••••): Finite element results

CONCLUSIONS

� A new continuous theory for flexural vibration analysis of 
a beam with an edge crack has been introduced in this paper. 
The crack is assumed to be an open edge crack. A bilinear 
displacement filed has been suggested for the beam and the 
strain and stress fields have been calculated. The extraction 
of the strain field from the displacement field is based 
on elasticity rules and hence the displacement and strain 
fields are completely compatible. The governing equation 
of motion has been obtained using the Hamilton principle. 
The required constants in this model are calculated from 
empirical formula in fracture mechanics. The equation of 
motion has been solved for natural frequencies and mode 
shapes using a special numerical algorithm presented in 
this paper. 

� The analytical results have been compared with finite 
element results and an excellent agreement has been 
observed. The model is accurate for both natural frequencies 
and mode shapes calculations. Results show that for 
a simply supported beam the reduction of natural frequency 
is a function of crack depth ratio as well as the crack 
position. 

� The presented model is a simple and accurate model which 
predicts the behavior of the cracked beam and its results are 
reliable near the crack tip and far from it. This model can 
be used for dynamic stress and strain calculations near the 
crack tip. 
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