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INTRODUCTION

Engineering materials are not perfectly elastic and their 
service time periods may be relatively long. Therefore, at 
the design stage the energy dissipated through damping 
mechanisms in the material and, consequently, the rise of 
temperature of the parts loaded by time-varying forces, as well 
as the conditions of heat dissipation, are frequently taken into 
account. However, in practice such considerations are rarely 
followed by the estimation of amount of the energy dissipated 
in such parts in a given time. This situation may be avoided if 
an adequate damping model of the material and load history 
are known. As an example, in the present paper the Kelvin-
Voigt’s model of the material is used and the dissipation energy 
per unit volume as well as in a given volume is calculated in 
selected load cases. To simplify the calculations, the modified 
Hooke’s law for multiaxial stress in viscoelastic solids [1] and 
the relevant three-dimensional constitutive equations for strains 
[2] are applied which requires that the material is homogeneous, 
isotropic and loaded below the yield point.

For the sake of clarity, our presentation of the problem 
solutions will start with some important relationships given 
in the literature.

ENERGY DISSIPATED AFTER REMOVAL 
AND APPLICATION OF MULTIAXIAL 

STATIC LOAD

If a viscoelastic rod is loaded for a long time by an axial 
force P = const, in its cross-section a uniformly distributed 
normal stress 

(1)

is present, which corresponds to the normal strain:

(2)

where: 
A – area of the cross-section
E – Young modulus.

Removal of the load at the time t = 0 results in a creep 
recovery [2-4]:

(3)

where: 
η – coefficient of viscous damping of normal strain.

According to the Kelvin-Voigt’s model of a viscoelastic 
material [3-5], the internal restoring force, F, and the 
counteracting resistance force, R, can be expressed by:

(4)

where the dot denotes differentiation with respect to t. 
Consequently, the dissipation energy can be calculated as the 
work, W, of the restoring force. If at the time t the rod length 
is l + Δl, where l is its length prior to load, then:

(5)
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and the elementary work of the restoring force is equal to

(6)

Denoting φ the dissipation energy per unit volume, one 
obtains:

(7)

so that

(8)

Hence:

(9)

and

(10)

Now let us consider what happens to a cubic element 
with fixed bottom side (Fig. 1) and subjected for a long time 
to the shear stress τzy0 on its upper side, if at t = 0 the load is 
removed.

Fig. 1. Shear strain γyz of infinitesimal cubic element

The restoring force and its elementary work on the line 
segment:

ββ’ = γyz dz                       (11)

are as follows:

(12)

where: γyz is the shear strain and

(13)

is the shear modulus. Here υ is the Poisson’s ratio. Thus:

(14)

Knowing that removal of the shear load at t = 0 is followed 
by the creep recovery [2]:

(15)

where: γyz0 = τyz0/G is the shear strain corresponding to the shear 
stress τzy0 = τyz0, the dissipation energy per unit volume can be 
in this case expressed as:

(16)

In Eqs (15) and (16), λ is the coefficient of viscous damping 
of shear strain given by [2]:

(17)

Hence:

(18)

and

(19)

It is noteworthy that the time function of energy dissipation 
by normal and shear stress components is the same.

Similar equations can be obtained for the dissipation 
energy in viscoelastic solids caused by the stress components 
σy0, σz0, τxy0, and τzx0 if at t = 0 a three-dimensional load has 
been removed. After summation of the resulting dissipation 
energies one gets:

(20)

where:

(21)

is the elastic strain energy per unit volume before removal of 
the load, and [6, 7]:

(22)

are the strain components at t < 0.
With Eqs (22), ψ0 can be expressed in terms of the stress 

components. It can be also divided into the strain energy of 
volume change, ψν0, and strain energy of distortion, ψd0, that is:

ψ0 = ψν0 + ψd0                           (23)

where [6]:

(24)



21POLISH MARITIME RESEARCH, No 1/2008

elastic strain energy, it will be dissipated after removal of the 
load [see Eq. (10)].

Similar equations can be written for the energy dissipated 
after application of the other stress components so that in 
the general case of static load applied at t = 0 the summary 
dissipation energy per unit volume becomes again:

(32)

According to the Kelvin-Voigt’s model,

so that the resistance force can be also expressed by

Consequently, Eqs (27a) and (28a) can be rewritten as

(27b)

(28b)

In what follows, Eq. (28b) and analogous relationships for 
the elementary dissipation energy due to the stress components 
σy, σz, τxy, τyz, and τzx will be applied.

 THE CASE OF HARMONIC IN-PHASE 
STRESS

Suppose that a vibratory load is producing in a viscoelastic 
solid the stress of components:

(33)

where: σja and τka are the amplitudes of the stress components 
and ω is their circular frequency. The relevant constitutive 
equation for strains reads [2]:

ε = Hσa sin(ωt – α)ε                   (34)

where ε is the vector of strain components. H is the matrix 
of dynamical flexibility of the material at the load circular 
frequency ω, σa is the vector of amplitudes of the stress 
components and α is the phase shift between stress and strain 
components as follows:

Eqs (20) and (23) lead to:

(25)

Hence it is clear that the time functions governing the 
dissipation of strain energy of volume change and the 
dissipation of strain energy of distortion are identical.

The problem of energy dissipation in viscoelastic materials 
after application of static loads can be solved analogously. For 
example, if an axial load is applied at t = 0 to a viscoelastic rod 
and the resulting stress σx0 is maintained constant, then a time-
dependent strain response will occur [2-4]

(26)

where: εx0 is given by Eq. (2). The dissipation energy in this 
case can be calculated as the work of this part of the external 
load which is overcoming the resistance force R.

The elementary work is then:

(27a)

With Eqs (26) and (27a) one obtains:

(28a)

and

(29)

Hence the relationship for the dissipation energy per unit 
volume of the rod reads:

(30)

Of course,

(31)

Note that the other part of the external constant load 
executes the work of elastic deformation of the rod which per 
unit volume is finally also equal to ½σx0εx0 [6]. As a stored 

(35)
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Starting with Eqs (28b), (34) and (35), for a viscoelastic cubic element under uniaxial stress:

σz = σza sinωt                                                                     (36)

we write:

(37)

Thus, during the stress period T = 2π/ω the amount of dissipated energy per unit volume, φ (T), becomes:

(38)

Obviously,

(39)

which leads to:

(40)

In the case of harmonic shear stress:

τyz = τyza sinωt                                                                    (41)

in place of Eq. (28b) we have:

(42)

Eqs (34) and (35) yield:

(43)

Accordingly,

(44)

If the viscoelastic element is simultaneously subjected to the stress components (36) and (41), then:

(45)

Summarizing, the following formula for the dissipation energy per unit volume during the period T can be written:

(46)

With Eqs (33) through (35), one obtains from Eq. (46).

(47)

Eqs (45) and (47) show that the shares of normal and shear stress components in the summary dissipation energy may be 
different. In order to prove the role of individual stress components in energy dissipation, let us assume that:

σxa = σya = σza = σ  ;  τxya = τyza = τzxa = τ  ;  υ = 0.3                                      (i)
Eqs (45) and (47) become then:

(ii)
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(iii)

These results suggest to check the following ratios, ρsn and ρdν , of dissipated energies per unit volume:

(48)

where:
φs (T) – dissipation energy associated with shear stress components
φn (T) – dissipation energy associated with normal stress components
φd (T) – dissipation energy associated with distortions
φν (T) – dissipation energy associated with volume changes.

At the stress (33), these quantities are given by:

(49)

The values of ρsn and ρdν vary from:

(iv)

in the case (ii), to:

(v)

in the case (i). From comparison of Eqs (iv) and (v) if follows that the role of shear stress components and distortions in energy 
dissipation is dominant.

 THE CASE OF HARMONIC OUT-OF-PHASE STRESS

Let the stress components in a viscoelastic solid under triaxial harmonic load be:

(50)

where: φj(j = x, y, z) and φk(k = xy, yz, zx) are the phase angles. Introducing the vector of complex amplitudes of the stress 
components:

(51)

the vector of the strain components can be written as [2]:

(52)

Here i is the imaginary unity, Im denotes the imaginary part, and

(53)

If time-varying stress components act on a viscoelastic solid, the knowledge of resulting strain components enables us to 
evaluate their combined effect in terms of dissipation energy by means of Eq. (46). In accordance with Eqs (51) through (53), 
the constitutive equations for strains under the stress state (50) read:
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(54)

and

(55)

In the present case, Eq. (46) becomes:

(56)

Hence:

(57)

It is evident that the phase angles of shear stress components do not affect the process of energy dissipation in viscoelastic 
solids under multiaxial harmonic loads whereas the phase shifts between normal stress components increase the amount of 
aforementioned energy in comparison with that under in-phase stress. Of course, the amount of dissipated energy depends also 
on the amplitudes of the stress components and their number, on the load duration and frequency as well as on two parameters 
of the Kelvin-Voigt’s model and Poisson’s ratio. The Reader interested in application of three-parameter models of viscoelastic 
materials is referred, e.g., to [4,8].

 DISSIPATION ENERGY IN VISCOELASTIC SOLIDS 
UNDER MULTIAXIAL PERIODIC LOADS

In engineering calculations referring to stationary operating conditions, the history of vibratory loads is frequently confined 
to periodic excitations. In such cases the stress state at a given point can be described by Fourier series representing the normal 
and shear stress components:

(58)

where:
σj0 , τk0 – mean values of the stress components
σjn , τkn – amplitudes of n-th terms in Fourier expansion of the stress components
φjn , φkn – phase angles of n-th terms in Fourier expansion of the stress components
ω – fundamental circular frequency.

The associated constitutive equation for strains reads [2]:

(59)

where ε is given in Eqs (35), Hn= H(nω) is obtained from the matrix H defined in Eqs (35) by inserting nω in place of ω , and 

(60)
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The elements of the vector ε0 are given in Eqs (22). Eq. (46) makes it possible to determine the energy dissipation due to the 
stress components (58) or to any of them. For instance, if a viscoelastic rod is acted upon by the stress:

(61)

from Eqs (59) and (60) one gets:

(62)

so that:

(63)

For the time period:

(64)

the dissipation energy per unit volume can be calculated as:

(65)

Hence:

(66)

Similarly, if a viscoelastic solid is subjected to a periodic shear stress:

(67)
in conformity with Eqs (59) and (60) the strain response is:

(68)

Eqs (44), (67) and (68) imply that:

(69)

Eq. (69) yields:

(70)

We now turn to the general state of periodic stress (58). On the basis of Eqs (59) and (60), the following time derivatives 
of the strain components are obtained:

(71)

With the aid of Eq. (46), one gets the quantity in question:
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(72)

Eq. (72), as well as other formulae for the amount of energy dissipated in unit volume, may be directly applied to the whole 
volume if the stress distribution is uniform. Otherwise, in order to determine the total amount of energy dissipated in a given 
part of the viscoelastic solid, additional calculations are necessary. The example below was chosen not only as an illustration 
for this problem, but also to gain more information on the influence of shear stress and distortions on energy dissipation in 
viscoelastic materials.

 EXAMPLE

Compare the total energy dissipated in a viscoelastic rod of constant diameter 2r0 and length l by its purely axial twisting with 
that due to its axial tension-compression. Consider the energies dissipated in the rod by its distortions and volume changes.

Solution. In twisting, the shear stress at the radius r is (Fig. 2):

(i0)

where: τ0 is the shear stress at the outer radius r0 .

Fig. 2. Distribution of shear stress in the cross-section of a twisted rod

Suppose τ0 is given as:

τ0 = τ0a sinωt                                                                       (ii0)

where: τ0a and ω are its amplitude and circular frequency. Then:

τ = τa sinωt                                                                       (iii0)

where:

(iv0)

is the stress amplitude at the radius r. For the unit volume:

dV = dAdl = rdφdrdl                                                                             (v0)

we write:

(vi0)

where:

(vii0)

is the shear strain at the radius r. Thus:

(viii0)

For the whole rod, the total energy dissipated by twisting in the time period T = 2π/ω, Ws(T), is:
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i.e.,

(73)

where: V is the volume of the rod. On the other hand, the 
total energy dissipated in the rod during one cycle of tension-
compression in the case of uniformly distributed harmonic stress 
of the amplitude σa and circular frequency ω amounts to:

(74)

Through Eqs (73) and (74), the ratio, μsn , of dissipated 
energies in these load cases:

(75)

equals:

(76)

It means that despite decreasing shear stress towards the 
rod axis, twisting creates relatively more heat than tension-
compression. Note also that the considered ratio does not 
depend on the rod dimensions and load frequency.

In the case of unequal frequencies of twisting and tension-
compression, ωs ≠ ωn , the ratio μsn depends also on their 
values and parameters of the Kelvin-Voigt’s model. For 
instance, if:

(77)

where: m and p are natural numbers, the ratio of energies 
dissipated in the rod during the time period:

(78)

becomes:

(79)

Now let us assume that the rod is simultaneously subjected 
to harmonic twisting and tension-compression of the same 
frequency. Then, the dissipation energies associated with 
distortions and volume changes are given per unit volume by 
Eqs (49) as:

(ix0)

(x0)

Calculation of the total energy dissipated in the rod by 
distortions in the time period T results in:

(80)

For the total energy dissipated in the rod due to volume 
changes one has:

(81)

Their ratio, μdν is:

(82)

which again indicates the significance of distortions in energy 
dissipation.

As far as the elastic strain energy in twisting is concerned, 
its total maximum value in the rod, Wse, is expressed by:

(xi0)
which gives:

(83)

The counterpart of this quantity in tension-compression 
reads:

(84)

Thus:

(85)

which corresponds to Eq. (76).
With Eqs (9) and (18), it is easy to prove that the ratio of 

energy dissipated in the rod after removal of torsional static 
load to the energy dissipated after removal of axial static load, 
as well as the ratio of energies dissipated after application of 
these loads, is also equal to the value of μsn given in Eq. (76).

CONCLUSIONS

� On the basis of three-dimensional constitutive equations 
for strains in viscoelastic solids [2], the dissipation energy 
in selected load cases has been determined.

� The dissipation energy in viscoelastic materials is 
a quadratic form of stress components.

� The time function governing the energy dissipation in 
homogeneous, isotropic viscoelastic material by normal and 
shear stress components is the same. Consequently, there is 
no difference in the time functions governing the dissipation 
of strain energy of volume changes and the dissipation of 
strain energy of distortions.

� Under vibratory loads, the dissipation energy rises linearly 
in course of time and non-linearly with increasing values 
of the coefficient of viscous damping of the material and 
load frequency.

� The dissipation energy does not depend on the phase angles of 
shear stress components but rises with increasing phase shifts 
between normal stress components of the same frequency.
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� In the process of energy dissipation due to normal and shear 
stress components the role of the latter is dominant.

� Comparing the amount of energy dissipated due to 
distortions with that caused by volume changes it is seen 
that the influence of distortions on the dissipation effect is 
much more significant.
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NOMENCLATURE

A – area of the cross-section of the rod
E – Young modulus
F – internal restoring force
G – shear modulus
H – matrix of dynamical flexibility of the viscoelastic 

material at the load circular frequency ω
Hn – matrix of dynamical flexibility of the viscoelastic 

material at the load circular frequency nω 
I – imaginary unity
Im – imaginary part
l – length of the rod prior to load
m, n, p – natural numbers
R – internal resistance force
t – time
T – stress period
Tc – common period of normal and shear stress components
V – volume
W – dissipated work, energy dissipated in a given volume and 

time
α – phase angle of the strain components
αn – phase angle of n-th terms of the strain components
γk – k-th shear strain component (k = xy, yz, zx)
γk0 – k-th strain component at the static load, mean value of 

k-th strain component
ε – vector of the strain components

εj – j-th normal strain component (j = x, y, z)
εj0 – j-th strain component at the static load, mean value of 

j-th strain component
ε0 – vector of mean values of the strain components
η – coefficient of viscous damping of normal strain
λ – coefficient of viscous damping of shear strain
µdv – ratio of total dissipation energies due to distortions and 

due to volume changes
µsn – ratio of total dissipation energies due to shear and due to 

normal stress components
υ – Poisson’s ratio
ρdv – ratio of dissipation energies per unit volume due to 

distortions and due to volume changes
ρsn – ratio of dissipation energies per unit volume due to shear 

and due to normal stress components
σa – vector of the amplitudes of stress components
σj – j-th stress component
σja – amplitude of j-th stress component
σjn – amplitude of n-th term in Fourier expansion of σj
σj0 – j-th stress component at the static load, mean value of 

j-th stress component
σn – vector of complex amplitudes of n-th terms in Fourier 

expansions of the stress components
τk – k-th stress component
τka – amplitude of k-th stress component
τkn – amplitude of n-th term in Fourier expansion of τk
τk0 – k-th stress component at the static load, mean value of 

k-th stress component
ϕj – phase angle of j-th stress component
ϕjn – phase angle of n-th term in Fourier expansion of σj
ϕk – phase angle of k-th stress component
ϕkn – phase angle of n-th term in Fourier expansion of τk
φ – dissipation energy per unit volume
φd – dissipation energy associated with distortions
φn – dissipation energy associated with normal stress 

components
φs – dissipation energy associated with shear stress 

components
φv – dissipation energy associated with volume changes
ψ0 – elastic strain energy per unit volume under static load
ω – circular frequency, fundamental circular frequency of 

periodic stress
ωs – circular frequency of twisting
ωn – circular frequency of tension-compression
( ) – complex quantity
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