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•  Moving co-ordinates system:
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ABSTRACT

This part is continuation of PART II. Analytic solutions for the temperature distribution 
in HAZ – presented in the previous part of this article are transformed for computer 
calculation with used Mathcad programme. There are established algorithms in moving 
and stationary systems for thermal cycle calculating. Finally, a few analytical examples 

with use of C-I-N and D-E models are demonstrated.
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ADAPTATION OF THE ANALYTICAL 
SOLUTIONS FOR NON-LINEAR 
COMPUTER CALCULATIONS

The equations (37)÷(42) of PART II of this article are 
algebraic form of linear heat flow solutions.

In order to execute computer calculations with temperature 
dependent physical parameters: λ, cp , ρ the above algebraic 
expressions must be transformed. For this purpose we will use 
calculations in Mathcad programme [1]. This programme is 
very useful for modelling and simulation of welding thermal 
process [2, 3].

Therefore the following assumptions were done:
• heat source energy is being input to the metal during time 

∆t, not impulsively ∆t→0. HS inputs are being summed up 
in points in distance ∆x = v ∆t. Considering this t’ = (j-1) 
∆t, (j = 1, 2, 3 ..n).

• integrals were replaced by finished sums assuring sufficient 
exactness. Finally, the following computing expressions for 
linear heat flow solutions are obtained [4]:

A. from Cylindrical-Involution-Normal heat source 
model

• Stationary co-ordinates system :
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• Stationary co-ordinates system

(2a)

• Moving co-ordinates system

(2b)

B. from Double Ellipsoidal configuration of source

In order to execute computer calculations with temperature 
dependent physical parameters: λ, cp, ρ the above algebraic 
expressions must be transformed.

Therefore the following assumptions were done:
• heat source energy is being input during time ∆t, not 

impulsively ∆t → 0. Hs inputs are being summed up in 
points in distance ∆x = v ∆t. Considering this t’ = (j - 1) ∆t 
(j = 1, 2, 3,…S),

• the integrals are changed to an algorithm executing proper 
summing with physical parameters upon temperature 
change control,

• as λ(T), cp(T), ρ(T), α(T) values in defined increments are 
known – like shown in table 1, the matrices containing T and 
corresponding λ(T), cp(T), ρ(T), α(T) values are defined. 

With use of linear interpolation procedure, the continuous 
functions λ(T), cp(T), ρ(T), α(T) were created and built-in inside 
calculation sheet.

There are three main mini-procedures responsible for 
thermal cycle calculating. In the first of them initial values are 
presented (these values are specific for the given cycle).”Stab_
time” parameter is estimated time needed for stabilisation of 
thermal field in moving co-ordinates system, “∆t” is duration 
time of every heat impulse being input. Therefore “S” gives the 
total number of heat impulses to be generated in order to obtain 

the summary thermal field as a result (this parameter is being 
used finally in the third mini-procedure). The estimation of 
thermal fields from several impulses is running with changeable 
values of α and λ parameters according to Table 1. Parameter 
“Last” is used in the second mini-procedure which computes 
r1, r2 ,r3,...rn values – again with step by step λ(T) values being 
modified. The final mini-procedure summarises thermal fields 
from several heat energy impulses using a proper formula 
specific for several HS model.

The following algorithms (3) and (4) with initial computing 
parameters are usually used to perform calculations for various 
heat sources in moving co-ordinates system: 

A. from Cylindrical-Involution-Normal heat source 
model: 
Stab_time = 19 sec ∆t = 0.05 sec 
S = Stab_time/ ∆t = 380 last = 0
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(3)

B. from D-E configuration of source:
(4)

For stationary system (x0 = x+vt , y0 = y , z0 = z) the 
following algorithms (5) and () are presented:
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C. from Cylindrical-Involution-Normal heat source 
model:
Stab_time = 19 sec ∆t = 0.05 sec 
S = Stab_time/ ∆t = 380 last = 0

(5)

D. from D-E configuration of source:

()

The base procedure defined by algorithms (3) ÷ () requires 
cooperation with several sub-procedures such as Stab_time, 
last, calculation of roots ri , λ(T), α(T).
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From essential point of view the sub-procedure Stab_time 
defines in time dimension the moment of time after which it 
estimated its value needed for stabilisation of thermal fields 
as follows:
- sub-procedure Stab_time 

(7)

Stab_time is compound sub-procedure realising calculation 
of wanted value of stabilised time for optional point in moving 
coordinates system. Parameters “absolute” and “settled” are 
preliminary set up values of start and end of partition of time, in 
which follows search of time stabilisation with “stroke” step.

The procedure is built in this way that last value of 
Stab_time does not depend on value “absolute” and “settled” 
but correct assumption of these values shorten time wanted for 
account of Stab_time.

Furthermore in the first main mini-procedure also cooperation 
is required with sub-procedures for inside calculation of λ(T), 
α(T). The discrete values of λ(T), α(T) are known and shown 
in Table 1 the matrices containing T and corresponding λ(T), 
α(T) values are defined experimentally. Than with use of linear 
interpolation procedure, continuous functions were created and 
built in inside calculation sheet as follows:
- sub-procedure λ(T)

(8)

- sub-procedure α(T)

(9)

On Fig. 1 are presented discrete values of λ(T), α(T) and 
determined by continuous functions with used sub-procedures 
(8) and (9) for a. λ(T), b. α(T).

We have high conformity of continuous functions and 
discrete value of λ(T), α(T) from above-mentioned date on 
Fig. 1.

Fig. 1. Values of a. λ(T) and b. α(T) in agreement with tab. 1 
and continuous functions of for low carbon steel 0.1% C
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The sub-procedure “LAST” realises calculation of value 
of parameter “last” defining correctness of calculation in 
analytical meaning but it decides indirectly about amount of ri 
roots which is taken into consideration in each computational 
step. It is possible to assure required accuracy of calculation 
when value of “last” is sufficiently large.

Sub-procedure “LAST” can find this value through 
analysis of moment of numeric convergence of neuralgic 
mathematical module in most adverse conditions at t = 0 and 
z = 0 as below:
- sub-procedure “LAST”

(10) 

(11)

(12)

Realisation of sub-procedure “LAST” relies on search 
of sufficiently large value “i”. In order to set up condition 
of assumption converge of monotones growing series (from 
foundation for value 0.001) at necessity outreaching of 9% of 
maximum value “Total” in treated interval “i”. It catches on that 

minimal value of “i” and can’t be smaller than 15. On Fig. 2 it 
is presented course of value “Pulse” and “Total”.

Fig. 2. Course of value “Pulse” and “Total” 
as function of growing value “i”

Furthermore let’s notice that computational cycle is started 
with acceptance of value λ(T = 0), α(T = 0) but each next time 
step “∆t” change the values of λ(T), α(T) in agreement with 
current value of temperature T. Generation of value “ri” is next 
computational step and for each time step, which is found in 
numeric way according to separate “sub-procedure ri” which is 
directly insert in algorithms (3)÷() and simultaneously checks 
accuracy of calculation with used “threshold” parameter. The 
value of “threshold” parameter is established on very close 
zero but unzero.

For example in Tab. 2 some values are presented of roots ri 
along with estimates of their accuracy for t = 0 and g = 1.2 cm, 
threshold = 0.0000001, α0 = 0.02 W m-2K-1, α1 = 0.01.

The final sub-procedure “Temperature – T” in algorithms 
(3) ÷ () summarises thermal fields from several heat energy 
impulses using a proper formula specific for appropriated 
H-S model.

EXAMPLES

A few examples of welding cycles in stationary co-ordinates 
system are shown. C-I-N and D-E configuration of source are 
used for analysis. The results from C-I-N and D-E models 
are compared with Rosenthal-Rykalin solution along with 
experimental results5, . Material parameters are accordance 
with Tab. 1 for low carbon steel.

Tab. 1. λ(T), cp(T), ρ(T), and α(T) values in several temperatures for low carbon steel – 0.1%C

T
°C

λ(T) 
Wcm-1K-1

T
°C

ρ(T)·cp(T)
JK-1cm-3

T
°C

α(T)
cm2s-1

0 0.6285 0 3.307 0 0.190
100 0.5866 100 3.666 100 0.160
200 0.5447 200 4.190 200 0.130
300 0.5028 300 4.570 300 0.110
400 0.4609 400 4.950 400 0.093
500 0.4190 500 5.303 500 0.079
600 0.3771 600 6.082 600 0.062
700 0.3477 700 6.955 700 0.050
800 0.3268 768 9.809 768 0.034
900 0.3226 800 6.536 800 0.042
1000 0.3268 900 5.866 900 0.055
1100 0.3310 901 5.204 901 0.062
1200 0.3352 1200 5.406 1200 0.062
1300 0.3352 1300 5.406 1300 0.062
1400 0.3352 1400 5.406 1400 0.062
1500 0.3352 1500 5.406 1500 0.062
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Example 1. 
Main parameters: q = 2400W; g = 0.4 cm; v = 0.75cm s-1

C-I-N: s = 0.2 cm; Kz = 15 cm-1; k = 12 cm -2

D-E: ff = 0.; af = 0.5 cm; bf = 0.5 cm; cf = 3.0 cm;
fr = 1.4; ar = 1.0 cm; br = 0.5 cm; cr = 3.0 cm – Fig.3.

Fig. 3. Temperature change in points: x0 = 0, y0 = 0.1, z0 = 0
Symbols: 1 – experimental, 2 – C-I-N calculation, 3 – D-E calculation 

4 – Rykalin-Rosenthal solution (plate model with the sector line source)

Example 2. 
Main parameters: q = 3300 W; g = 0.8 cm; v = 0.5 cm s-1

C-I-N: s = 0. cm; Kz = 5 cm-1; k = 12 cm –2

D-E: ff = 0.; af = 0. cm; bf = 0. cm; cf = 4.2 cm;
fr = 1.4; ar = 1.2 cm; br = 0. cm; cr = 4.2 cm – Fig. 4.

Fig. 4. Temperature change in points: x0 = 0, y0 = 0.1, z0 = 0
Symbols: 1 – experimental, 2 – C-I-N calculation, 3 – D-E calculation 

4 – Rykalin-Rosenthal solution (plate model with the sector line source)

Tab. 2. The assessment of a few ri roots (11 of 60) for non-linear approach calculation at t = 0

i ri values ri check
1 0.198811490 5.153050313 · 10-9

2 2.633099949 3.597482134 · 10-8

3 5.243573590 6.028955113 · 10-10

4 7.859042948 6.232056649 · 10-9

5 10.475772574 5.70471002 · 10-7

6 13.093007438 5.118749868 · 10-9

7 15.710495155 3.640161481 · 10-6

8 18.332817429 2.0121055824 · 10-7

9 20.945850074 1.066098321 · 10-8

10 23.563632979 4.666276254 · 10-10

11 26.1814807 3.501158403 · 10-6

Tab. 3. Results of estimate temperature

No of
example

Temperature [°C]
1. experiment 2. C-I-N calcul. 3. D-E calcul. 4. R-R calcul.

Tmax T10s T20s Tmax T10s T20s Tmax T10s T20s Tmax T10s T20s

1 1300 740 520 1410 660 420 1410 630 410 1610 360 250
2 1030 500 380 1110 470 330 1250 440 310 1560 380 265
3 1430 770 500 1470 730 470 1570 610 380 1820 470 340

Example 3. 
Main parameters: q = 12000W; g = 0.8cm; v = 1.1 cm s-1

C-I-N: s = 0. cm; Kz = 2 cm-1; k = 8 cm -2

D-E: ff = 0.; af = 0. cm; bf = 0.7 cm; cf = .2 cm;
fr = 1.4; ar = 1.4 cm; br = 0.7 cm; cr = .2 cm – Fig. 5.

Fig. 5. Temperature change in points: x0 = 0, y0 = 0.1, z0 = 0
Symbols: 1 – experimental, 2 – C-I-N calculation, 3 – D-E calculation 

4 – Rykalin-Rosenthal solution (plate model with the sector line source)

For the comparison of account and experiment results, in 
Table 3, effects of estimated temperatures for examples 1 ÷ 3 
are collected.

Temperature is defined for:
• Tmax – maximum temperature,
• T10s – temperature after 10 s,
• T20s – temperature after 20 s.

In the first example we can see distinctly correspondence 
of assessed temperature and experiment when we used 
analytic-numerical method and equations (1a), (2a) with use 
C-I-N and D-E heat source models respectively. For above 
example it take a stand of difference of order 100 - 300°C 
for maximum temperature. Results got run away from these 
issues is analytical assessment of run of temperature by used 
of Rosenthal-Rykalin (R-R) solutions.

In the second example it takes a stand a similar situation 
but with certain difference in upper temperature. Highest 
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conformity with experiment in this range of temperature is 
for analytic-numerical solution and agreement with equation 
(1a) for C-I-N heat source model. Results of estimates 
temperature with used pure analytical R-R solutions definitely 
run away from analytic-numerical solution especially in upper 
temperatures where divergence in estimated Tmax amount to 
500°C. Results of third example are similar to second example 
in essential meaning.

The special feature of characteristic of above examples 
1 ÷ 3 depends on heat source power and line energy of welding 
(1 – 3200 J cm-1, 2 – 00 J cm-1 and 3 –10909 J cm-1).

Furthermore these issues indicate on utility of analytic-
numerical solution with adopted C-I-N heat source model rather 
for simulation of welding process of high concentrated energy 
used but may also be used for the simulation of arc welding 
process similarly as D-E heat source model. It confirms also 
laser welding process simulation [7]. 

CONCLUSIONS

In this work some extended consideration about analytic-
numerical methods conforming has taken place.

It is obvious that:
• with an application of various heat source models one can 

obtain very effective temperature field solutions,
• with appropriate algorithms, calculations are very attractive, 

effective and can be quickly executed on PC computers,
• further impact should of course be put on still more detailed 

welding phenomenon analysis. The specificity of metal 
phase change and other complicated phenomena should 
be discovered and reflected in complex model in order to 
make more accurate and detailed analysis possible.

The results of proposed methods were compared with 
experimental data and Rosenthal-Rykalin solution. The 
accuracy of D-E and C-I-N results having in mind experimental 
data was discussed and there’s no doubt that the accuracy of old 
solutions (R-R) seems to be out of date for these examples.

All this makes analytical solutions very competitive with 
numerical ones and makes them very useful in engineering 
practice.
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NOMENCLATURE

“absolute”, s, - preliminary assumption of upper value of 
time stabilised

“settled”, s, - preliminary assumption of lower value of 
time stabilised

“stroke” , s, - a step assumption on way of installation of 
time of stabilisation

T_MOVE (x, y, z ,t)  - a temperature field in moving coordinate 
system, °C.
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