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INTRODUCTION

Motion of a dynamic system can be generated by different 
external or internal factors. At mathematical modelling external 
excitation factors of the most significant effect on the system, 
are selected. Such external factors are usually called excitations. 
Response of the system to given excitations is mathematically 
characterized by a definite transformation called operator of 
a system. For a broad class of dynamic systems the relation 
between excitations and response is characterized by differential 
equations of motion. The equations can be linear or non-linear, 
of constant or varying coefficients, ordinary or dif ferential, 
deterministic or stochastic ones. The mathematical models  
used for practical applications almost always necessitate to  
simplify the equations which form a given model. It amounts 
mainly to lowering their order by forming partial models and 
time – local ones with an assumed practical accuracy. Dynamic 
mechanical systems which represent floating objects are tightly 
associated with stochastic processes. State variables and  
input parameters of the models are of probabilistic character . 
Mathematical models of such systems are represented by  
sets of stochastic dif ferential equations, and form sets of Itô 
Itequations. Multihull units such as catamarans and trimarans 
belong to complex, highly non-linear dynamic systems. If  
dynamic system model is of floating unit’s linear system then 
the equations:

(1)
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where: 
I = M + A – inertia matrix
M – elements of matrix of generalized masses of  

structures
A – elements of matrix of generalized hydrodynamic 

added masses
B – hydrodynamic damping matrix
C – hydrostatic stiffness matrix
η – generalized displacement vector
F(t) – vector of exciting forces and moments

can be analyzed as a set of two mutually non-coupled groups 
of mutually coupled equations. It is assumed that the coupling 
takes place by linear and non-linear damping coefficients and 
hydrostatic stiffness coefficients. 

In these considerations the examined object is taken as 
a linear dynamic system of six degrees of freedom.

Among them are the following:
- translational oscillations:

a) surging – η1
b) swaying – η2
c) heaving – η3

- angular oscillations:
d) rolling – η4
e) pitching – η5
f) yawing – η6

The catamaran-fixed coordinate frame is shown in Fig. 1.

State equations in the mathematical model of 
dynamic behaviour of multihull floating unit

ABSTRACT

This paper concerns dynamic behaviour of multihull floating unit of catamaran type exposed 
to excitations due to irregular sea waves. Dynamic analysis of multihull floating unit 
necessitates, in its initial stage, to determine physical model of the unit and next to assume 
an identified mathematical model. Correctly elaborated physical models should contain 
information on the basis of which a mathematical model could be built. Mathematical models 
describe mutual relations between crucial quantities which characterize a given system in 
time domain. The dynamic analysis of multihull unit was performed under assumption that 
the unit’s model has been linear and exposed to action of irregular sea waves. Mathematical 

model of such dynamic system is represented by state equations. The formulated equations take into account 
encounter of head wave which generates symmetrical motions of the unit, i.e. surge, heave and pitch. For 

solving the equations the following three wave spectra were taken into consideration:
- ISSC (International Ship Structures Congress) spectrum

- Pierson-Moskowitz spectrum
- Paszkiewicz spectrum.

Keywords: dynamics of multihull floating unit, sea waves, stochastical processes, wave spectra

POLISH MARITIME RESEARCH 1(64) 2010 Vol 17; pp. 33-38
10.2478/v10012-010-0003-6



34 POLISH MARITIME RESEARCH, No 1/2010

Fig. 1. Schematic diagram of physical model of catamaran

Local motions of the unit constitute its response to sea-
wave-induced excitations. To the first group belong the  
equations which describe the symmetrical motions: η1, η3, η5. 
The second group is formed by the equations which describe 
the anti-symmetrical motions: η 2, η 4, η 6. Constructional  
reasons (symmetry) of multihull floating units make it  
possible to analyze group-coupled motions of the object and 
in consequence to limit number of state variables which appear 
in the equations.

SET OF STATE EQUATIONS

State equations are one of the possible ways for representing 
mathematical model of a dynamic system. An alternative way 
to describe a dynamic system is transmittance in which the 
initial state is assumed equal to zero.

The operator transmittance, otherwise called the transfer  
function G(s), is ratio of output signal Laplace transform and input 
signal Laplace transform of the system in zero initial conditions. 
The transmittance describes general features of a stationary 
linear system of one input and one output, independing on a kind 
of excitation. For the systems described by linear dif ferential 
equations of constant coefficients the transmittance is rational 
function of the complex variable s, which can be represented by 
the quotient of two polynomials (2).

To determine the set of state equations the following  
assumptions have been applied: 
1) resultant motion of the object on an irregular wave is formed 

by superposing its motions in regular waves
2) only encounter of the head wave which generates only the 

motions: surging η1, heaving η 3 and pitching η 5, is taken 
ito consideration

3) it is assumed that the response of the object, in the form 
of the generalized wave-generated forces F i (i = 1, 3, 5), 
to excitation due to the wave of the height ξ(t), can be 
approximated by means of a system whose transmittance 
is of the form:

(2)

where:
F(F1, F3, F5)
b0(b01, b03, b05), b1(b11, b13, b15), b2(b21, b23, b25)
a1(a11, a13, a15), a2(a21, a23, a25).

The relation (2) can be written by using the following set 
of state equations:

(3)

(4)

where:
h0, h1, h2 – constants defined by the coefficients of the equation 

(2)
f1(f11, f13, f15), f2(f21, f23, f25)
h0(h01, h03, h05), h1(h11, h13, h15), h2(h21, h23, h25).

To obtain random process of the irregular wave height  
ξ(t) the well-known energy (wave) spectra of the wave which 
encounters the object, can be used:

(5)

The selected spectrum is approximated by means of the 
spectral density function in the form:

(6)

Then, the shape filter is introduced by making use of the 
following assumptions:
1. In both the spectra, i.e.(5) and (6), their maxima appear at 

the same frequency and are of the same value

2. 

3. The wave height processes are generated by the transfer 
function G(s) which constitutes the so-called shape filter 
if „white noise” is at input.
The transfer function G(s) is given by the relation:

(7)

The relation (7) corresponds to the following set of state 
equations:

(8)

(9)

where:
W - „white noise”
ξ(t) - wave height process. 

The above given matrix (T ab. 1) can be written in the  
general form of Itô equation:

(10)

From the matrix the following is obtained:

(11)
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where:

Tab. 1. Matrix of state equations

The parameters  can be determined after finding 
and solving the particular coefficients of damping, hydrostatic 
stiffness as well as inertia ones. 

EXAMPLE SOLUTIONS FOR THE 
SELECTED WAVE SPECTRA

1 ISSC wave spectrum

(12)

where:

(13)

The wave spectrum is approximated by means of the  
spectral density function of the following form:

(14)

Let it be:

(15)

Now ω - value at which the extremum appears, is  
determined, i.e.:

(16)

(17)

From the condition that extremum is present in the same 
point the following is obtained:
i.e. the first equation:

(18)

From the second assumption that:

the following is obtained:
i.e. the second equation: 

(19)
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and the third equation

(20)

From the right-hand side of the Eq. (20):

(21)

by substituting:

the following is achieved:

(22)

The left-hand side of Eq. (20) is of the form:

(23)

in which „C” means „white noise”, and the coefficients a, b, c 
are equal to:

(24)

After solving the above given integral the final solution is 
achieved as follows:

(25)

By comparison of the left hand side and right hand side (the 
third equation) the following is obtained:

(26)

This way the third, lacking equation for the unknowns C, 
v, ω0, has been achieved.

The first assumption (Eq. (18)) yields the following:

(27)

The second equation (Eq. (19)) yields the relation:

(28)

By introducing the following substitution: 

(29)

the relation is achieved:

(30)

The constants A and B are equal to:

(31)

From Eq. (30) is obtained the quantity C expressed as  
follows: 

(32)

From Eq. (26) is determined the quantity C equal to: 

(33)

Next the right hand sides of the above given equations are 
compared to each other to get the equation for determining 
the unknown „v”.

(34)

Now the quantity L  = 4.500406826 and its square  
L2 = 20.2536616 is determined. 

Hence:

(35)

By substituting v1 the following is obtained:

(36)

(37)

(38)

By substituting v2 the following is obtained:

(39)

(40)
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2. Pierson-Moskowitz wave spectrum

(41)

(42)

(43)

On the assumption that:  L  = 4.500406826 and  
v1 = 1.496512384, v 2 = 0.602235192, value of the constant 
C is calculated:

(44)

(45)

(46)

(47)

(48)

3. Paszkiewicz wave spectrum

(49)

(50)

(51)

(52)

(53)

(54)

Fig. 2. Distribution of values of the coefficients for the 
selected wave spectra

Values of the functions for ω1 =1 and hs =1.

CONCLUSIONS

1. The coefficients a0, a1, a2 which appear in the shape filter 
(7) were determined. They were determined with taking 
into consideration the three wave spectra:
a) ISSC (International Ship Structures Congress)  

spectrum
b) Pierson-Moscowitz spectrum
c) Paszkiewicz spectrum

2. The set of state equations which takes into account  
symmetrical motions of catamaran, was presented in  
the form of the matrix equation (given in Tab.2). They 
constitute the equations of dynamic behaviour of catamaran 
on irregular wave, called also Itô equations. The quantities 
ω0, v, C obtained from Eqs. (18 ÷ 20) made it possible to 
determine the coefficients a0, a1, a2. 

3. Further continuation of the subject matter in question is 
aimed at achieving a solution of the elaborated matrix  
equation.

Tab. 2. Functional expressions for the coefficients of the selected wave spectra
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