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INTRODUCTION

Grid stiffened cylindrical shells are applicable in many 
industries such as aerospace industries. Stiffened cylindrical 
shells play a big role in aerospace industries in fuselage and 
fuel tank applications. This has resulted in an extensive research 
work in the field of cylinders with stiffening structures [1–8].

Grid stiffened cylindrical shells are widely used in 
engineering fields. These structures are subjected to external 
dynamic loads. These external dynamic loads can cause the 
undesirable resonance and it can lead to fatigue. Moreover, 
dynamic characteristics must be used on design of structure 
because only vibration (not fatigue) could severely damage 
the sensitive equipment in airplanes, launch vehicles and etc. 
Therefore, it is essential to understand the dynamic behavior 
of these structures. Theoretical methods of analyzing the 
grid stiffened structures are classified into two main types, 
depending upon whether the stiffeners are treated by averaging 
their properties over the shell surface to conventional materials 
or by considering them as discrete elements. The first method, 
so-called smeared stiffener theory, is particularly applicable 
only when large numbers of stiffeners are closely and evenly 
spaced. The second method, so-called discrete stiffener theory, 
is more general as it can accommodate any stiffener distribution. 
Numerous researches have been developed to study the 
vibrational behavior of stiffened cylindrical shells. Mustafa and 
Ali [9] predicted natural frequencies for the stiffened cylindrical 
shells using the Rayleigh-Ritz procedure. In this procedure they 
used only one term in assuming the displacement functions 
satisfying the simply supported boundary condition. One-term 

approximation is sufficient for the analysis of the cylindrical 
shells with simply supported boundary condition. However, it 
can lead to much error to obtain the exact solution of stiffened 
shells with any other boundary conditions. Yang and Zhou [10] 
presented the transfer function method to analyze the ring-
stiffened shell. Lee and Kim [11, 12] investigated the effect 
of rotation speeds and boundary conditions on the frequencies 
for the orthogonally stiffened composite cylindrical shells 
treating the materials of stiffeners as equivalent isotropic. The 
mentioned papers were, however, limited to the shells with the 
uniform dimensional and evenly spaced stiffeners. In fact, non-
uniform dimensional and unevenly spaced stiffeners are used 
much more in structural reinforcements. Wang et al. [13] solved 
the free vibration problem for the isotropic cylindrical shells 
with varying ring-stiffener distribution using the extended Ritz 
method. Egle and Sewall [14], in different boundary conditions, 
have analyzed the effect of stiffeners on natural frequencies 
of stiffened cylindrical shells. In this research, stiffeners are 
considered as discrete elements, energy method and Hamilton 
principle are used to obtain equations of motion. Rinehart and 
Wang [15] have studied the changes in natural frequencies 
of cylindrical shells affected by stringers stiffeners, based 
on Vlasov thin walled beam theory. By both, considering the 
stiffeners as discrete elements and using energy method, they 
have obtained the equations of motion.

Unlike the previous study, the vibrations of stiffened 
cylindrical shells with grid structure under full free boundary 
conditions are analyzed in this paper. The stiffness matrix of 
the whole structure is determined by stiffness matrix of grid 
structures. Then, equilibrium equations are considered based 
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The above matrix elements are the functions of the strain 
and curvature parameters of the shell. We denote these 
stiffness parameters by As, Bs and Ds which corresponds to the 
extensional, coupling and bending matrices, respectively. Here, 
the superscript s stands for stiffener. By the matrix summation 
of force and moment, coming from the stiffener Grid structure 
and cylindrical shell, the force and the moment of the whole 
structure will be obtained.

(3)

Nsh and Msh are the force and moment contribution of the 
shell, respectively. Forces and moments, which affect the shell, 

on the classical shell theory. Strain-displacement relations are 
written based on the first approximation of Love theory and 
then by replacement in stress-strain relations, equilibrium 
equations based on displacement parameters are obtained. After 
simplification of equilibrium equations, the shell frequency 
equation is obtained by using Galerkin method. Finally, 
according to the following assumptions, the effect of stiffener 
geometry and mass of grid stiffened cylindrical shell on natural 
frequencies is presented:
1. The thickness of ribs is small compared with length of the 

ribs. So the transverse strain of stiffeners is much smaller 
than that of longitudinal strain and can be negligible.

2. The strain is uniform across the cross-sectional area of the 
stiffeners. Hence, a uniform stress distribution is assumed 
across the cross-sectional area of the stiffeners.

3. The load on the stiffener/shell is transferred through shear 
forces between the stiffeners and shell.

ANALYTICAL METHOD

Equivalent Stiffness Matrix 
of the Stiffener and Shell

To calculate the natural frequencies of the whole structures, 
first, the stiffness matrix of grid structures must be determined. 
This matrix is composed of three separated matrices As, Bs and 
Ds which can be explained like below:

(1)

Based on geometrical variables of grid structures which 
presented in Fig. 1, stiffness matrix of grid structures can be 
obtained as below [16]:

(2)

Fig. 1. Grid stiffener and shell design parameters

relate to the occurred strain by stiffness matrix Ash, Bsh and Dsh. 
Based on shell mechanical properties, these matrices are:

(4)

Substituting the force and moment expressions for the 
stiffener network from Eq. 2, and the force and moment 
expressions for the shell from Eq. 4, the total structure 
constitutive equation given by Eq. 5 results:

(5)

Formulation

The cylindrical shell under consideration is with constant 
thickness t, radius R and length L. The reference surface of the 
shell is taken to be at its middle surface where an orthogonal 
coordinate system (x, θ, z) is fixed. As shown in Fig. 2, the 
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x axis is taken in the axial direction of the shell, where the θ and 
z axises are in the circumferential and radial directions of the 
shell, respectively. The displacements of the shell are defined 
by u, ν, w in the x, θ, z directions respectively. 

The equations of motion for a cylindrical shell can be 
written by the Love theory as:

(6)

where:
Lij(i, j = 1, 2, 3) – the differential operators with respect to x 

and θ.

Fig. 2. Co-ordinate system and circumferential modal shape [17]

Boundary Conditions
Due to the satisfaction of the boundary conditions, the 

displacement u, v and w can be explained as double Fourier 
series [19]:

(7)

In recent equations, Amn, Bmn and Cmn are coefficients 
of natural modes’ shape, which obtained from solving free 
vibration. For solving free vibrations, Tmn(t) = eωmnt is considered 
as a function of time, m is the number of axial half-wavelength, 
n is the number of circumferential half-wavelength and ωmn 
is the natural frequency in mode of mn. To satisfy boundary 
conditions, axial and circumferential functions are explained 
as below:

Free Vibration Analysis

Using Galerkin method and substituting Eq. 7 into Eq. 6, 
it can be written as:

(9)

where:
Cij(i, j = 1, 2, 3)  – the parameters from the Lij after they are 

operated with the x and θ. 
For non-trivial solutions, one sets the determinant of the 

characteristic matrix in Eq. 9 to zero:

det(Cij) = 0 (i, j = 1, 2, 3)                (10)

So the frequency equation can be obtained as: 

β1ω6 + β2ω4 + β3ω2 + β4 = 0              (11)

where:
βi(i, j = 1, 2, 3) – the coefficients of Eq. 10. 

Solving Eq. 11, one obtains three positive roots and three 
negative roots. The three positive roots are the angular natural 
frequencies of the cylindrical shell in the axial, circumferential 
and radial directions. The lowest of the three positive roots 
represents the flexural vibration, and the other two are in-plane 
vibrations.

NUMERICAL RESULTS AND DISCUSSION

Numerical implementation of the present analysis was 
performed using general-purpose computation package 
MATLAB. To check the accuracy of the present analysis, 
the results obtained are compared with those in the [17]. 
A comparison of the values of the frequency of a free vibrating 
cylindrical shell with the F-F boundary conditions is given in 
Table 1. 

Tab. 1. Comparison of values of the natural frequency ωn for a cylindrical 
shell with F-F supported boundary conditions 

m = 1; R/h = 374; L/R = 2.63; h = 0.6477 mm; 
E = 70 GPA; ν = 0.3; ρ = 2700 Kg/m3

m n Reference [17] Present Difference (%)

1

7 251.4 267.9 6.56

8 243.5 243.0 0.20

9 257.1 252.4 1.82

10 280.2 284.5 1.53

11 340.3 331.2 2.67

(8.a)

In above equations αi are constant coefficients which 
determined according to boundary conditions. λm is the root of 
non-linear equations and σm is the dependant parameter on λm 
which obtained according to boundary conditions. Free-Free 
supported conditions can be defined as below:

(8.b)

In the parameter, E is Young’s modulus of elasticity, ν is 
the Poisson ratio, ρ is the density, R is the radius and ω is the 
frequency. The comparisons are carried out for the parameter of 
L/R = 2.63 and for the cases of R/h = 374 and t = 6.477x10-4 m. 
Using the method outlined earlier, numerical results are 
obtained for the six model of grid-stiffened cylinder with four 
families of ribs and geometric and mechanical parameters given 
in Tables 2 and 3. 
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Tab. 2. Dimensions of the considered structures (mm, kg)

mTOT mstiffener mshell tshell R L φ wh=wc=
=wl=w H

19.794 3.450 16.344 5 300 653 30° 6 6 Model 1
21.007 4.663 16.344 5 300 653 30° 7 7 Model 2
25.681 9.337 16.344 5 300 653 30° 10 10 Model 3
36.647 20.302 16.344 5 300 653 30ş 15 15 Model 4
20.944 4.430 16.344 5 300 640 45ş 6 6 Model 5
22.505 6.161 16.344 5 300 653 60ş 6 6 Model 6

Tab. 3. Mechanical properties of the models (Aluminum)

Modulus of elasticity Poisson’s ratio Density
E (GPa) ν ρ kg/m3 

70 0.3 2700

The obtained results are compared to the solution of the 
same problem when the considered structures are modeled with 
a finite element analysis package ANSYS. One of the generated 
mesh by this package is shown in Fig. 3. 

Fig. 3. The mesh generated for a grid stiffened cylindrical shell using 
ANSYS

obtained frequencies of this equivalent shell can be a proper 
approximation for natural frequencies of the main structure. In 
Figs. 4-9, a comparison between the results obtained by ETM 
(Equivalent Thickness Method), FEM and present method is 
presented. These figures have shown that the present method 
gives more exact answers than ETM. 

Fig. 5. Values of natural frequency for Model (2) with Free-Free boundary 
conditions in three methods. ∆ FEM; ● Present Method; ○ ETM (Equivalent 

Thickness Method); m = 1

Fig. 6. Values of natural frequency for Model (3) with Free-Free boundary 
conditions in three methods. ∆ FEM; ● Present Method; ○ ETM (Equivalent 

Thickness Method); m = 1

Fig. 7. Values of natural frequency for Model (4) with Free-Free boundary 
conditions in three methods. ∆ FEM; ● Present Method; ○ ETM (Equivalent 

Thickness Method); m = 1

Fig. 10 shows the changes relative to natural frequencies 
of six predicted models, according to the angle of helical 
ribs. As shown in this figure, when the angle of helical rib 
increases, the amount of natural frequencies of structures will 
be increased.

Fig. 4. Values of natural frequency for Model (1) with Free-Free boundary 
conditions in three methods. ∆ FEM; ● Present Method; ○ ETM (Equivalent 

Thickness Method); m = 1

Based on a technical report [18], natural frequencies of 
a grid-stiffened shell can be approximated by equivalent of 
thickness. In this method, a conventional shell with the same 
weight as grid part is predicted. An equivalent shell will be 
produced by the replacement of this shell with grid part. The 
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with the present method and the agreement between them was 
good. Based on comparisons of the mentioned method, it is 
concluded that the present method is more convenient, more 
effective and more accurate. 
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Fig. 8. Values of natural frequency for Model (5) with Free-Free boundary 
conditions in three methods. ∆ FEM; ● Present Method; ○ ETM (Equivalent 

Thickness Method); m = 1

Fig. 9. Values of natural frequency for Model (6) with Free-Free boundary 
conditions in three methods. ∆ FEM; ● Present Method; ○ ETM (Equivalent 

Thickness Method); m = 1

Fig. 10. Comparison of natural frequencies of three predicted models 
according to the angle of helical ribs. ○ φ = 30 (Model 1); ∆ φ = 45 (Model 

5); □ φ = 60 (Model 6); m = 1

Note: In this comparison Model 5 is smaller length than the 
remaining ones (about 2%). According to difference between 
configurations of models, the resulted value from FEM modeling 
is the minimum height discrepancy can be obtained.

CONCLUSION 

The article has presented the analysis of grid stiffened 
cylindrical shell using Galerkin method. Comparison of the 
results by the present method and numerical finite element 
method was carried out. The six finite element models for 
grid stiffened cylindrical shell were created. The shell was 
fully free-free at both ends. The second six natural frequencies 
were obtained with the ANSYS. These results were compared 


