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ABSTRACT

Real ship structural design problems are usually characterized by presence of many 
conflicting objectives. Simultaneously, a complete definition of the optimum structural 
design requires a formulation of size-topology-shape-material optimization task unifying 
the optimization problems from the four areas and giving an effective solution of the 
problem. Any significant progress towards solving the problem has not been obtained so 
far. An objective of the present paper was to develop an evolutionary algorithm for multi-
objective optimization of the structural elements of large spatial sections of ships. Selected 

elements of the multi-criteria optimization theory have been presented in detail. Methods for solution of the 
multi-criteria optimization problems have been discussed with the focus on the evolutionary optimization 
algorithms. In the paper an evolutionary algorithm where selection takes place based on the aggregated 
objective function combined with domination attributes as well as distance to the asymptotic solution, is 
proposed and applied to solve the problem of optimizing structural elements with respect to their weight 
and surface area for a high - speed vehicle-passenger catamaran structure, with taking into account several 
design variables such as plate thickness, scantlings of longitudinal stiffeners and transverse frames, and 
spacing between longitudinal and transversal members. Details of the computational models were kept at 
the level typical for conceptual design stage. Scantlings were analyzed by using the selected classification 
society rules. The results of numerical experiments with the use of the developed algorithm are presented. 
They show that the proposed genetic algorithm may be considered an efficient tool for multi-objective 

optimization of ship structures.
The paper has been published in the three parts: Part I: Theoretical background on evolutionary multi-

objective optimization, Part II: Computational simulations, and Part III: Analysis of the results.

Keywords: ship structure; multi-objective optimization; evolutionary algorithm; 
genetic algorithm; Pareto domination, set of non-dominated solutions

ANALYSIS OF THE RESULTS AND 
CONCLUSIONS DRAWN FROM THE 
COMPUTATIONAL SIMULATIONS

Three series of the computer simulations, signed sym1, 
sym2 and sym3, confirmed effectiveness of the developed 
computational algorithm and computer code for solution 
of the formulated problem of ship structure topology-size 
multi-objective optimization. As a result of the calculations 
an approximation of the Pareto-optimum set containing, in 
each simulation, from a few to more than ten non-dominated 
solutions, was found. The obtained results do not allow to 
unequivocally conclude which of the examined factors: (1) 
objective function aggregation strategies, (2) domination 
attributes included into selection process, and (3) distance to 

asymptotic solution included into selection process, is most 
advantageous.

In the case of studying the influence of optimization 
criteria aggregation strategy, visual assessment of the shape 
of the obtained approximations of the Pareto-optimum set 
suggests an advantage of the strategy with random values of 
the weight coefficients ws (sym1-2) and the least effectiveness 
of the strategy with fixed values of the weight coefficients ws 
(sym1-1).

The effectiveness of the strategy with random selection of 
single optimization criteria in the selection process (sym1-3) 
is intermediate. In the case of the constrained problems it also 
turns out that the components of the penalty functions introduce 
a random contribution to the fitness function thus causing the 
strategy with the fixed weight coefficients ws to be practically 
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a strategy similar to the two others and it also allows to find 
approximation of the Pareto-optimum set with the adequate 
accuracy.

From the found sets of the compromise solutions a user can 
select, in the next stage, one or a few solutions by applying 
additional premises which are not included in the optimization 
model. He can also select suggested non-dominated solutions 
the closest to the asymptotic solutions f≈:

f≈
sym1-1 = [1086.28 7422.10]T⋅[kN m2] ⇒

⇒ f1,sym1-1(x) = 1086.28 kN, f2,sym1-1(x) = 7422.10 m2

f≈
sym1-2 = [1113.65 7361.45]T⋅[kN m2] ⇒

⇒ f1,sym1-2(x) = 1113.65 kN, f2,sym1-2(x) = 7361.45 m2

f≈
sym1-3 = [1153.68 7381.57]T⋅[kN m2] ⇒

⇒ f1,sym1-3(x) = 1153.68 kN, f2,sym1-3(x) = 7381.57 m2

Since this way three solutions are obtained, the next 
question is which of them can be recommended as the best1). 
Here the following procedure is suggested by this author: non-
dominated solution sets obtained in subsequent simulations can 
be merged into a temporary solution set presented in Fig. 39a. 
In this set only a part of solutions is non-dominated ones, 
Fig. 39b. In the set of 15 non-dominated solutions obtained 
by using the results of three simulations, a distance of each of 
them from the asymptotic objective in normalized objective 
space, can be determined, Fig. 39c. The least distance equal 
to 1.082, was obtained for the solution f1(x) = 1113.65 kN and 
f2(x) = 7361.45 m2 found in the simulation sym1-2 (random 
values of the weight coefficients w1 and w2 in the range [0, 1]). 
The solution can be recommended as a single solution of the 
formulated problem of multi-objective optimization.

Effectiveness of the three examined multi-objective 
optimization strategies which use optimization criteria values 
and functions representing violation degree of constraints, 

Fig. 39. Selection of single, recommended solution of multi-objective optimization problem by using non-dominated solution sets obtained in the three series 
of computer simulations: sym1-1, sym1-2, sym1-3: a) temporary set composed of non-dominated solutions of each simulation, b) selection of non-dominated 

solutions in temporary set, c) determination of distance of non-dominated solutions from asymptotic objective in normalized objective space, 
d) values of optimization criteria for the found closest solution: f1(x) = 1113.65 kN and f2(x) = 7361.45 m2

1) Let us remember that in the multi-objective optimization there is not the single best solution of the problem and the formulated 
recommendation should be treated as a subjective choice by a person taking decision.
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can be roughly evaluated also by assuming that the number 
of solutions produced by a given algorithm, that is a part 
of set of non-dominated solutions obtained on the basis of 
results produced by all algorithms, Fig. 39, is a measure of 
algorithm effectiveness. In the examined example the particular 
simulations: sym1-1, sym1-2 and sym1-3 have brought 
respectively 6, 6 and 3 non-dominated solutions into set of 
non-dominated solutions. On this basis a conclusion may be 
suggested that the strategies of fixed values of the optimization 
criteria weight coefficients w1 = w2 = 0.5 and random values 
of the weight coefficients w1 and w2 in the range [0, 1] show 
similar effectiveness whereas the strategy of random values of 
the weight coefficients w1 and w2 equal to 0 or 1 proved to be 
the least effective. The issue of examining the effectiveness of 
multi-objective evolutionary algorithm is very relevant and not 
fully solved hence it requires a separate research which exceeds 
however content of this case study.

The conducted analysis of computer simulation results 
of the problem of ship structure multi-objective optimization 
in question allows to state that in the studied cases the most 
effective strategies were the following: (1) that with random 
values of the weight coefficients w1 and w2 in the range [0, 1], 
and that with fixed values of the optimization criteria weight 
coefficients w1 = w2 = 0.5. Less effective was the strategy with 
random values of the weight coefficients w1 and w2 equal to 
0 or 1.

The recommended non-dominated solution was obtained 
for the values of design variables specified in Tab. 8. The 
corresponding dimensions of the ship cross-section are given 
in Fig. 40.

From the study of influence of dominance attributes and 
distance from asymptotic solution on the effectiveness of the 
algorithms of sym2-1, sym2-2 and sym2-3, also satisfactory 
results were achieved as follows:

f≈
sym2-1 = [1105.95 7345.11]T⋅[kN m2] ⇒

⇒ f1,sym2-1(x) = 1105.95 kN, f2,sym2-1(x) = 7345.11 m2

f≈
sym2-2 = [1192.04 7327.41]T⋅[kN m2] ⇒

⇒ f1,sym2-2(x) = 1192.04 kN, f2,sym2-2(x) = 7327.41 m2

f≈
sym2-3 = [1060.03 7485.93]T⋅[kN m2] ⇒

⇒ f1,sym2-3(x) = 1060.03 kN, f2,sym2-3(x) = 7485.93 m2

In the case of necessity to identify a single solution from 
a series of simulations one can apply the earlier described 
procedure of aggregation of set of non-dominated solutions 
obtained in particular simulations and identify the non-
dominated solution nearest the asymptotic solution.

The performed calculation investigations have positively 
verified the effectiveness of the combined fitness multi-
objective evolutionary algorithm developed by this author, as 
well as the calculation tool built for solving the unified ship 
structure topology-size multi-objective optimization problem. 
Particular computer simulations have produced a dozen or 
somewhat more of non-dominated solutions which constitute 
the set of trade-off solutions from among which decision makers 
may choose one or more of them for further development. The 
algorithm developed as a part of the underlying work allows 
also to pinpoint a single variant closest to the asymptotic 
solution which may be proposed as a single solution of the 
multi-objective optimization problem.

Fig. 41 presents the comprehensive results of the multi-
objective optimization of the ship hull structure: (1) general 
arrangement and main particulars of an example ship, (2) 

optimization criteria, (3) simulation main parameters and 
control variables, (4) values of optimization criteria for the 
obtained non-dominated variants, (5) values of optimization 
criteria for the variant closest to the asymptotic solution, and 
(6) structural dimensions and scantlings for this variant.

Tab. 8. Values of design variables recommended 
as a result of multi-objective optimization

No. Symbol Description Value

1 x1 serial No. of mezzanine deck plate 5

2 x2 serial No. of mezzanine deck bulb 6

3 x3 serial No. of mezzanine deck T-bulb 48

4 x4 number of web frames 13

5 x5 number of mezzanine deck stiffeners 29

6 x6 serial No. of superstructure I plate 8

7 x7 serial No. of superstructure I bulb 5

8 x8 serial No. of superstructure I T-bulb 47

9 x9 number of superstructure I stiffeners 5

10 x10 serial No. of inner side plate 6

11 x11 serial No. of inner side bulb 2

12 x12 serial No. of inner side T-bulb 48

13 x13 number of inner side stiffeners 21

14 x14 serial No. of bottom plate 9

15 x15 serial No. of bottom bulb 5

16 x16 serial No. of bottom T-bulb 52

17 x17 number of bottom stiffeners 16

18 x18 serial No. of outer side plate 5

19 x19 serial No. of outer side bulb 2

20 x20 serial No. of outer side T-bulb 52

21 x21 number of outer side stiffeners 30

22 x22 serial No. of wet deck plate 8

23 x23 serial No. of wet deck bulb 6

24 x24 serial No. of wet deck T-bulb 51

25 x25 number of wet deck stiffeners 36

26 x26 serial No. of main deck plate 10

27 x27 serial No. of main deck bulb 1

28 x28 serial No. of main deck T-bulb 46

29 x29 number of main deck stiffeners 26

30 x30 serial No. of superstructure II plate 8

31 x31 serial No. of superstructure II bulb 5

32 x32 serial No. of superstructure II T-bulb 47

33 x33 number of superstructure II stiffeners 5

34 x34 serial No. of upper deck plate 10

35 x35 serial No. of upper deck bulb 1

36 x36 serial No. of upper deck T-bulb 48

37 x37 number of upper deck stiffeners 36
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PERFORMANCE ASSESSMENT OF 
THE DEVELOPED MULTI-OBJECTIVE 

OPTIMIZATION ALGORITHM

The question should be answered if the proposed combined 
fitness multi-objective evolutionary algorithm (Eq. 28) is more 
efficient than the evolutionary algorithms used in the process 
of selection of only optimization criteria (in the form of scalar 
substitute optimization criteria) and functions representing the 
degree of constraint violation (Eq. 8). Unfortunately the answer 
cannot be simple and unequivocal.

In practical problems the ship structural multi-objective 
optimization which produces a set of Pareto-optimum 
solutions may be very computation time-consuming or even 
impossible to be performed. In the cases the evolutionary 
algorithms of multi-objective optimization do not guarantee 
identification of Pareto-optimum compromises but can 
help identifying a satisfactory approximation, i.e. a set of 
solutions hoped to be not too far distant from searched front 
of optimum solutions (in the sense of Pareto). However in this 
case methods are necessary to evaluate how good produced 
solutions of formulated problems are. And, this leads to 
the question: how to compare effectiveness of different 
algorithms? In the context of the presented work the question 
may be formulated as follows: how to compare effectiveness 
of the studied evolutionary multi-objective optimization of 
ship hull structure, assumed for different evaluation strategies 
of fitness function.

In the case of the evolutionary algorithms of multi-
objective optimization, statistical in their nature, evaluation 
of obtained results and comparison of effectiveness of 
optimization algorithms implementing different strategies 
is a very difficult task, arousing much controversy and 
misunderstanding. Whereas visual and qualitative comparison 
of the sets approximating Pareto front is commonly used 
for deduction of quality of evolutionary multi-objective 
optimization, in the case of quantitative methods the searching 
of proper standards are just under way [Knowles, Thiele, 
Zitzler (2006)].

Generally accepted procedures enabling to compare quality 
of solutions obtained by different algorithms (usually in many 
runs) or solutions of the same algorithm obtained in many runs, 
quantitatively taking into account their statistical characteristics 

are necessary [Sarker, Coello Coello (2002)], [Knowles, Thiele, 
Zitzler (2006)]. 

The problem is extremely difficult also because in this case, 
as opposed to single-objective optimization, it is necessary to 
compare not individual solutions, but vectors representing sets 
of non-dominated solutions under assumption that they are an 
approximation of a practically unknown set of Pareto-optimum 
solutions, referred to as a front of Pareto-optimum solutions. In 
consequence, most comparative studies are based on different 
methodologies and assumptions, and therefore results obtained 
from such studies are difficult to be used in mutual comparisons 
[Knowles, Thiele, Zitzler (2006)].

In the case of single-objective optimization the selection of 
quality measure is obvious and simple: optimization criterion. 
The quantity is unequivocally defined, optimization criterion 
value calculated for every test solution, and smaller or greater 
depending on the task, which corresponds to better solution. 
In the case of multi-objective optimization it is not clear what 
„better” means: is it that located closer to the front of optimum 
solutions, covering a wider range of solution characteristics, 
or something else? And, it should be realized that the front 
of Pareto-optimum solutions is unknown. That is why it is 
difficult to define proper quality measure for approximations of 
an unknown front of Pareto-optimum solutions. Therefore for 
comparing and evaluating results of qualitative evaluation of 
multi-objective evolutionary algorithms, graphical presentation 
of obtained non-dominated solutions has been first of all used 
until recently [Veldhuizen (1999)].

In recent years in this field a certain progress has been made 
and several papers concerning the quantitative comparing of 
different approximations of Pareto-optimum set can be found. 
The most popular is the unary quality measure, i.e. that which 
attributes, to every single approximation set, one numerical 
value which reflects a specified quality aspect [Veldhuizen, 
Lamont (2000)], [Zitzler, Thiele, Laumanns, Fonseca, Grunert 
da Fonseca (2002)]. To increase the deducing strength the unary 
quality measures are usually used jointly, to cope of taking 
into account different aspects of the notion of “quality”. Other 
methods are based on binary quality measures which assign 
numerical values to pairs of solutions, [Zitzler, Thiele (1998)], 
[Hansen, Jaszkiewicz (1998)].

Third group of evaluation methods, completely different 
in conceptual respect, is the method of attainment function, 

Fig. 40. Ship structural dimensions and scantlings recommended as a result of multi-objective optimization; 
structural material: for plates - 5083-H111 Al alloy, for profiles - 6082-T6 Al alloy
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Fig. 41. Result of the multi-objective evolutionary optimization of the ship structure with respect to the structural weight f1 
and surface area of structural members for maintenance (cleaning and painting) f2 (sym2-1)
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Fig. 41 cont. Result of the multi-objective evolutionary optimization of the ship structure with respect to the structural weight f1 and surface area 
of structural members for maintenance (cleaning and painting) f2 (sym2-1), which contains: evolution of the highest value of fitness function 

and the lowest value of non-dominated solution distance from asymptotic one; structure of the set of non-dominated solutions; number 
of generations in which particular non-dominated solutions were found; detailed structure of the set of non-dominated solutions; 

structure of the set of non-dominated solutions in normalized objective space
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[Fonseca, Fleming (1996)], in which the probability of 
achieving any chosen objectives in evaluation space is assessed 
on the basis of the knowledge of many approximation sets.

Besides the above mentioned diversity of methods it is still 
unclear what mutual relations of certain quality measures are 
like (what is their mutual connection) and what their relative 
advantages and disadvantages are [Zitzler, Thiele, Laumanns, 
Fonseca, Grunert da Fonseca (2002)]. In consequence there are 
no agreed opinions stating which quality measure or measures 
should be used in specific cases [Zitzler, Thiele, Laumanns, 
Fonseca, Grunert da Fonseca (2002)].

To define a reliable evaluation methodology is very 
important for its application to algorithm validation. However, 
as far as the problem of multi-objective optimization is 
concerned there are several reasons due to which it is difficult 
to evaluate obtained results. Firstly, from evolutionary 
algorithms many solutions are obtained instead of only one, 
usually as many as possible solutions belonging to the set of 
non-dominated solutions, approximation set of Pareto-optimum 
solutions, are aimed at. Secondly, evolutionary algorithms 
are stochastic, therefore for effectiveness evaluation it is 
necessary to run many simulations and subject obtained results 
to statistical analysis; in this case drawn conclusions will also 
have stochastic characteristics. Thirdly, we may be interested 
in measuring different aspects of quality; for example, we 
may be more interested in possessing a robust, but slower, 
algorithm convergent to Pareto front practically in every case, 
than in a faster algorithm but convergent to Pareto front only 
occasionally (in case of specific types of tasks); we also may 
be interested in evaluating behaviour of evolutionary algorithm 
in the course of simulation, trying to determine its capability 
of maintaining diversity and gradual convergence to set of 
solutions close to Pareto front. This short discussion shows 
how difficult is to develop effectiveness measures for multi-
objective optimization evolutionary algorithms.

The next problem in the discussion is the question: what 
should be measured? It is very important to determine what 
kind of results will be subjected to measurement, evaluation and 
analysis, and to define quality measures according to a task.

It is obvious that in the formulating of a good quality 
measure for multi-objective optimization evolutionary 
algorithm the following should be considered [Zitzler, Deb, 
Thiele (1999)]:
1. the minimizing of distance between approximation of Pareto 

front, obtained by the algorithm, and a real Pareto-optimum 
front of solutions, (of course if so is known, what in practice 
of optimizing engineering objects does not happen), 

2. the maximizing of diversity of obtained non-dominated 
solutions, i.e. the arranging of non-dominated solutions 
in approximation set over empirical compromise area, as 
smoothly and homogeneously as possible,

3. the maximizing of number of solutions in the set which 
approximates the Pareto-optimum set. [Zitzler, Thiele, 
Laumanns, Fonseca, Grunert da Fonseca (2002)], [Zitzler, 
Laumanns, Bleuler (2002)], [Zitzler, Thiele, Laumanns, 
Fonseca, Grunert da Fonseca (2003)], [Fonseca, Knowles, 
Thiele, Zitzler (2005)], [Knowles, Thiele, Zitzler (2006)] 
presented the most extensive (in the author’s opinion) 
review of problems related to evaluation of effectiveness 
of randomized multi-objective optimization algorithms. 
Assuming that a set of incomparable solutions (called 
an approximation set), is a result of operation of multi-
objective optimization evolutionary algorithm, they 

proposed a mathematical basis for studying multi-objective 
optimization effectiveness algorithms.

In particular [Zitzler, Thiele, Laumanns, Fonseca, Grunert 
da Fonseca (2002)] showed that if we have two sets of solutions, 
a and B, which approximate Pareto-optimum set of solutions, 
then we cannot elaborate a finite set of quality measures, which 
can indicate if the approximation a of Pareto-optimum set is 
better that the approximation B, in every case. Elaborated 
quality measures may be applied only to specific aspects of 
the quality concept, therefore the only thing left to deduct is 
that the approximation a is not worse that the approximation 
B, which means that either the approximation a is better 
than the approximation B, or the approximations a and B are 
incomparable with regard to a specified quality measure. This 
statement cannot be generalized in a way indicating that the 
approximation a is always better than the approximation B. 
So if it is impossible to state in a close and exact quantitative 
way the supremacy of one approximation set over the other, 
therefore it is impossible to state the supremacy of one 
algorithm over the other. Choice of one of them is determined 
by the efficiency in every specific case it was used.

[Sarker, Coello Coello (2002)] made a review of propositions 
they considered the most important and enabling to measure 
the three above listed aspects of the notion „quality”, subjected 
to evaluation. They also observed that there is no method that 
would allow to measure the three aspects with one value only. 
Unfortunately, attempts to elaborate a single measure for 
grasping them together have not been successful so far because 
they concern very different algorithm characteristics. That is 
why the attempts to reduce them to one measure may lead to 
misunderstandings. Therefore the using of different quality 
measures to estimate different aspects of algorithm behaviour 
seems more proper in practice2).

On the basis of visual assessment of approximating sets 
attained in particular simulations, Fig. 42, it can be stated 
that the best solutions, i.e. approximation sets, were obtained 
in the simulations: sym2-1 (w1 = w2 = 0.0, wrank = 3.0, 
wcount = 0.0, wdistance = 0.0), sym1-2 (w1, w2 are random in the 
range [0, 1], wrank = 0.0, wcount = 0.0, wdistance = 0.0) and sym2-3 
(w1 = w2 = 0.0, wrank = 0.0, wcount = 0.0, wdistance = 3.0). Solutions 
obtained from the simulations are arranged the most uniformly, 
hence they can be expected to be a good representation of 
searched Pareto-optimum front. In the case of the remaining 
simulations: sym1-1 (w1 = w2 = 0.5, wrank = 0.0, wcount = 0.0, 
wdistance = 0.0), sym1-3 (w1, w2 are random 0 or 1, wrank = 0.0, 
wcount = 0.0, wdistance = 0.0) and sym2-2 (w1 = w2 = 0.0, wrank = 0.0, 
wcount = 3.0, wdistance = 0.0), the found solutions are arranged 
less uniformly, hence they represent Pareto-optimum front 
in a worse manner. Therefore it can be approximately stated 
that out of six conducted research simulations the following 
were found more effective: the simulation (1) that took into 
consideration influence of dominance attribute, i.e. dominance 
rank, the simulation (2) that took distance of the asymptotic 
solution into consideration, and the simulation in which the 
selection process is controlled only by optimization criteria. 
Less effective were found the simulations (4) and (5) in which 
selection process was controlled only by optimization criteria, 
the simulation (6) that took into consideration the influence of 
dominance attribute, i.e. dominance count. Thus in the group 
of more effective strategies there were two simulations which 
use the combined fitness and one simulation which realizes the 
strategy of random combination of objective function without 

2) Let’s notice that fulfillment of mentioned algorithm quality aspects can be considered as multi-objective task of algorithm optimization 
(optimizer).
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Fig. 42. Specification of the sets of non-dominated solutions obtained during the performed genetic multi-objective optimization simulations 
of ship structure with respect to the structure weight f1 and the surface area f2; black circles represent non-dominated solutions, 

red dots represent non-dominated solutions closest to the asymptotic one
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taking into consideration domination attributes. On the basis of 
such superficial quality analysis can be proposed the statement 
that the combined fitness multi-objective optimization 
algorithm can be a more efficient strategy for multi-objective 
optimization of ship structure than scalarization of objective 
function strategy, without taking into consideration domination 
attributes in selection process.

The conducted series of computer simulations confirmed 
efficiency of the developed computational algorithm and 
computer program for solving the formulated unified problem 
of topology and optimization of ship structure dimensions. As 
a result of the calculations, were elaborated approximations 
of the set of Pareto-optimum solutions which in particular 
contain simulations of non-dominated solutions, from several 
to a dozen or somewhat more in number. The obtained 
results do not allow to unequivocally determine superiority 
of any examined strategies of fitness function evaluation. For 
formulating more detailed quantitative conclusions further 
systematic statistical studies performed on much larger number 
of samples, are necessary.

In the case of ship structure optimization the problem of 
efficiency assessment of elaborated algorithms is additionally 
complicated by the necessity of formulating many constraints 
and including them to the fitness function. In the task considered 
in this publication forty constraints were assumed. The 
constraint represented in optimization model in the form of 
proper components of penalty function, nc = 40, very strongly 
limit solution space available for searching; this way they 
also distort image of influence of the assumed fitness function 
computing strategies on algorithm convergence and the quality 
of attained solutions and therefore on the efficiency of the 
studied algorithms.

From practical point of view it is interesting to notice which 
of the formulated constraints appears active in optimization 
process and which does not. In the first case to allocate large 
computational outlay to control them is justified. In the other 
case such outlay may appear useless from the point of view 
of effectiveness of optimization process and in some cases it 
is possible even to resign from controlling them. In the case 
of the optimization model used in this work the constraints in 
the form given by the inequality (21) concerning the required 
section moduli values of web frames in the three structural 
regions: side outboard region, bottom region and wet deck 
region, appeared active. In the case of the remaining constraints 
dealing first of all with the required thickness values of plates 
and dimensions of frames, the formulated constraints are 
satisfied with a large excess. 

The final conclusion can be formulated as follows: one 
cannot formulate a finite number of quantitative measures which 
allow putting in order the set of Pareto-front approximating sets 
in relation to the quality, and therefore one cannot formulate 
objective quality/efficiency measures of the proposed multi-
objective optimization evolutionary algorithms. Thus one 
cannot prove objectively and unequivocally the supremacy of 
one of the algorithms proposed and discussed in this work or 
realization strategies of one of them. It depends on a potential 
user whether he / she would consider the presented concept 
interesting, elaborate its computer realization and finally verify 
its efficiency in his / her specific case.

SUMMARY AND CONCLUSIONS

The problem of minimization of weight and total surface 
area of the complete three-dimensional midship block-section 
of the high- speed catamaran hull was presented and discussed 
in detail. The strength criteria for checking ship structure were 

taken from the selected classification rules. The calculation 
tool for solving the formulated unified problem of the multi-
objective optimization of topology and scantlings of the sea-
going ship hull structure was developed with the accuracy 
typical for the preliminary design stage.

The application of the genetic algorithm concept to solve the 
formulated optimization problem was presented. In the study it 
was proved that the genetic algorithm allows to include, in the 
multi-objective optimization model, a large number of design 
variables of real ship structure. The introducing of constraints 
related to strength, fabrication and standardization is not 
difficult and may cover a more representative set of criteria.

The aggregation method was proved effective even in the 
case of the fixed values of the weight coefficients since in the 
case of the constrained problem the components of the penalty 
function introduce a random influence to the fitness function. 
The method is thus closer to that based on the random weight 
coefficients of the optimization criteria.

This author has discussed crucial role of Pareto domination 
relation in process of evolution of feasible solutions for ship 
structure towards Pareto-front containing non-dominated 
variants of the ship structure. Using the concept of d omination 
in the set of feasible solutions this author has proposed his 
own definitions of the concept of domination rank as well 
as domination count, enabling this way to take into account 
relation between a feasible variant and other feasible variants. 
Basing on the ideas the author has proposed an evolutionary 
algorithm for solving the problem of topology-size multi-
objective optimization of hull structure of sea-going ship, which 
uses, in selection process, the combined fitness function which 
allows taking into account, in selection process, the following 
items: (1) optimization criteria, (2) dominance attributes, 
(3) distance to the asymptotic solution as well as (4) penalty 
functions for violating assumed constraints. The computational 
program which makes it possible to perform ship structure 
multi-objective optimization with an accuracy appropriate for 
preliminary design stage, was elaborated. By using the tool 
and elaborated computational model of hull structure, series 
of computer simulations were conducted for the fast catamaran 
passenger-vehicle ferry of Auto Express 82 design. The results 
of the performed computations and subsequent discussion gave 
reasons for the statement that the elaborated algorithm may be 
considered an efficient tool for multi-objective optimization of 
ship structures in the preliminary design stage.

It should be remembered that the developed multi-objective 
optimization algorithm is based on the random processes 
therefore the obtained results should be interpreted in the 
statistical sense. It means that the simulations and their results 
may appear sometimes not representative. a slight change of 
the developed models or control parameters may result in 
a different course of simulation and lead to different results. In 
this context further systematic studies on algorithm efficiency 
controlled by a particular component of combined fitness 
function, are necessary.

Further systematic investigations of effectiveness of the 
proposed strategies, including repeated computations different 
to each other only by evolution history, aimed at statistical 
confirmation of the effectiveness, are deemed necessary.

REFERENCES

1. Abraham, A., Jain, L. and Goldberg, R., 2005. Evolutionary 
Multiobjective Optimization. Springer.

2. Back, T., 1996. Evolutionary Algorithms in Theory and Practice. 
Oxford University Press, New York.

3. Binh, T.T. and Korn, U., 1997. MOBES: A Multiobjective 
Evolution Strategy for Constrained Optimization Problems. 



12 POLISH MARITIME RESEARCH, No 4/2011

In: The Third International Conference on Genetic Algorithms 
(Mendel 97), 25-27 June 1997, Brno, Czech Republic, 176-182.

4. Darwin, Ch., 1859. Origin of Species. John Murray, London.
5. Coello Coello, C.A., Lamont, G.B. and Veldhuizen, D.A., 2007. 

Evolutionary Algorithms for Solving Multi-objective Problems. 
Springer.

6. Cohon, J.L., 1978. Multiobjective Programming and Planning. 
New York, Academic Press.

7. Coley, D.A., 1999. An Introduction to Genetic Algorithms for 
Scientists and Engineers. World Scientific, Singapore.

8. Das, P.K., 1993. Reliability – Based Design Procedure of 
Stiffened Cylinder Using Multiple Criteria Optimisation 
Techniques. In: Proceedings of Offshore Technology 
Conference, OTC 1993, Vol. 3, No. 7236, 297-313.

9. Das, P.K., Tolikas, C., Morandi, A.C., Zanic, V. and Warren, 
N.F., 1993. Multiple Criteria Synthesis Technique Applied to 
the Reliabilty Based Structural Design of Hull Components of 
A Fast Swath Ship. In: Proceedings of Second International 
Conference on Fast Sea Transportation, FAST ‘93, Japan, 
Tokyo, Vol. 1, 473-487.

10. Davis, L. 1991. Handbook of Genetic Algorithms. New York: 
Van Nostrand.

11. De Jong, K., 1995. On Decentralizing Selection Algorithms. In: 
Proceedings of the Sixth International Conference on Genetic 
Algorithms, 15-19 July 1995, Pittsburgh, PA, USA, Morgan 
Kaufmann Publishers, San Francisco, 17-23.

12. Deb, K., 2001. Multi-Objective Optimization using Evolutionary 
Algorithms. John Wiley & Sons.

13. Deb, K., Agrawal, S., Pratab, A. and Meyarivan, T., 2000. A Fast 
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-
Objective Optimization: NSGA-II. KanGAL Report 200001, 
Indian Institute of Technology, Kanpur, India.

14. Edgeworth, F.Y., 1881. Mathematical Physics: An Essay on the 
Application of Mathematics to the Moral Sciences. Paul Keagan, 
London, England.

15. Eschenauer, H., Koski, J. and Osyczka, A., 1990. Multicriteria 
Design Optimisation. Berlin: Springer-Verlag, Berlin.

16. Fonseca, C.M. and Fleming, P.J., 1993. Genetic Algorithms 
for Multiobjective Optimization: Formulation, Discussion and 
Generalization. In: 5th International Conference on Genetic 
Algorithms, Proceedings, 416-423.

17. Fonseca, C.M. and Fleming, P.J., 1996. On the Performance 
Assessment and Comparison of Stochastic Multiobjective 
Optimizers. In: Parallel Problem Solving from Nature – PPSN 
IV, September 1996, Berlin, Germany, Lecture Notes in 
Computer Science, Springer-Verlag, Berlin, Germany, 585-593.

18. Fonseca, C.M., Knowles, J.D., Thiele, L. and Zitzler, E., 
2005. A Tutorial on the Performance Assessment of Stochastic 
Multiobjective Optimizers. Invited talk. In: Evolutionary Multi-
Criterion Optimization Conference (EMO 2005), 9-11 March 
2005, Guanajuato, Mexico, Lecture Notes in Computer Science 
3410, Springer 2005, 

19. Fox, R.L., 1971. Optimization Methods for Engineering Design. 
Addison-Wesley Publishing Company, Inc., Reading.

20. Goldberg, D.E., 1989. Genetic Algorithms in Search, 
Optimization and Machine Learning. Addison-Wesley Longman 
Publishing Co., Inc. Boston, MA, USA.

21. Goldberg, D.E. and Deb K., 1991. A Comparative Analysis of 
Selection Schemes Used in Genetic Algorithms. In: Foundations 
of Genetic Algorithms. Morgan Kaufmann Publishers, San 
Mateo, 69-93.

22. Hajela, P. and Lin, C.Y., 1992. Genetic Search Strategies in 
Multicriterion Optimal Design. Structural Optimization, 4: 99-
107.

23. HANSA, 1997. Polish fast ferry “Boomerang”. 6:26-29.
24. Hansen, M.P. and Jaszkiewicz, A., 1998. Evaluating the quality 

of approximations of the non-dominated set. Technical report, 
Institute of Mathematical Modeling, Technical University of 
Denmark, IMM Technical Report IMM-REP-1998-7.

25. Horn, J., Nafpliotis, N. and Goldberg, D.E., 1994. A Niched 
Pareto Genetic Algorithm for Multiobjective Optimization. In: 
First IEEE Conference on Evolutionary Computation, IEEE 
World Congress on Computational Intelligence, 1: 82-87.

26. Hughes, E.J., 2003. Multiple Single Objective Sampling. In: 
Proceedings of 2003 Congress on Evolutionary Computation, 
CEC 2003, 8 - 12 December 2003, Canberra, Australia, 2678-
2684.

27. Hughes, E.J., 2005. Evolutionary Many-objective Optimization: 
Many Once or One Many? In: Proceedings of 2005 Congress 
of Evolutionary Computation, CEC 2005, 2-4 September 2005, 
Edinbourgh, Scotland, UK, IEEE Press, 222-227.

28. Hutchinson, K., Todd, D. and Sen, P., 1998. An evolutionary 
multiple objective strategy for the optimisation of made-to-
order products with special reference to the conceptual design 
of high speed mono hull roll-on/roll-off passenger ferries. In: 
Proceedings of International Conference of Royal Institution of 
Naval Architects.

29. Ishibuchi, H. and Murata, T., 1996. Multi-objective genetic 
local search algorithm. In: Proceedings of IEEE International 
Conference on Evolutionary Computation (ICEC’96), 
Piscataway, NJ, IEEE Press, 119-124.

30. Jang, C.D. and Shin, S.H., 1997. A Study on the Optimal 
Structural Design for Oil Tankers Using Multi Objective 
Optimization. In: Proceedings of 6th International Marine 
Design Conference, IMDC’97, Newcastle, 23-25 June 1997, 
University of Newcastle, United Kingdom, Vol. 1, Penshaw 
Press, 217-231.

31. Jaszkiewicz, A., 2004. On the Computational Efficiency of 
Multiple Objective Metaheuristics: The Knapsack Problem Case 
Study. European Journal of Operational Research, 158:418-433.

32. Jianguo. W. and Zuoshui. X., 1996. Symmetric Solution of 
Fuzzy Multi-Objective Optimization for Ship Structure. Journal 
East China Shipbuilding Institute, 10(1): 1-7.

33. Kitamura, M., Nobukawa, H. and Yang, F., 2000. Application of 
a genetic algorithm to the optimal structural design of a ship’s 
engine room taking dynamic constraints into consideration. 
Journal of Marine Science and Technology, Vol. 5, 131-146.

34. Klanac, A., Ehlers, S. and Jelovica, J., 2009. Optimization of 
crashworthy marine structures. Marine Structures, Vol. 22, 670-
690.

35. Knowles, J. and Corne. D., 1999. The Pareto Archived Evolution 
Strategy: a New Baseline Algorithm for Multiobjective 
Optimisation. In: 1999 Congress on Evolutionary Computation, 
CEC99, Washington, D.C., 6-9 July 1999, IEEE Service Center, 
98-105.

36. Knowles, J.D., Thiele, L. and Zitzler, E., 2006. A tutorial on 
the Performance Assessment of Stochastic Multiobjective 
Optimizers. Computer Engineering and Networks Laboratory, 
ETH Zurich, Switzerland, TIK-Report No. 214.

37. Kursawe, F., 1991. A variant of evolution strategies for vector 
optimization. In: Proceedings of the 1st Workshop on Parallel 
Problem Solving from Nature (PPSN I), 1-3 October 1990, 
Dortmund, Berlin, Springer-Verlag, 1991, 193–197.

38. Leyland, G., 2002. Multi-objective Optimization Applied to 
Industrial Energy Problems. PhD Thesis, École Polytechnique 
Fédérale de Lausanne.

39. Man, K.F., Tang, K.S. and Kwong, S., 1999. Genetic Algorithms. 
Springer-Verlag, London.

40. Michalewicz, Z., 1996. Genetic Algorithms + Data Structures = 
Evolution Programs. Berlin-Heidelberg: Springer-Verlag.

41. Murata, T. and Ishibuchi, H., 1995. MOGA: Multi-objective 
genetic algorithms. In: Proceedings of the Second IEEE 
International Conference on Evolutionary Computation, 
289-294. In Proceedings of the Second IEEE International 
Conference on Evolutionary Computation, IEEE Press, 289-294.

42. Okada, T. and Neki, I., 1992. Utilization of Genetic Algorithm 
for Optimizing the Design of Ship Hull Structure. Journal of the 
Society of Naval Architect of Japan, 171: 71-83.

43. Osyczka, A., 2002. Evolutionary Algorithms for Single and 
Multicriteria Design Optimization. Heidelberg: Physica-Verlag.

44. Pareto, V., 1896. Cours D’Economie Politique, Volume 1. 
Lausanne: F. Rouge.

45. Parsons, M.G. and Singer, D., 2000. A Fuzzy Logic Agent for 
Design Team Communications and Negotiations. In: Conference 
on Computer Applications and Information Technology in the 
Maritime Industries, COMPIT 2000, March 2000, Potsdam/Berlin.



13POLISH MARITIME RESEARCH, No 4/2011

46. Purshouse, R.C. and Fleming, P.J., 2003. Evolutionary 
Many-Objective Optimization: An Exploratory Analysis. In: 
Proceedings of 2003 Congress on Evolutionary Computation, 
CEC2003, 8-12 Dec 2003, Canberra, Australia, IEEE, 
Piscataway, N.J., USA, 2066-2073.

47. Ray, T. and Sha, O.P., 1994. Multicriteria Optimisation Model 
for a Containership Design. Marine Technology, 31(4): 258-268.

48. Reklaitis, G.V., Ravindran, A. and Ragsdell, K.M., 1983. 
Engineering Optimization. Methods and Applications. New 
York: John Wiley and Sons, New York.

49. Ryan, D.M., 1974. Penalty and Barrier Functions. In: P.E. Gill 
and W. Murray (Eds.) Numerical Methods for Constrained 
Optimization, Academy Press, London.

50. Sarker, R. and Coello Coello, C.A., 2002. Evolutionary 
Optimization, Chapter 7, Assessment methodologies for 
multiobjective evolutionary algorithms. In: R. Sarker, M. 
Mohammadian, X. Yao (Editors) Evolutionary Optimization, 
Academic Publishers, Boston, 177-195.

51. Sarker, R., Mohammadian, M. and Yao, X., (Eds.), 2002. 
Evolutionary Optimization, Part III, Multi-objective 
Optimization. Boston: Kluwer Academic Publishers.

52. Schaffer, J.D., 1985. Multiple Objective Optimization with 
Vector Evaluated Genetic Algorithms. In: Proceedings of an 
International Conference on Genetic Algorithms and Their 
Applications, 24-26 July 1985, Carnegie-Mellon University, 
Pittsburgh, Pa, 93-100.

53. Sekulski, Z., 2010. Multi-objective topology and size 
optimization of high-speed vehicle-passenger catamaran 
structure by genetic algorithm. Marine Structures, Vol. 23, 405-
433.

54. Sen, P. and Yang, J.B., 1995. An Investigation Into the 
Influence of Preference Modelling in Ship Design with Multiple 
Objectives. In: Proceedings, PRADS ‘95, Vol. 2, Society of 
Naval Architecture of Korea, 1252-1263.

55. Sen, P. and Yang, J.B., 1998. Multiple Criteria Decision Support 
in Engineering. London: Springer-Verlag.

56. Shi, W.B., 1992. In-Service Assessment of Ship Structures: 
Effect of General Corrosion on Ultimate Strength. In: Spring 
Meteting, RINA.

57. Significant Ships, 1997. Boomerang: catamaran ferry for Baltic 
Service, 21-21.

58. Srinivas, N. and Deb, K., 1995. Multiobjective Optimization 
Using Nondominated Sorting in Genetic Algorithms. 
Evolutionary Computation, 2(3): 221-248.

59. Stadler, W., 1988. Multiobjective Optimization in Engineering 
and in the Sciences. New York: Plenum Press.

60. Statnikov, R.B. and Matosov, J.B., 1995. Multicriteria 
Optimization and Engineering. New York: Chapman&Hall.

61. Trincas, G., Zanic, V. and Grubisic, I., 1994. Comprehensive 
Concept Design of Fast RO-RO Ships by Multi-Atribute 
Decision-Making. In: Proceedings, IMDC ‘94, Delft, 403-417.

62. UNITAS, 1995. Rules for the Construction and Classification of 
High Speed Craft.

63. Vanderplaats, G.N., 1984. Numerical Optimization Techniques 
for Engineering Designs. New York: McGraw-Hill.

64. Veldhuizen Van, D.A., 1999. Multiobjective Evolutionary 
Algorithms: Classifications, Analyses, and New Innovations. Ph. 
D. thesis, Air Force Institute of Technology, Wright-Patterson 
AFB, Ohio.

65. Veldhuizen Van, D.A. and Lamont, G.B., 2000. On measuring 
multiobjective evolutionary algorithm performance. In: 
A. Zazala, R. Eberhart (Eds.) Congress on Evolutionary 
Computation (CEC 2000), vol. 1, Piscataway, NY, IEEE Press, 
204-211.

66. Zitzler, E., 1999. Evolutionary Algorithms for Multiobjective 
Optimization: Methods and Applications. Disertation for degree 
of Doctor of Technical Sciences, Swiss Federal Institute of 
Technology Zurych.

67. Zitzler, E., Deb, K. and Thiele, L., 1999. Comparison of 
Multiobjective Evolutionary Algorithms: Empirical Results. 
TIK-Report, No. 70, Computer Engineering and Communication 
Networks Lab, Swiss Federal Institute of Technology, Zurych, 
Switzerland.

68. Zitzler, E., Deb, K. and Thiele, L., 2000. Comparison of 
multiobjective evolutionary algorithms: Empirical results. 
Evolutionary Computation, 8(2): 173–195.

69. Zitzler, E., Laumanns, M. and Bleuler, S., 2002. A tutorial 
on evolutionary multiobjective optimization. In Workshop on 
multiple objective metaheuristics (MOMH 2002), Springer-
Verlag, Berlin.

70. Zitzler, E., Laumanns, M. and Thiele, L., 2001. SPEA-2: 
Improving the Strength Pareto Evolutionary Algorithm. 
Evolutionary Methods for Design. In: Proceedings of the 
EUROGEN’2001 Conference on Optimization and Control with 
Applications to Industrial Problems, 19-21 September 2001, 
International Center for Numerical Methods in Engineering, 
Greece, p. 95-100.

71. Zitzler, E. and Thiele, L., 1998. Multiobjective Optimization 
Using Evolutionary Algorithms – A Comparative Case Study. 
In: Parallel Problem Solving from Nature – PPSN, Amsterdam, 
292-301.

72. Zitzler, E. and Thiele, L., 1998. Multiobjective Optimization 
Using Evolutionary Algorithms – A Comparative Case Study. 
In: Proceedings of the PPSN V - Fifth International Conference 
on Parallel Problem Solving from Nature, Amsterdam, The 
Netherlands, 27-30 September 1998, Springer, Berlin, Germany, 
292-301.

73. Zitzler, E. and Thiele, L., 1999. Multiobjective Evolutionary 
Algorithms: A Comparative Case Study and Strength Pareto 
Approach. IEEE Transactions on Evolutionary Computation, 
3(4): 257-271.

74. Zitzler, E. and Thiele, L., Laumanns, M., Fonseca, C.M., 
Grunert da Fonseca V., 2002. Performance Assessment of 
Multiobjective Optimizers: An Analysis and Review. TIK-Report 
No. 139, Swiss Federal Institute of Technology (ETH) Zurich, 
Switzerland.

75. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M. and 
Grunert da Fonseca V., 2003. Performance Assessment of 
Multiobjective Optimizers: An Analysis and Review. IEEE 
Transactions on Evolutionary Computation, 7(2):117-132.

CONTACT WITH THE AUTHOR
Zbigniew Sekulski, Ph. D.

West Pomeranian University of Technology, Szczecin
Faculty of Marine Technology

Al. Piastów 41
71-065 Szczecin, POLAND

e-mail: zbigniew.sekulski@zut.edu.pl


