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SEAGOING SHIP HULL STRUCTURE 
MODEL FOR MULTI-OBJECTIVE 

OPTIMIZATION

General

Effectiveness of the developed evolutionary algorithm for 
the multi-objective optimization of seagoing ship structures 
has been verified by solving the multi-objective optimization 
problem for the midship segment of the passenger-car 
catamaran ferry, based on the Austal Auto Express 82 design 
developed by Austal [HANSA (1997)], [Significant Ships 
(1997)], Figure 14. Models developed for the multi-objective 
optimization are: (1) ship structural model, (2) optimization 
model and (3) genetic model.
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ABSTRACT

Real ship structural design problems are usually characterized by presence of many 
conflicting objectives. Simultaneously, a complete definition of the optimum structural 
design requires a formulation of size-topology-shape-material optimization task unifying 
the optimization problems of the four areas and giving an effective solution of the problem. 
So far, a significant progress towards the solution of the problem has not been obtained. 
An objective of the present paper was to develop an evolutionary algorithm for multi-
objective optimization of structural elements of large spatial sections of ships. Selected 

elements of the multi-criteria optimization theory have been presented in detail. Methods for solution of the 
multi-criteria optimization problems have been discussed with the focus on the evolutionary optimization 
algorithms. In the paper an evolutionary algorithm where selection takes place based on the aggregated 
objective function combined with domination attributes as well as distance to the asymptotic solution, is 
proposed and applied to solve the problem of optimizing structural elements with respect to their weight 
and surface area on a high speed vehicle-passenger catamaran structure, with several design variables, 
such as plate thickness, scantlings of longitudinal stiffeners and transverse frames, and spacing between 
longitudinal and transversal members, taken into account. Details of the computational models were at 
the level typical for conceptual design. Scantlings were analyzed by using selected rules of a classification 
society. The results of numerical experiments with the use of the developed algorithm, are presented. They 
show that the proposed genetic algorithm can be an efficient tool for multi-objective optimization of ship 

structures.
The paper is published in three parts: Part I: Theoretical background on evolutionary multi-objective 

optimization, Part II: Computational investigations, and Part III: Analysis of the results.

Keywords: ship structure; multi-objective optimization; evolutionary algorithm; 
genetic algorithm; Pareto domination, set of non-dominated solutions

Fig. 14. The Auto Express 82 high speed vehicle-passenger catamaran 
“Boomerang”
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Structural model of the ship hull structure

Main particulars of the Austal Auto Express 82 vessel are 
given in Fig. 15. The general arrangement of the ship and her 
corresponding cross- and longitudinal sections are shown in 
Fig. 16. For seagoing ships structural design in its initial stage 
concerns the cylindrical and prismatic zone amidships. For this 
reason the analysis of the midship block-section (17.5 x 23.0 
x 11.7 m) was assumed. Bulkheads form boundaries of the 
block in the longitudinal direction. In the block nine structural 
regions can be distinguished. All regions are longitudinally 
stiffened with stiffeners; their spacing being different in each 
structural region. The transverse web frame spacing is common 
for all the regions. Both types of spacing, i.e. of stiffeners and 
transverse frames, are considered the design variables. The 
transverse bulkheads were disregarded to minimize the number 
of design variables.

The structural materials are aluminium alloys of the 
properties given in Tab. 1. The 5083-H111 aluminium alloys 
are used for plate elements while 6082-T6 aluminium alloys 
are used for bulb extrusions. The plate thicknesses and the bulb 
and T-bulb extruded stiffener sections are assumed according to 
the commercial standards and given in Tab. 2 ,3 and 4. The bulb 
extrusions are used as longitudinal stiffeners while the T-bulb 
extrusions are used as web frame profiles. Practically, the web 
frames are produced by welding the elements cut out of the 
metal sheets. Dimensions of the prefabricated T-bar elements 
are described by the four following design variables: web height 
and thickness as well as and flange breadth and thickness. In the 
case of extruded bulb a single variable is sufficient to identify 
the profile, its dimensions and geometric properties. It reduces 
the computational problem and accelerates analysis.

Tab. 1. Properties of structural material – aluminium alloys

No. Property Value

1 Yield stress R0.2
125 (for 5083-H111 alloy) [N/mm2]
250 (for 6082-T6 alloy) [N/mm2]

2 Young modulus E 70,000 N/mm2

3 Poisson ratio ν 0.33

4 Density ρ 26.1 kN/m3

The strength criteria for calculation of plate thicknesses 
and section moduli of stiffeners and web frames are taken in 
accordance to the classification rules [UNITAS (1995)]. It was 
assumed that bottom, wet deck, outer side and superstructure 
I and II are subject to the pressure of water depending on the 
speed and the navigation region. The main deck was loaded 
by the weight of the trucks transmitted through the tires, the 
mezzanine deck the – weight of the cars, while the upper deck 

– the weight of equipment and passengers. Values of pressure 
were calculated according to the procedures taken from the 
classification rules.

In the study a minimum structural weight (volume of 
structure) and total outer area of structural elements intended for 
maintenance (cleaning, painting, etc.) were taken as the criteria 
and introduced to the definition of the objective functions 
and constraints defined on the basis of the classification 
rules. When structural weight and surface area are chosen 
as the objective functions , their values depend only on the 
geometrical properties of the structure (if structural material 
is fixed). The assumed optimization task is rather simple but 
the main objective of the study was to build the computational 
method, verify the computer code and prove its application to 
the multi-objective optimization of a ship hull.

Tab. 2. Thickness of plates

No. Thickness t [mm]
1 3.00
2 4.00
3 5.00
4 6.00
5 7.00
6 8.00
7 10.00
8 12.00
9 15.00
10 20.00
11 30.00
12 40.00
13 50.00
14 60.00

Tab. 3. Dimensions of bulb extrusions

No. Dimensions (h, b, s, s1)
1)

[mm]
Cross-sectional area

[cm2]

1 80 x 19 x 5 x 7.5 5.05
2 100 x 20.5 x 5 x 7.5 6.16
3 120 x 25 x 8 x 12 11.64
4 140 x 27 x 8 x 12 13.64
5 150 x 25 x 6 x 9 10.71
6 160 x 29 x 7 x 10.5 13.51
7 200 x 38 x 10 x 15 24.20

1) h – cross-section height; b - flange width; 
 s - web thickness; s1 - flange thickness.

Fig. 15. Main particulars of the Auto Express 82 high -speed vehicle-passenger catamaran
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Fig. 16. Assumed model of craft structure – midship block-section, frame system and structural regions
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Tab. 4. Dimensions of T-bulb extrusions

No.
Dimensions (h, b, s, s1)

2)

[mm]
Cross-sectional area

[cm2]
1 200 x 100 x 8 x 15 29.80
2 200 x 140 x 8 x 5 35.80
3 200 x 60 x 10 x 12 22.50
4 200 x 50 x 8 x 9.5 21.04
5 210 x 50 x 5 x 16 14.78
6 216 x 140 x 7.6 x 8 37.60
7 220 x 80 x 5 x 8 17.00
8 230 x 80 x 10 x 8 28.60
9 230 x 80 x 5.8 x 8 19.28
10 235 x 170 x 8 x 10 35.00
11 240 x 140 x 6 x 10 27.80
12 260 x 90 x 5 x 9.5 21.08
13 275 x 150 x 9 x 12 41.67
14 280 x 100 x 5 x 8 21.60
15 280 x 100 x 8 x 10 31.60
16 300 x 60 x 15 x 15 51.75
17 310 x 100 x 7 x 16 36.58
18 310 x 123 x 5 x 8 24.94
19 350 x 100 x 8 x 10 37.20
20 350 x 100 x 5 x 8 25.10
21 390 x 150 x 6 x 8 34.92
22 390 x 150 x 6 x 12 40.68
23 400 x 140 x 5 x 8 30.80
24 410 x 100 x 6 x 8 32.12
25 420 x 15 x 5 x 10 35.10
26 420 x 15 x 8 x 10 47.80
27 450 x 100 x 9 x 10 49.60
28 450 x 150 x 10 x 12 61.80

2) h – cross-section height, b - flange width, 
 s - web thickness, s1 - flange thickness.

Multi-objective optimization model of the ship 
hull structure

In the most general formulation to solve ship structural multi-
objective optimization problem means to find a combination of 
values of the vector of design variables x =[x1 x2 ... xi ... xn]

T 
defining the structure which optimizes vector of the objective 
function f(x). The design variables should also meet complex 
set of constraints imposed on their values. The constraints 
formulate the set of feasible solutions. It is assumed that all 
functions of the multi-objective optimization problem are 
real and a number of constraints is finite. When considering 
computational costs an additional requirement may also be 
formulated that they should be as small as possible.

For the multi-objective optimization problem a substitute 
scalar objective function may be formulated, on the basis of 
components of vector objective function, in the following 
form:

F(x) = F(f1(x), f2(x)) = w1f1(x) + w2f2(x) → min! (15)

where:
f1(x) – a structural weight of midship block-section taken 

to optimization,

f2(x)  – an area of the outer surface of structural members 
subjected to cleaning and painting operations 
(surface area for maintenance) in the section,

w1 and w2 – weight coefficients used for partial optimization 
criteria.

Taking into consideration the operational loads as well 
as the constraints imposed on the design variables especially 
those resulting from conditions of local and global strength 
formulated in the approved rules of a classification society 
the substitute scalar objective function can be expressed as 
augmented objective function of unconstrained minimization 
problem:

f(x) = F(x) +  =
 (16)

= w1 f1(x) + w2 f2(x) +  → min! 

where all symbols are described before.

The augmented objective function expression (Eq. 16) has 
been extended by components corresponding to dominance 
attributes and distance to the asymptotic solution. As 
a consequence the following form of combined objective 
function has been adopted:

f(x) = w1u1(x) + w2u2(x) +

wrankRfi(x) + wcountCfi(x) +                  (17)

+ wdistance[1 - dfi(x)] + 

where:
w1 and w2 – weight coefficients used for partial optimization 

criteria,
wrank – dominance rank coefficient,
wcount – dominance count weight coefficient,
wdistance – distance from asymptotic solution weight 

coefficient,
u1 – utility function for structural weight:

u1(x) =  → max!           (18a)

u2 – an utility function for area of the outer surface 
of structural members subjected to cleaning and 
painting operations:

u2(x) =  → max!          (18b)

where:
f1(x)  – current value of the first optimization criterion,
f1,max – maximum value of the first criterion,
f2(x)  – current value of the second optimization 

criterion,
f2,max – maximum value of the second criterion and all 

the remaining symbols are as outlined before.

As it has already been stated earlier, three aggregation-based 
multi-objective evolutionary strategies for taking account of 
the partial optimization criteria f1(x) and f2(x) are used in the 
scalar objective function (Eq. 4) calculation, and therefore also 
in the fitness function value calculation (Eq. 16):
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– selection of variants by using the scalar objective function 
(Eq. 16) with the values of weight coefficients w1 and w2 
set by the user (w_strategy = 2),

– selection of variants by using the scalar objective function 
(Eq. 16) with the values of weight coefficients w1 and w2 
randomly and independently generated in the range [0, 1] 
(w_strategy = 4),

– selection of variants by using the randomly selected single 
partial optimization criterion F(x) = w1f1(x) or F(x) = w2f2(x) 
(w_strategy = 3) which is implemented by the random 
selection of a single nonzero weight criterion.
Additionally, it is also possible to have:

– selection of variants without (wrank = 0) or with (wrank ≠ 0)
(Eq. 17) by taking into account the dominance rank of 
feasible solutions,

– selection of variants without (wcount = 0) or with (wcount ≠ 0)
(Eq. 17) by taking into account the dominance count of 
feasible solutions,

– selection of variants without (wdistance = 0) or with (wdistance ≠ 0)
(Eq. 17) taking into account the distance of feasible 
solutions to the asymptotic solution.

In the present formulation a set of 37 design variables 
is applied, cf. Tab. 5 and Fig. 17. Introduction of the design 
variable representing the number of transverse frames in 
a considered section: x4, and numbers of longitudinal stiffeners 
in the regions: x5, x9, x13, x17, x21, x25, x29, x33, x37, enables to 
perform simultaneous optimization of both topology and 
scantlings within the topology-scantling optimization model.

Tab. 5. Simplified specification of bit representation of design variables

No.
i

Symbol
xi

Item Substring length (no 
of bits)

Value

Lower limit
xi,min

Upper limit
xi,max

1 x1 serial No. of mezzanine deck plate 4 1 10
2 x2 serial No. of mezzanine deck bulb 3 1 7
3 x3 serial No. of mezzanine deck T-bulb 4 42 52
4 x4 number of web frames 3 10 16
5 x5 number of mezzanine deck stiffeners 4 25 40
6 x6 serial No. of superstructure I plate 4 1 10
7 x7 serial No. of superstructure I bulb 3 1 7
8 x8 serial No. of superstructure I T-bulb 4 42 52
9 x9 number of superstructure I stiffeners 3 4 11
10 x10 serial No. of inner side plate 4 1 10
11 x11 serial No. of inner side bulb 3 1 7
12 x12 serial No. of inner side T-bulb 4 42 52
13 x13 number of inner side stiffeners 3 18 25
14 x14 serial No. of bottom plate 4 1 12
15 x15 serial No. of bottom bulb 3 1 7
16 x16 serial No. of bottom T-bulb 4 42 52
17 x17 number of bottom stiffeners 4 15 25
18 x18 serial No. of outer side plate 4 1 12
19 x19 serial No. of outer side bulb 3 1 7
20 x20 serial No. of outer side T-bulb 4 42 52
21 x21 number of outer side stiffeners 4 18 33
22 x22 serial No. of wet deck plate 4 1 12
23 x23 serial No. of wet deck bulb 3 1 7
24 x24 serial No. of wet deck T-bulb 4 42 52
25 x25 number of wet deck stiffeners 4 25 40
26 x26 serial No. of main deck plate 4 2 12
27 x27 serial No. of main deck bulb 3 1 7
28 x28 serial No. of main deck T-bulb 4 42 52
29 x29 number of main deck stiffeners 4 25 40
30 x30 serial No. of superstructure II plate 4 1 10
31 x31 serial No. of superstructure II bulb 3 1 7
32 x32 serial No. of superstructure II T-bulb 4 42 52
33 x33 number of superstructure II stiffeners 3 4 11
34 x34 serial No. of upper deck plate 4 1 10
35 x35 serial No. of upper deck bulb 3 1 7
36 x36 serial No. of upper deck T-bulb 4 42 52
37 x37 number of upper deck stiffeners 4 25 40

Multivariable string length
(chromosome length) 135
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Numbers of stiffeners and transverse web frames, 
varying throughout the processes of optimization, determine 
corresponding spacings. Scantlings and weights of the structural 
elements: plating, stiffeners and frames are directly depending 
on the stiffeners and frames spacings – topological properties 
of the structure.

When optimizing the structural topology of the ship, 
a difficult dilemma is to be solved concerning a relation between 
the number of structural elements in longitudinal and transverse 
directions, and their dimensions, influencing the structural 
weight. And, should be also considered constraints related to 
the manufacturing process and functional requirements of the 
ship, e.g. transportation corridors, container supporting seats 
on the containerships (usually realized by longitudinal girders 
and floors in the double bottom) or positioning supports on 
the girders in the distance enabling entry of cars on ro-ro 
vessels.

The behaviour constraints, ensuring that the designed 
structure is on the safe side, were formulated for each region 
according to the classification rules [UNITAS (1995)] 
constituting a part of the set of inequality constraints gj(x):
• the required plate thicknesses tj,rule, based on the permissible 

bending stress:

tj − tj,rule ≥ 0                              (19)

where:
tj – actual value of plate thickness in j-th region,

• the required section moduli of stiffeners Zs,j,rule:

Zs,j − Zs,j,rule ≥ 0                         (20)

where:
Zs,j – actual value of the section modulus of stiffeners in j-th 
  region,

• the required section moduli of web frames Zf,j,rule:

Zf,j − Zf,rule ≥ 0                             (21)

where:
Zf,j – actual value of the section modulus of web frames in 
  j-th region,

• the required shear areas of stiffeners At,s,j,rule:

At,s,j − At,s,j,rule ≥ 0                        (22)

where:
At,s,j – actual value of shear area of stiffeners in j-th 
  region,

• the required shear areas of web frames At,f,j,rule:

At,f,j − At,f,j,rule ≥ 0                      (23)

where: 
At,f,j – actual value of the shear area of web frames in j-th 
  region.

He side constraints hk(x), mathematically defined as 
equilibrium constraints, for design variables are given in Tab. 5. 
They correspond to the limitations of the range of the profile 
set. Some of them are formulated according to the author’s 
experience in improving the calculation convergence.

The additional geometrical constraints were introduced due 
to the “good practice” rules:
• the assumed relation between the plate thickness and web 

frame thickness:

tj − tf,w,j ≥ 0                          (24)

where:
tj – actual value of the plate thickness in j-th region, 
tf,w,j – actual value of web frame thickness in j-th region,

Fig. 17. Assumed model of craft – specification of design variables
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• the assumed relation between the plate thickness and 
stiffener web thickness:

tj − ts,w,j ≥ 0                           (25)

where:
tj – actual value of the plate thickness in j-th region,
ts,w,j – actual value of stiffener web thickness in j-th region,

• the assumed minimum distance between the edges of frame 
flanges:

l(x4+1) − bf,j ≥ 0.3 m                  (26)

where:
bf,j – actual value of frame flange breadth in j-th region.

The relationships supplement the set of inequality 
constraints gj(x).

After formulating constraints it is necessary to formulate 
mathematical form of the penalty function Pij. The choice of 
mathematical form of penalty function is actually free, however 
certain basic requirements must be met:
– promoting (preferring, awarding) the solutions which do 

not violate constraints, increasing in this manner the value 
of fitness function (selection probability) of the solutions,

– penalizing the solutions which do not fulfil (violate) the 
constraints, decreasing , in this manner , the value of fitness 
function and consequently selection probability,

– normalizing the value of fitness function to one.

After conducting series of test computations, the identical 
mathematical exponential form of penalty function was 
assumed for all constraints, Eq. 9. Weight coefficients wk 
allow for implementing comparative, in relation to the others, 
meaning of a given constraint identified by coefficient k.

Finally by taking into consideration all the specified 
assumptions, the evolutionary multi-objective optimization 
model can be written as follows:
− find the vector of design variables x = [x1 ... xi ... xn]

T, xi, 
i = 1, ..., 37 as shown in Tab. 5,

− optimize the combined objective function f(x) → min! given 
by Eq. 17,

− subject to behaviour constraints given by Eq. 19÷23, side 
constraints given in Ta. 5 and geometrical constraints given 
by Eq. 24÷26, build a set of equality hj(x) and inequality 
gj(x) constraints,

− exponential forms of penalty functions for representing of 
constraints violation, Eq. 9.

Genetic model of the ship hull structure

General

The ship structural multi-objective optimization problem 
described earlier contains a large number of discrete design 
variables and also a large number of constraints. In such 
a case the GA seems to be especially useful. Solving of the 
optimization problem by using GA requires to formulate an 
appropriate optimization model. The optimization model 
specified earlier was reformulated into an optimization model 
according to requirements of the GA, which was further used 
to develop suitable procedures and define search parameters 
to be used in the computer code.

The genetic type model should cover:
− specification of chromosome structure,
− specification of fitness function: fitness → max!,

− specification of genetic operators suitable for the defined 
chromosome structures and optimization task,

− specification of the searching control parameters.

Chromosome structure
In this work, the space of possible solutions is the space 

of possible structural variants of the assumed model. The ship 
hull structural model is described (identified) as a collection of 
37 design variables, xi, described above. Each of them can be 
represented by a string of bits. For example the deck structural 
model is described (identified) as a collection of five design 
variables, xi, presented on Fig. 18. As we mentioned above 
the bit string is used as chromosome in GAs. Defining the 
chromosome structure consists in assuming:
− a sequence in which variables in chromosome will be 

coded,
− a number of genes for recording every variable,
− resolution capability of coding actual variable values,
− the lowest and the highest values of the variables.

Fig. 18. Design variables and chromosome structure: main deck

Coding sequence is free to choose and it does not affect 
algorithm computational characteristics, but this knowledge 
is essential for proper genotype decoding to decisive variables 
values - phenotypes.

Number of genes in chromosome requires more attention. 
Generally, the higher gene number the greater demand for 
memory and increased computing time. Therefore number 
of genes cannot be too high. On the other hand, greater 
chromosome length allows for examination of objective space 
in greater detail. It cannot be too small otherwise mutation and 
crossover operators would not be able to function effectively 
on extremely short chromosomes and the resolution will be 
lower. The compromise is set by the user according to his 
own experience aiming at required resolution and acceptable 
time of computing. In this case memory size is of secondary 
significance. Bibliography review and the author’s own 
experience suggest that usually one variable is coded in 
a chromosome section containing 5 to 20 genes.

Resolution capability determines sampling density of 
objective space. Greater resolution capability enables to 
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examine more points in objective space which increases 
probability of detecting interesting extremes. On the other 
hand, increased resolution capability results in increasing 
a number of computations and extends simulation time. The 
author’s opinion is that resolution capability should be set on 
the lowest acceptable level. In case the algorithm does not detect 
any interesting solutions the increasing of resolution capability 
should be considered.

The user sets the lowest and highest values of variables on 
the basis of his own experience, according to the task being 
solved and providing appropriate convergence of algorithm 
while leaving discretion in exploration of objective space.

A simplified specification for bit representation of all 
design variables is given in Tab. 5. The solution variant can 
be represented simply by a string of bits.

The space of possible solutions is a space of structural 
variants of the assumed model. The hull structural model is 
identified by the vector x of 37 design variables, xi. Each 
variable is represented by a string of bits used as chromosome 
substring in GA. The simple binary code was applied. Such 
coding implies that each variant of solution is represented 
by a bit string named chromosome. Length of chromosome 
which represents of structural variant is equal to the sum of all 
substrings. Number of possible solutions is equal the product 
of values of all variables. In the present work the chromosome 
length is equal to 135 bits making the number of possible 
solutions equal approximately to 1038.

Fitness function

A fitness function is used to determine how much the ship 
structure is suitable for a given condition in the optimum 
design with a GA. Because the combined objective function 
f(x) expressed by the relation Eq. 13 is: (1) well defined, (2) 
single-valued, (3) ascending, having real values and positive 
in the search space, it has been adopted directly to serve as the 
combined fitness function:

f(x) = w1u1(x) + w2u2(x) +

wrankRfi(x) + wcountCfi(x) +
 (27)

+ wdistance[1 - dfi(x)] + 

combined fitness = criteria + rank + count +
+ distance + constraints 

All symbols used in the above given equation were already 
described. The expression (27) representing inclusion into 
selection process of test solutions, in addition to the degree 
with which they adjust to the established optimization criteria 
and formulated constraints, domination attributes as well 
as distance to the asymptotic solution, is the key point of 
the proposed Combined Fitness Multi-Objective Genetic 
Algorithm (CFMOGA).

Genetic operators
The basic genetic algorithm (Simple Genetic Algorithm 

- SGA) produces variants of the new population by using 
the three main operators which constitute the GA search 
mechanism: selection, mutation and crossover. In the present 
work the algorithm was extended by introduction of elitism 
and updating.

The basic genetic algorithm (Simple Genetic Algorithm 
-SGA) produces variants of the new population by using 

the three main operators which constitute the GA search 
mechanism: selection, mutation and crossover. In the present 
work the algorithm was extended by introduction of elitism 
and updating. Many authors described the selection operators 
responsible for chromosome selection due to their fitness 
function value [Goldberg and Deb (1991)], [De Jong (1995)], 
[Back (1996)], [Michalewicz (1996)]. After the analysis of 
the selection operators a roulette concept was applied for 
proportional selection. The roulette wheel selection is a process 
in which individual chromosomes (strings) are chosen according 
to their fitness function values; it means that strings with higher 
fitness value have higher probability of reproducing new strings 
in the next generation. In this selection strategy the greater 
fitness function value makes the individuals more important 
in a process of population growth and causes transmission of 
their genes to the next generations.

The mutation operator which introduces random changes 
of the chromosome, was also described [Back (1996)], 
[Michalewicz (1996)]. Mutation is a random modification of 
the chromosome. It gives new information to the population 
and adds diversity to the mate pool (pool of parents selected for 
reproduction). Without the mutation it is hard to reach solution 
point which is located far from the current direction of search, 
while due to introduction of the random mutation operator the 
probability of reaching any point in the search space never 
equals zero. This operator also prevents against to the premature 
convergence of GA to one of the local optimum solutions, thus 
supporting exploration of the global search space.

The crossover operator combines the features of two parent 
chromosomes to create new solutions. The crossover allows to 
explore a local area in the solution space. Analysis of the features 
of the described operators [Goldberg and Deb (1991)], [Back 
(1996)], [Michalewicz (1996)] led to developing a new, n-point, 
random crossover operator. The crossover parameters in this 
case are: the lowest n_x_site_min and the greatest n_x_site_max 
number of the crossover points and the crossover probability 
pc. The operator works automatically and independently for 
each pair being intersected (with probability pc), and it sets 
the number of crossover points n_x_site. The number of 
points is a random variable inside the set range [n_x_site_min, 
n_x_site_max]. The test calculations proved high effectiveness 
and quicker convergence of the algorithm in comparison witch 
algorithm realizing single-point crossover. It was also found 
that the number of crossover points n_x_site_max greater than 
7 did not improve convergence of the algorithm. Therefore, the 
lowest and greatest values of the crossover points were set as 
follows: n_x_site_min = 1, n_x_site_max = 7.

The effectiveness of the algorithm was improved with 
application of an additional updating operator as well as 
introduction of elitist strategy.

Random character of selection, mutation and crossing 
operators can have the effect that these are not the best fitting 
variants of the parental population which will be selected for 
crossing. Even in the case they will be selected, the result 
will be that progeny may have a lower adaptation level. Thus 
the efficient genome can be lost. Elitist strategy mitigates the 
potential effects of loss of genetic material copying certain 
number of best adapted parental individuals to progeny 
generation. In the most cases the elitist strategy increases the 
rate of dominating population by well-adapted individuals, 
accelerating the convergence of the algorithm. The algorithm 
selects fixed number of parental individuals np having the 
greatest values of the fitness function and the same number of 
descendant individuals having the least values of the fitness. 
Selected descendants are substituted by selected parents. 
In this way the operator increases exploitation of searching 
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space. Update operator with fixed probability of updating pu 
introduces an individual, randomly selected from the parental 
population, to the progeny population, replacing a descendant 
less adapted individual. This operator enhances exploration 
of searching space at the expense of decreasing the search 
convergence. It also prevents the algorithm from converging 
to a local minimum. Both operators acts in opposite directions, 
and they should be well balanced; exploitation of attractive 
areas found in the searching spaces as well as exploration of 
searching space to find another attractive areas in the searching 
space depend on the user’s experience.

Control parameters
Single program run with the defined genetic model is 

characterized by values of eighteen control parameters. In this 
case the set of genetic model parameters set for each simulation 
run signed as symi includes 18 elements:

symi = (ndv, lch, ng, ni, np, pm, pc, c_strategy, 
n_x_site_min, n_x_site_max, pu, elitist,
w_strategy, w1, w2, wrank, wcount, wdistance)

where:
ndv – number of design variables (number of 

genes),
lch – chromosome length (number of bits),
ng – number of generations, ni -  size of 

population,
np – number of pretenders,
pm – mutation probability,
pc – crossover probability,
c_strategy – denotation of crossover strategy (0 for fixed, 

1 for random number of crossover points),
n_x_site_min – the lowest number of crossover points, 
n_x_site_max – the greatest number of crossover points,
pu – update probability,
elitist – logical variable to switch on (elitism = yes) 

and off (elitism = no) the pretender selection 
strategy,

w_strategy – denotation of strategy for aggregation of 
objective function,

w1 – weight coefficient of weight of structure,
w2 – weight coefficient of surface area of structural 

element intended for cleaning and painting,
wrank – weight coefficient of solution dominance 

rank,
wcount – weight coefficient of individual dominance 

count, 
wdistance – weight coefficient of distance of individual 

from asymptotical solution. 

These 18 parameters control the successive simulation runs 
and identify them unambiguously for the adopted structure 
model.

For selection of more control parameters it is not possible 
to formulate quantitative premises because of the lack of 
an appropriate mathematical model for analysis of GA 
convergence in relation to control parameters. The control 
parameters were set due to test calculations results to achieve 
a required algorithm convergence.

All genetic parameters are specified by the user in advance 
of the calculations. This option is very important; the control 
of the parameter permits to perform search in the direction 
expected by the designer and in some cases it allows to find 
solution faster. The population size, number of variables and 
number of bits per variable, the total genome length, number 

of individuals in the population are limited by the available 
computer memory.

Conclusion
Finally, with taking into consideration all specified 

assumptions, the genetic model can be determined by the 
following:
− chromosome structure specified in Tab. 5,
− fitness function given by Eq. 28,
− genetic operators,
− control parameters.

COMPUTATIONAL INVESTIGATIONS 
– THE SEARCH FOR SET OF NON-

DOMINATED SOLUTIONS
Computational investigations program

In order to verify the suitability of the proposed method 
and the computer code developed for the seeking of Pareto-
optimal solutions of the formulated multi-objective seagoing 
ship structure optimization problem, a number of calculation 
experiments have been performed, Tab. 7, by using the 
ship structure models earlier formulated and discussed in 
Section 6.

From the multi-objective optimization point of view, the 
aim of the simulation was searching for non-dominated variants 
with respect to two optimization criteria with varying strategies 
for setting the values of weight coefficients for various criteria 
as well as dominance attributes:

(1) Series 1.: the simulations marked with symbols sym1-1, 
sym1-2 and sym1-3 having the following values of control 
parameters:

sym1-1: (37, 135, 10.000, 5.000, 10, 0.086, 0.800, 1, 1, 7, 
0.33, yes, 2, 0.5, 0.5, 0.0, 0.0, 0.0),

sym1-2: (37, 135, 10.000, 5.000, 10, 0.086, 0.800, 1, 1, 7, 
0.33, yes, 3, random in [0,1], random in [0,1], 0.0, 0.0, 0.0),

sym1-3: (37, 135, 10.000, 5.000, 10, 0.086, 0.800, 1, 1, 7, 
0.33, yes, 4, random 0 or 1, random 0 or 1, 0.0, 0.0, 0.0).

In the simulation marked as sym1-1 the fixed values of 
weight coefficients are used for whole simulation: w1 = 0.5 
and w2 = 0.5; which refers to a classical method of weighted 
criteria. In the simulation marked as sym1-2 the values of 
weight coefficients w1 and w2 were generated by the computer 
code as random variables in the range [0, 1], which was done 
independently for each variant whenever the value of fitness 
function is calculated. In the simulation marked as sym1-3 the 
values of weight coefficients w1 and w2 were generated by the 
computer code as random variables equal to either 0 or 1, 
which was done independently for each variant whenever the 
value of fitness function is calculated; the value of 1 was used 
only for one, randomly selected criterion, with the remaining 
ones equal to 0.

(2) Series 2.: the simulations marked with symbols sym2-1, 
sym2-2 and sym2-3 having the following values of control 
parameters:

sym2-1: (37, 135, 10.000, 5.000, 10, 0.086, 0.800, 1, 1, 7, 
0.33, yes, 1, 0.0, 0.0, 3.0, 0.0, 0.0),

sym2-2: (37, 135, 10.000, 5.000, 10, 0.086, 0.800, 1, 1, 7, 
0.33, yes, 1, 0.0, 0.0, 0.0, 3.0, 0.0),

sym2-3: (37, 135, 10.000, 5.000, 10, 0.086, 0.800, 1, 1, 7, 
0.33, yes, 1, 0.0, 0.0, 0.0, 0.0, 3.0).

Search for non-dominated variants while excluding the 
optimization criteria from the process of variant selection 
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w1 = w2 = 0.0 (w_strategy = 1) which was governed in particular 
simulations only by: (i) the value of the dominance rank of 
feasible solution, wrank = 3.0, wcount = 0.0, wdistance = 0.0, in the 
simulation marked as sym2-1, (ii) the value of feasible variant 
dominance count, wcount = 3.0, wrank = 0.0, wdistance = 0.0, in 
the simulation marked as sym2-2, (iii) the distance between 
the feasible variant and the asymptotic solution, wdistance = 3.0, 
wrank = 0.0, wcount = 0.0, in the simulation marked as sym2-3. 
The purpose of the simulation series was to find out whether 
the developed tool is effective in case of evolution being 
governed only by (i) dominance rank, (ii) dominance count, or 
(iii) distance from a asymptotic solution. This refers to modern 
algorithms of evolutionary multi-objective optimization, where 
the evolution is governed only by dominance attributes.

In all the simulations the functions of penalties imposed 
in the violations of constraints were active, wk ≠ 0, k = 1, 2, 
…, nc.

The computational investigations were carried out first of 
all for two-objective problems, as in this case it is possible to 
present obtained results graphically in a multitude of ways, 
which facilitate their interpretation and analysis.

Results of computational investigations

Results of computational investigations – Series1: 
the simulation marked with symbols sym1-1, 

sym1-2 and sym1-3
The results of simulation sym1-1 are going to be discussed 

in the most detailed way by presenting the results characteristic 

for the developed method. For other simulations only the most 
important results will be presented.

The Fig. 19 presents the evolution of macroscopic values 
characterizing the evolution of generated and evaluated 
population of ship structure solutions in the simulation sym1-1: 
(1) the greatest fitness function value fmax, (2) the lowest 
distance of the feasible solution from the asymptotic solution. 
Multi-objective optimization of ship structure was performed 
with regard to the structure weight f1 and the surface area for 
maintenance f2 in case of fixed values of weight coefficients 
w1 = w2 = 0.5 used for optimization criteria. Dominance 
attributes: dominance rank, dominance count and distance 
from asymptotic solution, being excluded from selection. 
The figure shows a desired continuous rise of the greatest 
value of fitness function fmax indicating rising quality of the 
best generated test solutions. The highest values of fitness 
function saturate already in 1668 generation, which means 
that in the following generations no solutions were generated 
being better adapted in the sense of the fitness function used, 
and the computation resources were squandered replicating 
the non-dominated solutions set. The lowest distance between 
a non-dominated solution and the asymptotic solution changes 
during the evolution, but above the threshold of 87.38% of the 
highest value found during the simulation this takes place to 
a very small extent. For example, in the 857th generation the 
distance of the closest solution (x) from the asymptotic 
solution is 1.1141), see Fig. 20a, while in the successive 858th 
generation the distance of the closest solution (x) to the 
asymptotic solution increased to 1.177, Fig. 20b. For the same 

Tab. 7. Control parameters of computational investigations

No. Designation 
symi

Specification
(ndv, lch, ng, ni, np, pm, pc, c_strategy, n_x_site_min, n_x_site_max, pu, elitist,

w_strategy, w1, w2, wrank, wcount, wdistance)
Series 1.

1. sym1-1 (37, 135, 10,000, 5,000, 10, 0.086, 0.800, 1, 1, 7, 0.33, yes, 2, 0.5, 0.5, 0.0, 0.0, 0.0)
2. sym1-2 (37, 135, 10,000, 5,000, 10, 0.086, 0.800, 1, 1, 7, 0.33, yes, 4, random in [0,1], random in [0,1], 0.0, 0.0, 0.0)
3. sym1-3 (37, 135, 10,000, 5,000, 10, 0.086, 0.800, 1, 1, 7, 0.33, yes, 3, random 0 or 1, random 0 or 1, 0.0, 0.0, 0.0)

Series 2.
4. sym2-1 (37, 135, 10,000, 5,000, 10, 0.086, 0.800, 1, 1, 7, 0.33, yes, 1, 0.0, 0.0, 3.0, 0.0, 0.0)
5. sym2-2 (37, 135, 10,000, 5,000, 10, 0.086, 0.800, 1, 1, 7, 0.33, yes, 1, 0.0, 0.0, 0.0, 3.0, 0.0)
6. sym2-3 (37, 135, 10,000, 5,000, 10, 0.086, 0.800, 1, 1, 7, 0.33, yes, 1, 0.0, 0.0, 0.0, 0.0, 3.0)

1) All values of distance from the asymptotic solution are calculated in normalized space because it is impossible to calculate the Euclidean 
distance in physical objective space when different objectives are measured in different units.

Fig. 19. The results of multi-objective genetic optimization of ship structure with respect to structure weight f1 and the area of element surface f2 in case 
of fixed values of optimization criteria weight coefficients w1 = w2 = 0.5 with dominance attributes being excluded from selection (sym1-1); the curves 

present the evolution of a highest value of fitness function fmax, the lowest value of non-dominated solution distance from a asymptotic one; the values are 
dimensionless and standardized in [0,1] range in relation to the highest values found during the simulation
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solution the change of the distance to the asymptotic solution 
occurs only due to the change of the structure of the set of 
non-dominated solutions. On the other hand, for example, in 
the 2156th generation the distance of the closest solution 
(x) from to the asymptotic solution is 1.187, Fig. 21a, while 
in the successive 2157th generation the distance of the closest 
solution (x) from the asymptotic solution decreased to 
1.087, Fig. 21b. In this case the change of the set structure 
caused another solution, already present in the set, became 
the solution closest to the asymptotic solution.

In Fig. 22 the evolution of the structure of non-dominated 
solutions set in simulation sym1-1 is shown by using the 
selected time-based cross-sections of this set, e.g. for 1, 
2000, 4000, 6000, 8000 and 10.000 generations as examples. 
A systematic growth of the size of non-dominated solutions set 
is apparent with 6, 6, 9, 12, 11 and 14 non-dominated solutions 
respectively in the consecutive time-based cross-sections as 
well as the desired evolution of this set in the direction of more 
advantageous values of partial optimization criteria.

Fig. 23 presents a detailed structure of the non-dominated 
solution set of the last generation, presented in the physical space 
of objectives and normalized space of objectives. It can be seen 
that the set of non-dominated solutions including 14 variants 
of ship structure was found during the simulation. For each 
non-dominated variant the values of optimization criteria were 
specified as: f1(x) – structural weight and f2(x) – cleaned/painted 
surface area. The designer may select for further development 
one of these variants or a group of them deemed by him to be 
the best. For the variant closest from the asymptotic solution 
which was found in 5116 generation, (x), the distance 
equals 1.096 in the normalized objective space, the structural 
weight is f1(x) = 1086.28 kN and the cleaned/painted surface 
area is f2(x) = 7422.10 m2. This variant may be recommended 
if there is a need to select a single solution for the formulated 
ship structure multi-objective optimization problem:

f≈
sym1-1 = (x) = [ (x) (x)]T =

= [1086.28 7422.10]T · [kN m2]

2) Normalization of the optimization objective values makes it possible to calculate the distance from asymptotic objective in the Euclidean 
sense in cases when the axes of the co-ordinate system represent the objectives denoted in various units.

Fig. 20. Change of a structure of non-dominated solutions set when moving from generation 857 (a) to generation 858 (b); during the genetic multi-objective 
optimization of ship structure with respect to structure weight f1 and surface area f2 in case of the fixed values of optimization criteria weight coefficients 

w1 = w2 = 0.5 with dominance attributes being excluded from selection (sym1-1); circles represent non-dominated solutions, red points represent non-
dominated solutions closest from the asymptotic one; dimensionless values are normalized to the interval [0,1] in relation to the highest values in the set2); 

change of non-dominated solution set structure and change of non-dimensional (normalized) of distance of the nearest solution from asymptotic solution 
caused not by change of values of partial optimization criteria but only change of set of non-dominated solutions set structure can be observed

a)

b)
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Fig. 21. Change of a structure of non-dominated solutions set when moving from generation 2156 (a) to generation 2157 (b); during the genetic multi-
objective optimization of ship structure with respect to structure weight f1 and surface area f2 in case of the fixed values of optimization criteria weight 

coefficients w1 = w2 = 0.5 with dominance attributes being excluded from selection (sym1-1); circles represent non-dominated solutions, red points represent 
non-dominated solutions closest to the asymptotic one; dimensionless values are normalized to the interval [0,1] in relation to the highest values in the set; 

change of non-dominated solution set structure and change of non-dimensional (normalized) of distance of the nearest solution from asymptotic solution 
caused not by change of values of partial optimization criteria but only change of set of non-dominated solutions set structure can be observed

Fig. 23. Detailed specification of non-dominated solutions set obtained during the genetic multi-objective optimization of ship structure with respect to 
structure weight f1 and surface area f2 in case of fixed values of optimization criteria weight coefficients w1 = w2 = 0.5 with dominance attributes being 

excluded from selection (sym1-1); black circles represent non-dominated solutions, red dots represent non-dominated solutions closest from the asymptotic 
one; dimensionless values are normalized to the interval [0,1] in relation to the highest values in the set

a)

b)
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Fig. 22. History of the evolution of non-dominated solutions set during the genetic multi-objective optimization of ship structure with respect to structure 
weight f1 and surface area f2 in case of the fixed values of optimization criteria weight coefficients w1 = w2 = 0.5 with dominance attributes being excluded 

from selection (sym1-1); black circles represent non-dominated solutions, red dots represent non-dominated solutions closest from the asymptotic one
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Fig. 24. History of creating a set of non-dominated solutions in the first six timeframes in which a change in structure of the set of non-dominated solutions 
has occurred during the genetic multi-objective optimization of ship structure with respect to structure weight f1 and surface area f2 in case of the fixed 

values of optimization criteria weight coefficients w1 = w2 = 0.5 with dominance attributes being excluded from selection (sym1-1); red circles represent 
non-dominated solutions, blue dots represent feasible solutions in present generations; in case of the first generation two existed already 

non-dominated solutions are coming from initial generation
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Fig. 25. History of creating a set of non-dominated solutions in the last six timeframes in which a change in structure of the set of non-dominated solutions 
has occurred during the genetic multi-objective optimization of ship structure with respect to structure weight f1 and surface area f2 in case of the fixed values 

of optimization criteria weight coefficients w1 = w2 = 0.5 with dominance attributes being excluded from selection (sym1-1); red circles represent non-
dominated solutions, blue dots represent feasible solutions in present generations
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The author found it an interesting task to examine in which 
way the evolutionary optimization algorithm is builds a set 
of non-dominated solutions (approximation of Pareto set). Is 
the hypothesis correct, which states that during the evolution 
the set of feasible solutions as a whole shifts in direction of 
asymptotic solution, and is the set of non-dominated solutions 
approximating Pareto front is an edge of the set of feasible 
solutions? To verify the hypothesis, in Fig. 24 are presented 
feasible sets and approximation sets for time intersections 
corresponding to six first modifications of approximation set, 
i.e. 1, 2, 3, 5, 6 and 7 generations. In Fig. 25 are also presented 
approximation sets for time intersections corresponding six last 
modifications of approximation set, i.e. 5441, 5882, 7081, 8051, 
8712 and 9390 generations. Modification of the approximation 
set took place by including , to the successive approximation 
set, selected solutions, non-dominated in the ongoing 
feasible set and non-dominated by existing approximation set 
simultaneously.

Figure 24 confirms, according to Fig. 18 that the algorithm 
builds the approximation set very intensively in early 
generations; in practice, in every following generation a new 
solution is being incorporated to the approximation set. The slow 
receding of the approximation set from the set of non-dominated 
solutions in the direction of the origin of the coordinate system 

is visible. Set of feasible solutions maintains steady position 
in the objective space, preserving also similar range in this 
space. Fig. 25 confirms very slowly progressing building of the 
approximation set in final phases of the simulation; sequentially 
generated non-dominated variants are separated in spaces about 
1000 generations of evolution simulated by the algorithm. The 
approximation set is already separated from the set of feasible 
solutions and sequentially incorporated to its non-dominated 
solutions already overcoming significant distance from the 
feasible set and approximation set in the objective space. To 
overcome so the large distance in the objective space is possible 
in the way of very high attractive mutations in the chromosomes 
of individuals. Location of the set of feasible solutions and its 
range in the objective space do not undergo significant changes 
in course of evolution. Slightly larger concentration of set of 
feasible solutions in the later generations is visible presented in 
the Fig. 25, however confirmation if it is an actual or apparent 
effect requires further research.

The presented results of the evolution of non-dominated 
solutions set indicate that non-dominated solutions set evolution 
can proceed also in such a way that the set of dominated feasible 
solutions preserves more less stable position in evaluation space, 
in turn discovered in sequence of non-dominated solutions are 
discovered sparse very good solutions found in course of 

Fig. 26. Results of genetic multi-objective optimization of ship structure with respect to structure weight f1 and surface area f2 in case of random values 
of optimization criteria weight coefficients w1 and w2 in range of [0, 1] with dominance attributes being excluded from selection (sym1-2); a) the curves 
present the evolution of the highest value of fitness function fmax, the lowest value of non-dominated solution distance from a asymptotic one, b) detailed 

specification of final non-dominated solutions set in objective space, c) detailed specification of final non-dominated solutions set in normalized objective 
space; black circles represent non-dominated solutions, red circles represent non-dominated solution closest from the asymptotic one; dimensionless values 

are normalized to the interval [0,1] in relation to the highest values in the set

a)

b) c)
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Fig. 27. History of the evolution of the non-dominated solutions set during the genetic multi-objective optimization of ship structure with respect to structure 
weight f1 and surface area f2 in case of random values of optimization criteria weight coefficients w1 and w2 in range of [0, 1] with dominance attributes 
being excluded from selection (sym1-2); black circles represent non-dominated solutions, red dots represent non-dominated solutions closest from the 

asymptotic one
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an algorithm simulated evolution; they create a set of non-
dominated solutions receding in the act of the simulation from 
the set of feasible solutions to asymptotic ideal evaluations. This 
way of evolution the author suggests to call “drop by drop”, 
because it resembles rain drops falling on the ground; in this 
case the set of dominated feasible solutions represents a rain 
cloud while the set of non-dominated solutions, approximation 
set, represents drops that have fallen onto the ground.

Figure 26a presents the evolution of macroscopic values 
characterizing the evolution of generated and evaluated ship 
structure variants population in simulation sym1-2 in case of 
random values of weight coefficients w1 and w2 in range of 
[0, 1] with dominance attributes being excluded from selection. 
The figure shows a desired continuous rise of the greatest value 
of fitness function fmax indicating rising quality of the best 
generated test variants. The highest values of fitness function 
saturate already in 1416 generation. The lowest distance 
between a non-dominated solution and the asymptotic solution 
changes during the evolution but above the threshold of 86,69% 
of the highest value found during the simulation is results in 
insignificant changes.

In Fig. 27 the evolution of the structure of the non-
dominated solutions set in simulation sym1-2 is shown by 

using, as examples, the selected time-based cross-sections 
of this set, e.g. for 1, 2000, 4000, 6000, 8000 and 10,000 
generations. The size of non-dominated solutions set in the 
selected generations is apparent with 8, 9, 13, 12, 10 and 8 
non-dominated solutions and it does not change significantly 
in the course of simulation.

Figures 26b and 26c presents the detailed structure of the 
non-dominated solutions set of the last generation produced in 
simulation sym1-2. It can be seen that a set of non-dominated 
solutions including 8 variants of ship structure has been 
found during the simulation. For the solution closest from 
the asymptotic solution, which was found in 6145 generation,

(x), the distance equals 1.088 in the normalized objective 
space, the structure weight is f1(x) = 1113.66 kN and the surface 
area for maintenance is f2(x) = 7361.45 m2:

f≈
sym1-2 = (x) = [ (x) (x)]T =

= [1113.66 7361.45]T · [kN m2]
Figure 28a presents the evolution of macroscopic values 

characterizing the evolution of generated and evaluated ship 
structure variants population in simulation sym1-3 in case of 
random values of weight coefficients w1 and w2 equal to 0 
or 1, used for optimization criteria with dominance attributes 

Fig. 28. Results of genetic multi-objective optimization of ship structure with respect to structural weight f1 and surface area f2 in case of random values 
of weight coefficients w1 and w2 equal to 0 or 1 with dominance attributes being excluded from selection (sym1-3); a) the curves present the evolution 
of a highest value of fitness function fmax, the lowest value of non-dominated solution distance from a asymptotic one, b) detailed specification of final 

non-dominated solutions set in objective space, c) detailed specification of final non-dominated solutions set in normalized objective space; black circles 
represent non-dominated solutions, red dots represent non-dominated solution closest to the asymptotic one; dimensionless values are normalized to the 

interval [0,1] in relation to the highest values in the set

a)

b) c)
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Fig. 29. History of the evolution of non-dominated solutions set during the genetic multi-objective optimization of ship structure with respect to structure 
weight f1 and surface area f2 in case of random values of weight coefficients w1 and w2 equal to 0 or 1 with dominance attributes being excluded from 

selection (sym1-3); black circles represent non-dominated solutions, red dots represent non-dominated solutions closest from the asymptotic one
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Fig. 30. The results of multi-objective genetic optimization of ship structure with respect to the structure weight f1 and the area of element surface f2 in case 
of the fixed values of weight coefficients w1 = w2 = 0.0, with dominance count and the distance from a asymptotic solution being excluded from selection: 

wcount = 0.0, wdistance = 0.0, the evolution is governed by dominance rank, wrank = 3.0, and constraints components, (sym2-1); the curves present the evolution of 
the highest value of fitness function fmax and the lowest value of the non-dominated solution distance from a asymptotic one; the values are dimensionless and 

standardized in [0,1] range in relation to the highest values found during the simulation

being excluded from selection. The figure shows a desired 
continuous rise of the greatest value of fitness function fmax 
indicating rising quality of the best generated test solutions. The 
highest values of fitness function do not saturate before 8888 
generation. i.e. very close to the end of simulation. The lowest 
distance between a non-dominated solution and the asymptotic 
solution changes during the evolution, but above the threshold 
of 88.30% of the highest value found during the simulation it 
takes place only to a very small extent.

In Fig. 29 the evolution of the structure of the non-
dominated solutions set in simulation sym1-3 is shown by 
using, as examples, the selected time-based cross-sections 
of this set, e.g. for 1, 2000, 4000, 6000, 8000 and 10.000 
generations. Cardinality of non-dominated solutions set in 
the selected generations amounts to 6, 18, 12, 12, 11 and 15, 
respectively, and it does not change significantly in the course 
of simulation.

Figures 28b and 28c present a detailed structure of a non-
dominated solutions set of the last generation produced in 
simulation sym3. In can be seen that the set of non-dominated 
solutions including 15 ship structural variants has been 
found during the simulation. For the solution closest to the 
asymptotic solution which was found in 7611 generation,

(x), the distance of 1.123 in the normalized objective space, 
the structural weight is f1(x) = 1153.68 kN and the surface area 
for maintenance is f2(x) = 7381.57 m2:

f≈
sym1-3 = (x) = [ (x) (x)]T =

= [1153.68 7381.57]T · [kN m2]

Results of computational investigations – Series2: 
the simulation marked with symbols sym2-1, 

sym2-2 and sym2-3
Figure 30 presents the evolution of macroscopic values 

characterizing the evolution of generated and evaluated ship 
structure variants population in simulation sym2-1: (1) the 
greatest fitness value fmax, and (2) the lowest distance between 
the feasible variant and the asymptotic solution. Multi-objective 
optimization of ship structure with respect to structural weight 
f1 as well surface area for cleaning and painting, f2, in the 
case of the values of optimization criteria weight coefficients, 
w1 = w2 = 0.0, dominance count, wcount = 0.0 and the distance 
from asymptotic solution, wdistance = 0.0; evolution of 
generations is governed by dominance rank, wrank = 3.0, and 
constraints components, wk ≠ 0, k = 1, 2, …, nc. The figure 

shows a desired continuous rise of the greatest value of fitness 
function fmax indicating rising quality of the best generated test 
variants. There can also be seen a very early, reached already 
in 585 generation, saturation of the fitness function maximum 
value fmax. The smallest distance of the non-dominated solution 
from the asymptotic solution varies in course of evolution, but 
only in a small range over 79.42% of the greatest value found 
during the simulation.

In Fig. 31 the evolution of the structure of the non-
dominated solutions set in simulation sym2-1 is shown by using 
as examples the selected time-based cross-sections of this set, 
e.g. for 1, 2000, 4000, 6000, 8000 and 10.000 generations. 
Cardinality of non-dominated solutions set in the selected 
generations amounts to 4, 8, 6, 8, 8 and 10, respectively, and it 
does not change significantly in the course of simulation.

Figure 32 presents the detailed structure of the non-
dominated solutions set of the last generation, presented in 
a physical space of objectives and the normalized space of 
objectives. In can be seen that a set of non-dominated solutions 
including 10 variants of ship structure has been found during 
the simulation. For each non-dominated variant the values of 
optimization criteria have been specified as: f1(x) – structural 
weight and f2(x) – cleaned/painted surface area. The designer 
may select, for further development, one of the variants or 
a group of them deemed by him to be the best. For the variant 
closest from the asymptotic solution, which was found already 
in 196 generation, the distance equals 1.064 in the normalized 
objective space, the structural weight is f1(x) = 1105.95 kN and 
the cleaned/painted surface area is f2(x) = 7345.11 m2:

f≈
sym2-1 = (x) = [ (x) (x)]T =

= [1105.95 7345.11]T · [kN m2]
This variant may be recommended if there is a need to 

select a single solution for the formulated ship structure multi-
objective optimization problem.

Figure 33 presents the evolution of macroscopic values 
characterizing the evolution of generated and evaluated 
ship structure variants population in simulation sym2-2. 
Multi-objective optimization of ship structure with respect 
to the structural weight f1 as well as surface for cleaning and 
painting f2 in case of the values of optimization criteria weight 
coefficients, w1 = w2 = 0, dominance rank, wrank = 0.0 as well as 
the distance from asymptotic solution, wdistance = 0.0; evolution 
of generations is governed by dominance count, wcount = 3.0, 
and constraints components, wk ≠ 0, k = 1, 2, …, nc. The figure 
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Fig. 31. History of the evolution of the non-dominated solutions set during the genetic multi-objective optimization of ship structure with respect to 
the structure weight f1 and surface area f2 in case of the fixed values of weight coefficients w1 = w2 = 0.0, with dominance count and the distance from 

a asymptotic solution being excluded from selection: wcount = 0.0, wdistance = 0.0, the evolution is governed by dominance rank, wrank = 3.0, and constraints 
components, (sym2-1); black circles represent non-dominated solutions, red dots represent non-dominated solutions closest to the asymptotic one
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Fig. 33. The results of multi-objective genetic optimization of ship structure with respect to the structure weight f1 and the area of element surface f2 in case 
of the fixed values of weight coefficients w1 = w2 = 0.0, with dominance rank and the distance from a asymptotic solution being excluded from selection: wrank 

= 0.0, wdistance = 0.0, the evolution is governed by dominance count, wcount = 3.0, and constraints components, (sym2-2); the curves present the evolution of 
the highest value of fitness function fmax and the lowest value of non-dominated solution distance from a asymptotic one; the values are dimensionless and 

standardized in [0,1] range in relation to the highest values found during the simulation

Fig. 32. Detailed specification of the non-dominated solutions set obtained during the genetic multi-objective optimization of ship structure with respect to 
the structure weight f1 and surface area f2 in case of exclusion from selection: optimization criteria, w1 = w2 = 0.0, dominance count, wcount = 0.0 and distance 

from asymptotic solution, wdistance = 0.0; the evolution is governed by dominance rank, wrank = 3.0, and constraints components, (sym2-1); black circles 
represent non-dominated solutions, red dots represent non-dominated solutions closest from the asymptotic one; dimensionless values are normalized to the 

interval [0,1] in relation to the highest values in the set

shows a desired continuous rise of the greatest value of fitness 
function fmax indicating rising quality of the best generated test 
variants. The figure also shows fairly late, reached in 7301 
generation, saturation of the maximum value of fitness function 
fmax. Minimum distance of the non-dominated solution from the 
asymptotic solution varies during the simulation but only in 
a small range over 83.18% of the greatest value found during 
the simulation.

In Fig. 34 the evolution of the structure of the non-
dominated solutions set in simulation sym2-2 is shown by 
using as examples the selected time-based cross-sections 
of this set, e.g. for 1, 2000, 4000, 6000, 8000 and 10.000 
generations. Cardinality of non-dominated solutions set in the 
selected generations amounts respectively to 4, 12, 12, 12, 13 
and 13, and it does not change significantly in the course of 
simulation.

Figure 35 presents a detailed structure of the non-dominated 
solutions set of the last generation, presented in a physical 
space of objectives and the normalized space of objectives. In 
can be seen that a set of non-dominated solutions including 13 

variants of ship structure has been found during the simulation. 
For each non-dominated variant the values of optimization 
criteria have been specified as: f1(x) – structural weight and f2(x) 
– cleaned/painted surface area. The designer may select, for 
further development, one of these variants or a group of them 
deemed by him to be the best. For the variant closest from the 
asymptotic solution, which was found in 5533 generation, the 
distance equals 1.047 in the normalized objective space, the 
structural weight is f1(x) = 1192.04 kN and the cleaned/painted 
surface area is f2(x) = 7327.41 m2:

f≈
sym2-2 = (x) = [ (x) (x)]T =

= [1192.04 7327.41]T · [kN m2]
This variant may be recommended if there is a need to 

select a single solution for the formulated ship structure multi-
objective optimization problem.

Figure 36 presents the evolution of macroscopic values 
characterizing the evolution of generated and evaluated ship 
structure variants population in simulation sym2-3. Multi-
objective optimization of ship structure with respect to the 
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Fig. 34. History of the evolution of the non-dominated solutions set during the genetic multi-objective optimization of ship structure with respect to the 
structure weight f1 and surface area f2 in case of the fixed values of weight coefficients w1 = w2 = 0.0, with dominance rank and the distance from a asymptotic 

solution being excluded from selection: wrank = 0.0, wdistance = 0.0, the evolution is governed by dominance count, wcount = 3.0, and constraints components, 
(sym2-2); black circles represent non-dominated solutions, red dots represent non-dominated solutions closest from the asymptotic one
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structural weight f1 as well as surface area for cleaning and 
painting, f2, in the weight coefficients values of optimization 
criteria w1 = w2 = 0, dominance rank, wrank = 0.0 and the 
dominance count, wcount = 0.0; evolution of generations is 
governed by the distance from asymptotic solution, wdistance 
= 3.0, and constraints components, wk ≠ 0, k = 1, 2, …, nc. 
The figure shows a desired continuous rise of the greatest 
value of fitness function fmax indicating rising quality of the 
best generated test variants. The figure also shows fairly 
late, reached in 5714 generation, saturation of the maximum 
value of fitness function fmax. Minimum distance of the non-
dominated solution from the asymptotic solution varies during 
the simulation but only in a small range over 83.25% of the 
greatest value found during the simulation.

In Figure 37 the evolution of the structure of the non-
dominated solutions set in simulation sym2-3 is shown by using, 
as examples, the selected time-based cross-sections of this set, 
e.g. for 1, 2000, 4000, 6000, 8000 and 10.000 generations. 
Cardinality of non-dominated solutions set in these selected 
generations amounts to 4, 10, 12, 11, 14 and 13, respectively, and 
it does not change significantly in the course of simulation.

Fig. 36. The results of multi-objective genetic optimization of ship structure with respect to the structure weight f1 and the area of element surface f2 in case 
of the fixed values of weight coefficients w1 = w2 = 0.0, with dominance rank and the dominance count being excluded from selection: wrank = 0.0, wcount = 0.0, 
the evolution is governed by the distance from asymptotic solution, wdistance = 3.0, and constraints components, (sym2-3); the curves present the evolution of 
the highest value of fitness function fmax and the lowest value of non-dominated solution distance from an asymptotic one; the values are dimensionless and 

standardized in [0,1] range in relation to the highest values found during the simulation

Fig. 35. Detailed specification of the non-dominated solutions set obtained during the genetic multi-objective optimization of ship structure with respect to 
the structure weight f1 and surface area f2 in case of exclusion from selection: optimization criteria, w1 = w2 = 0.0, dominance rank, wrank = 0.0 and distance 
from asymptotic solution, wdistance = 0.0; evolution is governed by dominance count, wcount = 3.0, and penalty components, (sym2-2); black circles represent 
non-dominated solutions, red dots represent non-dominated solutions closest from the asymptotic one; dimensionless values are normalized to the interval 

[0,1] in relation to the highest values in the set

Figure 38 presents the detailed structure of a non-dominated 
solutions set of the last generation, presented in a physical 
space of objectives and the normalized space of objectives. In 
can be seen that a set of non-dominated solutions including 13 
variants of ship structure has been found during the simulation. 
For each non-dominated variant the values of optimization 
criteria have been specified as: f1(x) – structural weight and 
f2(x) – cleaned/painted surface area. The designer may select, 
for further development, one of these variants or a group of 
them deemed by him to be the best. For the variant closest to 
the asymptotic solution, which was found in 5305 generation, 
the distance equals 1.085 in the normalized objective space, the 
structural weight is f1(x) = 1060.03 kN and the cleaned/painted 
surface area is f2(x) = 7485.93 m2:

f≈
sym2-3 = (x) = [ (x) (x)]T =

= [1060.03 7485.93]T ⋅ [kN m2]

This variant may be recommended if there is a need to 
select a single solution for the formulated ship structure multi-
objective optimization problem.
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Fig. 37. History of the evolution of the non-dominated solutions set during the genetic multi-objective optimization of ship structure with respect to the 
structure weight f1 and surface area f2 in case of the fixed values of weight coefficients w1 = w2 = 0.0, with dominance rank and the dominance count being 
excluded from selection: wrank = 0.0, wcount = 0.0, the evolution is governed by distance from asymptotic solution, wdistance = 3.0, and constraints components, 

(sym2-3); black circles represent non-dominated solutions, red dots represent non-dominated solutions closest from the asymptotic one
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