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INTRODUCTION

Prediction of rolling bearing life has been a big challenge 
since implementation of the widely used component. Early 
work of Stribeck and Goodman, based on Hertz stress theory, 
was not very successful [1]. The most important improvement 
in bearing life prediction was the Lundberg-Palmgren (L-P) 
formula based on Weibull theory of strength of materials. The 
theory assumes probabilistic life for bearings and finds the life 
with 90% survival chance, L10, based on equivalent load and 
dynamic capacity of the bearings [1]. The L-P theory created 
a base to calculate bearing replacement intervals. In spite of 
widely acceptance of L-P theory by industry, the final answer 
to this issue was monitoring of the bearing condition instead 
of a fixed replacement interval.

Vibration monitoring is one of the most successful 
techniques of the fault detection in the rolling element 
bearings. There are various literature sources on the 
bearing fault detection by vibration analysis [2, 3]. The 
main techniques include using frequency spectrum [4, 5], 
envelope analysis [6], kurtosis [7-10], shock pulse [11, 12], 
synchronous averaging [13], wavelet analysis [14-20], higher 
spectral analysis [21], cyclic spectrum [22] and empirical 
mode decomposition [23, 24]. Ball pass frequencies are 
the main symptoms of defective bearing in the frequency 
spectrum. Ball pass frequencies may be also used to determine 
a defective part of the bearing. The major difficulty in the 
detection of the rolling bearing defects is the masking of 
weak bearing fault signature by more strong background 

vibration. The ball pass frequencies are usually hidden 
between larger peaks in the frequency spectrum. Envelope 
analysis is a powerful technique in detection of ball pass 
frequencies, but the resonance frequency must be also known. 
Other techniques have either some limitations or they are too 
complicated for practical applications. 

In this paper a new method for detection of bearing faults 
is presented. The method called the Local Curve Roughness 
(LCR) has been introduced first time by the authors [25]. 
The LCR method uses a quantitative roughness measure as 
a bearing defect indicator. Effectiveness of the method is 
demonstrated by using both numerically-simulated and real 
vibration data.

FAULT SIGNATURE OF ROLLING 
BEARINGS

Rolling bearings act as a source of noise and vibration 
in the machinery. Radially loaded bearings, even if they are 
healthy, generate vibrations due to a phenomenon called 
varying compliance [26]. This results from using finite number 
of rolling elements and change in effective stiffness of the 
bearing. Presence of a local defect in contact surfaces causes 
a significant increase in vibration level of the bearing. Local 
defects including crack, pit and spall in the bearing parts are 
known to produce a train of impacts which propagate through 
the bearing and housing to the vibration transducer which is 
located on the bearing housing. The train of short - duration 
impulses excites structural resonance and produces a train of 
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damped natural vibrations [27]. Thus the vibration signature 
of a faulty bearing can be expressed as [22]:

(1)

where:
the index i denotes ith impact, 
h – the impulse response of the structure,
T – the time interval between impacts,
q(t) – periodic function synchronized with shaft rotation, 

which account for load variation due to bearing 
defect. 

If the defect is located on a fixed part of the bearing then 
q(t) has a constant value. In a simple model, as follows from 
[28], h(t) can be considered the impulse response of a single 
DOF system and characterized by two parameters, namely the 
natural frequency ωn and the damping ratio ζ: 

(2)

where:
m – mass,
ωd – damped natural frequency. 

To model real conditions in the equation (1) some vibrations 
related to the shaft rotation, external sources and random noises 
are to be added. A more complete model of vibration generation 
in the rolling bearings is introduced in [29].

Fig. 1. Numerically-generated vibration time-waveform curves for: 
a) a machine with healthy bearing; b) bearing fault signature; 

c) a machine with faulty bearing, (amp - vibration amplitude, m/s2)

A numerically- generated vibration signal of a 50 Hz 
frequency machine with healthy and faulty bearings is shown 
in Fig. 1. The signal is consisted of the following parts:
1. Vibration due to shaft rotation including the shaft speeds 

of the first, second and third order with the amplitudes of 
1, 0.5 and 0.1 m/s2, respectively. 

2. Vibration resulting from an external source with the 
frequency of 37 Hz and amplitude of 0.2 m/s2

 
3. Vibration due to outer race defect with the ball pass 

frequency of 4.29x50 = 214.5 Hz , natural frequency of 
800 Hz, ζ=0.1 and amplitude of 1.2 m/s2

4. Gaussian white noise with zero - mean value and standard 
deviation of 0.1 m/s2.  

5. The frequency spectrum of the signal shown in Fig. 1 is 
presented in Fig. 2. It is notable that in spite of the high 
amplitude of bearing fault signature in the time domain, the 
amplitude of the characteristic frequency in the frequency 
spectrum is low (of only 0.11 m/s2) and can be easily 
masked by other vibration sources. The problem arises 
from using sine bases in Fourier transform to decompose 
the impulsive vibration of defective bearing. Obviously 
in the decomposition the first harmonic does not possess 
the majority of the signal energy and higher harmonics are 
usually predominant in the spectrum.

To overcome the difficulty, a nonlinear transform is 
introduced which filters out the harmonic content of the signal 
and amplifies the train of impulsive vibration. Therefore the 
Fourier transform of the resultant signal will contain the 
frequency of impacts and bearing fault signature can be easily 
detected. 

Fig. 2. Frequency spectrum of the vibration signal shown in Fig (1-c), the 
graph shows vibration amplitude (m/s2) versus frequency (Hz)

DEFINITION OF VIBRATION ROUGHNESS 

The defective area in the rolling bearing differs, as to the 
surface roughness property, from the healthy area. In other 
words, defective area has rougher surface than healthy area. 
Surface roughness affects the contact force in the rolling process 
and subsequently changes the generated vibration. The main 
idea of the proposed method is that rougher surface produces 
“rougher” vibration [in the sense of a more distinct irregularity 
of vibration signal]. If one has a quantitative measure of the so 
understood roughness of vibration signal the defective bearing 
can be identified. Various parameters may be selected to quantize 
roughness of a signal. Actually, the vibration roughness shall 
not only depend on the value of the signal but also on the rate 
of change of the signal. The definition used herein for the signal 
roughness x(t) is the actual curve length of the continuous 
differentiable signal x(t) per unit time, given by:

(3)

where:
LCR – stands for local curve roughness,
t0, d – a moving window position and width, respectively,
x(t)  – cont inuous different iable  s ignal  assumed 

dimensionless,
θ – the rotation angle equal to θ = Ωt. 



46 POLISH MARITIME RESEARCH, No 2/2011

If x has a dimension it must be made dimensionless first. If 
dimension of x is that of acceleration, velocity or displacement, 
the following dimensionless parameters are proposed:

Acceleration: 

Velocity:

Displacement: 

where:
x – used for vibration signal in all three cases of acceleration, 

velocity and displacement, 
Rm – pitch diameter of the bearing, 
ωc – cage rotation frequency. 

Some properties of the LCR are as follows:
Nonlinearity: It is evident that LCR is a nonlinear 

transform. 
Value of LCR is always greater than one: only the LCR of 

a constant function x(t) = c equals to 1. LCR of any other signal 
is greater than one. The LCR can be divided into a constant 
mean value and oscillating part. 

Averaging: 

FREQUENCY RESPONSE OF LCR

In this section local curve roughness of a sine signal will 
be studied in more detail. If to assume x(t) = Asin(ωt) the LCR 
will be:

(4)

where:
A* – non-dimensional amplitude;
ω* – non-dimensional frequency defined as ω*=A*ω/Ω. 

To show LCR frequency response the low and high 
frequencies will be treated separately. For the low frequencies, 
ω* << 1, the following approximation can be used:

(5)

Therefore LCR can be approximated by substituting Eq. 
(5) into Eq. (4):

(6)

Eq. (6) shows that LCR is a combination of a constant value 
term of 1 + ω2 /4 and an oscillating part with a frequency that is 

twice the original signal frequency. It can be observed that the 
frequency increasing amplifies both the mean and oscillating 
part of LCR.

For the high frequency signals of ω >> 1 we use the Fourier 
series of the integrand of Eq. (4) which is a periodic function 
of the period π/ω. Since  is an even function 
of τ, only cosine terms remain in the Fourier series which can 
be written as:

(7)

The integral in Eq. (7) can be evaluated by using the change 
of variable ωt = ø. Then:

(8)

Under the assumption that ω >> 1, the term 1/ω*2 can be 
ignored and we have:

(9)

The integral in Eq. (9) can be evaluated as follows:

(10)

From Eq. (10), the first five coefficients of the Fourier 
series will be:

a0/2 a1 a2 a3 a4

2ω/π 4/3 · ω/π –4/15 · ω/π 4/35 · ω/π –4/63 · ω/π

By keeping the two first terms of the Fourier series, the 
LCR of a sine curve will be:

(11.a)

(11.b)

(11.c)

(11.d)

Again the LCR is consisted of two parts: a mean value and 
an oscillating part with a frequency that is twice the original 
signal frequency. The increase of ω increases the mean value 
of the LCR monotonically, but the oscillating part amplitude 
shows an oscillating trend. The window width has no effect on 
the mean value but is inversely proportional to the oscillating 
part. 

The actual LCR of a sine curve calculated by using 
numerical integration of Eq. (4) with low and high frequency 
approximations, is plotted in Fig. (3-a) and (3-b) where Ω = 1 
and A* = 1 are used. The figures verify the low frequency 
approximation in Eq. (6) and high frequency approximation 
in Eq. (11-d).



47POLISH MARITIME RESEARCH, No 2/2011

IMPULSE RESPONSE OF CURVE 
ROUGHNESS 

In this section the LCR of the impulse signal x(t) = δ(t) 
is studied. The impulse with time duration b is defined as 
follows:

(12)

The LCR of impulse function defined by Eq. (12), if d>2b 
is assumed, is:

(13)

Eq. (13) shows that the impulse width 2b is extended to 
d + 2b and its height is changed to 1/bd. The increasing of 
the LCR window length d makes the LCR maximum value 
decreasing because of the averaging property. Therefore 
narrow impulses can be amplified by using LCR if only 
a narrow window will be chosen. LCR of an impulse of 
b = 0.01 sec calculated by applying a window of the length 
d = 0.04 sec is shown in Fig. 4. 

Fig. 4. a) An impulse of the width b = 0.01 sec, b) LCR of the impulse 
calculated by applying a window of the length d = 0.04 sec,

amplitude (m/s2) versus time (sec)

DISCRETE LCR

In the case of the discrete signal, x[n], the LCR can be 
calculated by means of the following formula:

(14)

where:
fs – sampling frequency,
d – window length. 

It is necessary to study effect of sampling frequency on 
the LCR. In Fig. (5) mean value and oscillating part of LCR 
of a sine curve is plotted against sampling frequency. It is 
evident that oscillating part is more sensitive to sampling 
frequency. In order to avoid sampling problems it is necessary 
to use a sampling frequency at least 20 times greater than the 
frequency of the signal.

APPLICATION OF LCR TO BEARING 
FAULT DETECTION

The main idea of LCR for bearing fault detection is that 
periodic impacts inside the bearing produce local disturbances 
in the vibration signal, which have large local roughness in 
terms of its above defined notion. To illustrate this idea, the 
normal vibration signal of a machine as well as compound 
normal vibration - bearing fault signature are shown in Fig. (6). 
LCR decreases the magnitude of oscillating part of harmonic 
vibration associated with normal shaft vibration, while it 
amplifies the amplitude of impulsive vibration. This makes 
LCR an ideal transformation to perceive bearing faults. Since 
impulsive events are better observed in acceleration signal, its 
use is more beneficial than that of velocity and displacement. 

Fig. 5. Mean value and peak-to-peak amplitude of oscillating part of LCR 
of a sine curve versus relative sampling frequency (fs/f)

To interpret the LCR, one should take Fourier Transform 
of the oscillating part of LCR. The frequency of consecutive 
impacts will be clear in the resulting spectrum. By comparing 
this frequency with ball pass frequencies of the bearing, the 
presence of a defect in the bearing and its location can be 
recognized as usual.
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Fig. 6. Comparison of normal vibration signal of a machine and compound 
normal vibration - bearing fault signature

 In the following, several examples will be presented to show 
the capabilities of the proposed method in diagnostics of rolling 
bearings. The first two examples deal with numerically simulated 
signals and the third example presents actual experimental data from
 a test stand.

Example 1
The vibration signal consists of several components 

indicated in Tab. (1). The vibration spectrum and LCR 
spectrum is shown in Fig. (7). While the predominant peak 
in the vibration spectrum is of 50 Hz frequency, it is totally 
absent in the LCR spectrum and bearing fault peak is dominant 
instead. Therefore the bearing fault can be detected in the LCR 
spectrum, easily and with no confusion.

Tab.1. Frequency content of vibration signal of example 1

Component Amplitude [m/s2]

1st Harmonic: 50 Hz 1

2nd Harmonic: 100 Hz 0.5

3rd Harmonic: 150 Hz 0.1

External Source: 37 Hz 0.2

Bearing outer race frequency: 216 Hz 1.2

Background Gaussian noise 0.1

Fig. 7. Vibration and LCR frequency spectrum of vibration signal of 
example 1(bearing outer race fault)

Example 2
In this example the vibration signal consists of several 

components indicated in Tab. (2). The vibration spectrum and 
LCR spectrum are shown in Fig.(8). A twenty - point window 
is used for computation of LCR. While the predominant 
peak in the vibration spectrum is of 50 Hz frequency and the 
bearing fault is not distinguishable, the 50 Hz peak is reduced 
in the LCR spectrum and the bearing fault peak of 108 Hz 
frequency is dominant instead. The harmonic vibration of 
110 Hz frequency close to the bearing fault frequency is also 
omitted in the LCR.

Tab. 2. Frequency content of vibration signal of example 2

Component Amplitude [m/s2]

1st Harmonic: 25 Hz 3

2nd Harmonic: 50 Hz 4

External Source: 110 Hz 1

Bearing outer race: 108 Hz 2

Background noise 0.5

Fig. 8.Comparison of vibration and LCR frequency spectrum 
of vibration signal of example 2(bearing outer race fault)

Example 3
In this example vibration of a self-aligning ball bearing of 

1206 type with an inner race defect is investigated. The test 
stand is shown in Fig (9). The load is applied to the tested 
bearing by four screws and measured by a load cell. The shaft 
is driven by an electrical motor through a variable - speed gear 
box and belt. The speed can be adjusted in the range from 450 
to 4000 rpm. Vibration measurements were made with the use 
of an Endevco 2235 accelerometer with 20 kHz sampling rate. 
The inner race defect was introduced artificially by means of 
EDM1). 

The shaft speed of 25 Hz and the inner race defect frequency 
of 206 Hz is applied in this test. The inner race defect produces 
an amplitude - modulated signal which shows sidebands of 
rotation speed around harmonics of inner race frequency. The 
vibration spectrum, envelope spectrum and LCR spectrum 
is shown in Fig. (10-a) through Fig. (10-c). In the vibration 
spectrum, 206 Hz frequency response is almost hidden and 
cannot be detected from the background noise. However the 
envelope analysis which is a powerful method, reveals the 
response peak at 206 Hz and sidebands spaced at +/-25 Hz 
around it and its harmonics. It is notable that the source of the 
peak at 25 Hz in the envelope spectrum is amplitude modulation 

1)   Electrical Discharge Machining
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of bearing fault symptom. The LCR produces a spectrum 
similar to envelope with a more distinct peak at 206 Hz. This 
example validates usage of LCR in rolling bearing diagnosis.

Fig. 9. Experimental test stand for testing the bearings

CONCLUSIONS

In this paper a new method for detection of bearing faults 
by using vibration analysis is described. The method called 
Local Curve Roughness (LCR) employs the concept of a curve 
roughness in a moving window to distinguish between sine 
waveform and impulsive waveform. The latter one generated by 
bearing defects is amplified as a result of the above mentioned 
transformation and this way it can be easily detected in the 
LCR spectrum. The attached examples showed the advantage 
of the method as compared with normal vibration spectrum 
analysis. Several examples given in the paper demonstrated 
effectiveness of the method. The examples of outer race and 
inner race fault are included in numerically simulated and 
actual test data. The simplicity of the proposed method is a key 
advantage for industrial applications as compared with more 
advanced techniques for detecting bearing faults.

NOMENCLATURE

b – Impulse width [sec]
d - Window width [sec]
f - Frequency [Hz]
fs - Sampling frequency [Hz]
h - Impulse response function
LCR - Local Curve Roughness [-]
q - Load [N]
Rm - Bearing pitch radius [m]
t - Time [sec]
T - Time period [sec]
x - Vibration signal 
θ - Rotation angle [rad]
ωc - Cage rotation frequency [rad/sec]
ωd - Damped natural frequency [rad/sec]
ωc - Natural frequency [rad/sec]
Ω - Shaft rotation speed [rad/sec]
ζ - Damping ratio [-]

Fig. 10. Comparison of: a) Vibration spectrum, b) Envelope spectrum and c) LCR spectrum of vibration signal of example 3 (bearing with inner race fault)
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