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INTRODUCTION

Hull structures are fundamental load-carrying members of 
modern waterborne vessels integrating the whole structural 
system, similarly to air, railway and other transportation vessels. 
Except for specific solutions of the particular types of ships (e.g. 
bulk carrier, container carrier, ro-ro carrier), the hull of each 
merchant ship is constructed according to the common, basic 
design that involves a thin, tightly-closed, watertight coating 
stiffened by a set of orthogonally intersecting stiffeners and 
series of bulkheads, Fig. 1.

Fore part of the ship hull is referred to as a bow or fore 
peak, aft part – a stern or after peak. The lowest part of the 
hull is called a bottom, side walls – sides, and the top part 
closing the hull – a deck. Consistently the bottom part of hull 
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shell is referred to as a bottom shell, side part – side shell, 
deck part – deck shell. Structural components holding the 
watertight shell are referred to as framing. Hull framing is 
composed of intersecting transverse and longitudinal beams 
referred to as members joined with bottom, side and deck 
plating. Beams oriented across form transverse framing, 
while those oriented alongside form longitudinal framing. 
Vertical watertight bulkheads, dividing space limited by 
hull outer coating to series of sections and compartments, 
are referred to as watertight bulkheads: transverse and 
longitudinal. First ones are set in perpendicular planes in 
bow-stern direction and they divide hull inner space onto 
several compartments along ship. Longitudinal bulkheads, 
set parallel to that direction, divide inner volume to series 
of compartments in ship breadth. Watertight bulkheads are 
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situated between bottom and upper deck ensuring floatability 
in case of emergency flooding of specific compartments. 
Apart from vertical diaphragms or bulkheads there are 
horizontal diaphragms assembled inside the shell referred 
to as tweendecks or platforms, depending on spatial range 
and tightness.

Fig. 1. Structural members of ship hull structure

Structural members are divided into two basic groups. 
Structural members made from rolled profiles1) supporting 
only shell plating elements are referred to as secondary 
structural members or stiffeners. Structural members, usually 
of large size, prefabricated from elements carved from steel 
plates, supporting shell plating and secondary structural 
members (stiffeners) are referred to as primary structural 
members or frames (perpendicular oriented) or girders 
(longitudinal oriented). Stiffeners supporting bottom shell 
plating are referred to as bottom frames, whereas transverse 
oriented bottom primary members are referred to as floors and 
longitudinally oriented – bottom girders. Stiffeners supporting 
side shell plating are referred to as transverse or longitudinal 
side frames – depending on orientation. Transverse primary 
side members are referred to as web frames, those oriented 
longitudinally – side girders. Stiffeners supporting a deck are 
referred to as beams, transverse or longitudinal depending 
on the orientation, while primary members are referred to 
as deck transverse, if transverse, or deck girders, if running 
along the hull. Floors, web frames, and deck transverse are 
situated in the same intersections (planes) and stiffly joined 
form main frame.

Transversally oriented ship stiffeners are spaced in 
regular distances referred to as frame spacing. The frame 
spacing is determined in the hull structure design process 
and fundamentally influences its strength and operational 
characteristics as a whole.

Since the hull of the seagoing ship (1) is the main 
factor ensuring safety and structural strength, (2) has a very 
large weight, (3) imposes the framework for internal space 

arrangement and (4) dictates the basic construction strategy, 
ship structural design is a key factor in the ship design process. 
Ship hull structural design always begins with defining design 
objective. One is supposed to completely and fully specify tasks 
to fulfill by the structure being designed. It is very rare that 
the solution of the design process is strictly specified and no 
variations from initial assumptions are allowed. In most cases 
precise expression of tasks made in subsequent phase may 
influence changes in initial concept developed in foregoing 
phase. Afterwards the actual structural design process begins 
in which a proper set of component structures are selected 
and it is specified how they should act jointly. The structural 
design being developed is subject to continuous qualitative 
and quantitative analyses. As a result topological description 
of useful solutions and dimensions of particular component 
structures are obtained. In this way the ship hull structure is 
defined in all details. After an operation that is made up from 
certain number of iteration steps (where loops of these steps 
differ) a complete structural design is received as a result. 
After that it remains to expand the information concerning the 
use of proper technology. It is also needed to confirm that ship 
hull structure properties meet the requirements specified at the 
beginning, e.g. with use of numerical calculations or laboratory 
research. On the other hand detailed design documentation 
components must be prepared, according to witch the structure 
is to be realized.

The considered entire process of designing a ship structure 
is characterized by repeatability of different phases. That 
repeatability cannot be found in simple sequential form. For 
example, the analysis of solution concept can influence the 
task specification, which as a result, may undergo expanding 
or restriction. Also the design objective can change, e.g. by 
expanding the range of structure requirements. Structure design 
may be considered finished if it is presented and accepted by the 
builder and ordered body. Therefore designing and constructing 
the whole ship and its hull courses in phases and is a sequent-
iterative process. Very often this process is represented in so 
referred to as “Design spiral” form, Fig. 2.

Thus seagoing ship design process has the sequent-iterative 
course including concept, structural and detailed design where 
many operations are repeated with simultaneous increase in 
work detail and gradual approaching from initial assumptions 
and basic structure ideas to detail design of structural joints. 
It is also a hierarchic process with descending structure from 
more general requirements to detailed design of structural 
regions. In most general form structure designing is a choice 
of material and its spatial arrangement in form of structure 
components (decks, bulkheads, hull sections), which are made 
of smaller structural elements (stiffeners, plating etc.), Fig. 1. 
It is supposed to be performed in such a way, that with fulfilled 
assumed design requirements the hull will ensure safe ship 
operation at the least costs.

Decisions fundamental for achieving design objectives are 
taken at the preliminary design phase because at this phase 
basic ship characteristics are being decided and it is here that 
the basic risk of making fundamental errors in designing the 
vessel. Errors made at this phase will influence utilitarian and 
operational characteristics and actually will not be able to be 
compensated in later optimization of details on lower hierarchic 
levels of structure. Not removed will cause the highest losses. 
At the same time quick and accurate decisions bring the 
highest benefits and decisively influence total success of the 
enterprise that is bound with investing substantial amount of 
money in building a new ship. In this paper it was assumed 

1) Steel profiles are produced in rolling process, while profiles made from aluminum alloys are produced through extrusion.
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that the research will be conducted in a field proper for ship 
preliminary design.

Considering dimensioning of structural elements, the 
basis for the structural design are either requirements of 
classification societies (e.g. Det Norske Veritas, Lloyd’s 
Register, Germanischer Lloyd) published as classification rules, 
containing simplified formulas for evaluating structural loads 
and dimensioning structural elements resisting these loads, or 
more rational approach based directly and fully on the structural 
mechanics. Regardless of occasionally formulated criticism 
of the classification rules as a tool not meeting the designers 
expectations in case of designing innovative solutions, they 
are, however, a set of recommendations derived from the 
good practice and their application in case of conventional 
ships is fully satisfactory. In the present paper the author 
assumes that dimensions of structural elements are determined 
only according to the requirements of a classification society 
enabling quick and automatic dimensioning of many structural 
variants by an optimization algorithm.

A primary objective of the ship structural optimization is to 
find the optimum positions of structural elements, also referred 
to as topological optimization, shapes (shape optimization) and 
scantlings (sizing optimization) of structural elements for an 
objective function subject to constraints. Formally, selection 
of structural material can also be treated as a part of the 
optimization process (material optimization). The topological 
optimization means searching for the optimal existence and 
space localization of structural elements while the shape 
optimization is searching for the optimal shape of a ship hull 
body. The sizing optimization can also be expressed as a process 
of finding optimum scantlings of structural elements with 

fixed topology and shape. Selection of the structural material 
is usually not an explicit optimization task but is rather done 
according to the experience and capability of a shipyard. 
Systematic optimization procedures for the selection of 
structural material are applied directly in rare cases.

Moreover the design of such a complex object as seagoing 
ship structure is a solution of the multi-objective optimization 
task including many optimization criteria often counteracting 
each other, e.g. small hydrodynamic resistance vs. large cargo 
deadweight, high structural strength and reliability vs. low 
structural weight. This requires a comprehensive search of 
the solution space, without a capability to select one solution 
unequivocally selected as the best one, as it is in the single-
objective optimization tasks. This is because multi-objective 
optimization does not yield an unequivocal determination of 
the single variant proposed for further development, but a set 
of compromise solutions (infinite in general), which is used 
as a basis for taking the final design decision consisting in 
a selection of a solution (or solutions) to be further developed. 
a task of the multi-objective optimization is thus the appropriate 
identification of the set of “best possible compromises” or the 
single “best possible solution” as a result of the multi-objective 
seagoing ship structure design process.

Due to its high complexity, in spite of rising research and 
computational resources the multi-objective optimization of 
the seagoing ship structures is still held back by a number of 
obstacles hindering its application in practice, and the attempts 
with respect to this problem can be judged to be marginal. 
Most authors assume that an outcome of the multi-objective 
optimization task is a set of the Pareto-optimal solutions, 
while it is impossible to point the objectively best one among 

Fig. 2. Ship design as the process of achieving the next design levels in several approximations - ship design spiral; designation of ship design phases: 
I) concept design, II) preliminary design, III) contract design, IV) basic design, V) detailed engineering design, 

VI) as fitted documentation or delivery documentation
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them. Classical multi-objective optimization algorithms allow 
for finding in the best case a single solution in the single 
algorithm run, which makes them unsuitable for multi-objective 
optimization tasks involving the determination of the Pareto-
optimal solution set. At the same time, the evolution-based 
algorithms for example allow for the determination of this set 
in the single algorithm run thanks to the fact that they process 
not single solutions but usually the large set of potential 
solutions which in their consecutive steps gradually evolve to 
a Pareto-optimal set.

A practical example of the application of the developed 
computational tool is presented, featuring the multi-objective 
optimization of the structure of fast passenger-vehicle ferry 
model design named Auto Express 82 m. a task of the two-
objective optimization of the ship structure minimizing its 
weight and surface area for cleaning and painting has been 
formulated. Number of optimization objectives has been limited 
to two for the sake of simplicity of graphical presentation 
of results and their analysis. The precision of the developed 
computational model has been limited to the level typical for 
the preliminary phases of the design process for structures 
of a similar type. The formulated constraints account for 
structural strength values estimated using procedures laid 
down in classification rules. A computation application has 
been built for the solving of so formulated task, being based on 
a specialized genetic algorithm code. Appropriate models of the 
ship structures have been built and computational investigations 
carried out. The obtained results have led to the conclusion 
that the genetic algorithms can be considered as a method 
allowing for the solution of the topology-size multi-objective 
optimization problems formulated for the ship structures in the 
concept design stage.

Because the prepared paper has considerable sizes it was 
divided on three parts:
– Part I: Theoretical background on evolutionary multi-

objective optimization,
– Part II: Computational investigations,
– Part III: Analysis of the results,
for the publication in the consecutive volumes of the journal.

BASIC CONCEPTS OF MULTI-OBJECTIVE 
OPTIMIZATION

From mathematical point of view, the multi-objective 
optimization can be defined in the general way as a procedure 
consisting in selecting an element of the set on the basis of 

relations establishing some order in this set. In reference to 
the ship design the elements of this set are in general the 
representations of particular problem solutions, such as ship 
structural variants, various types of ship main propulsor control 
ensuring that a specified aim of control is attained (e.g. lowest 
ship operation cost) etc. This set, referred to as “set of possible 
solutions”, is a subset of solution space Vx. As we know, the 
set of such solutions is limited by the introduction of various 
constraints and such a constrained set is than called “set of 
feasible solutions Φ”. For obvious reasons set of feasible 
solutions Φ is also subset of solution space Vx, and each element 
of this space is a vector of design variables x ∈ Vx, Fig. 3. 
Solution space Vx may be a functional space or Euclidean 
space, if all its coordinates are numbers:

x = [x1 x2 ... xi … xn]
T ∈ Vx              (1)

The case where the solution space is a n-dimensional 
Euclidean space ℜn is most often encountered in practical 
applications. In the further part of the paper the solution space 
is an ℜn space.

An objective of the multi-objective optimization problem 
solving can be formulated in the following way: find 
a combination of design variable values x = [x1 x2 ... xi ... xn]

T, 
which optimizes at the same time all components of a given 
objective function vector f(x) = [f1(x) f2(x) ... fs(x) ... fS(x)]T. 
With a possibility to impose constraints on the variability 
ranges of design variables. It is also assumed that all the 
functions occurring within the problem are real ones, and 
the number of constraints is finite. Taking into account the 
demand or computational resources and their cost, another 
requirement may be formulated, that the selection made could 
be implemented at the lowest possible cost. Exact definition of 
the meaning of term „optimize” has crucial significance in case 
of multi-objective optimization problem. In the further part of 
the paper this concept is going to be discussed in more detail. 
The general mathematical formulation of a multi-objective 
optimization problem can be presented as follows:
- for design variables:

x = [x1 x2 ... xi ... xn]
T: 

xi,min ≤ xi ≤ xi,max, i = 1, 2, ..., n               
(2a)

- optimize:

f(x) = [f1(x) f2(x) ... fs(x) ... fS(x)]T 
s = 1, 2, ..., S                            (2b)

Fig. 3. Graphical illustration of multi-objective optimization task; x ∈ Φ – vector of design variables, Φ – set of feasible solutions, f(x) ∈ Φf – vector of 
optimization criteria, Φf – set of attainable objectives (goals, evaluations)
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- subject:

hk(x) = 0 k = 1, 2, ..., m1                (2c)

gj(x) ≥ 0 j = 1, 2, m2                   (2d)

where:
f(x) – a single column objective function 

vector S, 
x – a single-column independent variable 

vector n (design variables), 
hk(x) and gj(x) – constraint functions 
xi,min and xi,max – respectively and upper and lower limit of 

variables. 
Eq.s hk(x) = 0 – referred to as equality constraints, 

while inequalities gj(x) ≥ 0 – inequality 
constraints.

A solution of multi-objective decision making problem 
originally formulated by Francis Ysidro Edgeworth in 1881 
[Edgeworth (1881)] and generalized then by Vilfredo Pareto 
[Pareto (1896)] is the commonly accepted measure of quality 
in the multi-objective selection problems. It is now referred to 
as Edgeworth-Pareto optimum or Pareto optimum. According 
to the definition, a design of the seagoing ship structure may be 
called Pareto-optimal under the condition that there are no other 
variants of the structure which are better with regard to at least 
one criterion while at the same time being equally good with 
regard to all the other optimization criteria. This means that the 
Pareto-optimal structural variant cannot be improved without 
simultaneous worsening of at least one criterion. Pareto-optimal 
designs are also referred to in literature as being non-dominated 
ones, trade-offs, noninferior or Pareto-efficient. The variant 
of the ship structure is not Pareto-optimal if there is any other 
variant improving at least one criterion while at the same time 
not worsening the values obtained for the remaining ones. Such 
variants are also called dominated ones or inferior ones.

Using the concept of domination formulated by Pareto we 
can say that a multi-objective optimal solution is each solution 
which has no other feasible solutions dominating it. We say 
that the solution xl dominates (is better than) the solution x2, 
see Fig. 4, if the following two conditions are satisfied:

fs(x1) ≤ fs(x2), for all s = 1, 2, ..., S          (3a)

fs’(x1) < fs’(x2), for at least one s’ = 1, 2, ..., S (3b)

There is then no such a solution in the set of feasible ones 
for which the value of all criteria would be “better” than their 
respective values for any multi-objective optimal one. In other 
words, the multi-objective optimal solution is such feasible 
solution, for which no better solution can be found in the set 
of feasible solutions. The word “better” should be understood 
here in the sense of Pareto domination.

Fig. 4. Graphical illustration of possible relations between solutions in the 
objective space; the objectives dominated by a reference objective and the 
objectives dominating it are highlighted; objectives non-dominated by any 

other ones belonging to the set constitute a set of Pareto-optimal objectives; 
f1 → min!, f2 → min!

The concept of Pareto domination allows for introduction 
of the two-value measure of quality for solutions of the multi-
objective optimization problem. It allows for dividing the 
set of feasible solutions into two subsets, Fig. 4: (1) subset 
of dominated solutions Φfd, and (2) subset of non-dominated 
solutions, Φfnd which may be considered to be the solution of 
a multi-objective optimization problem. Two-value of this 
measure does not allow for a further evaluation of a feasible 
dominated solutions set2), and, particularly, does not allow for 
relative estimation of distances between dominated solutions 
and the set consisting of non-dominated solutions (set of Pareto-
optimal solutions) by any other feasible solution. In spite of this, 
the relation of  Pareto domination is the one most often used for 
the definition of multi-objective optimal solution. In the further 

Fig. 5. Graphical illustration of line of non-dominated objectives in the objective space and set of non-dominated solutions in solution space; 
f - vector objective function, Φ - set of feasible solutions, Φf - set of feasible objectives; f1 → min!, f2 → min!

2) Most detailed analysis of set of feasible solutions in relation to domination. Relationship of domination does not „see” many details of the
 evaluation space. The only details it can “see” whether the solution is dominated or non-dominated.



8 POLISH MARITIME RESEARCH, No 2/2011

part of the work, when talking about domination relation, we 
shall then understand it to be the relation of Pareto domination, 
and the earlier used phrase “optimize vector objective function f”
shall be understood as a command: find the Pareto-non-
dominated solutions within the feasible solutions set.

A basic feature of multi-objective optimal solutions is the 
fact that there are many (or even infinite number) of them 
exist in practical problems. In the case of the feasible set 
is continuous, and is a subset of ℜn, then the set of feasible 
objectives shall also be continuous and a subset of ℜ2 (as 
a result of two quality criteria). As a result of the analysis of 
feasible objectives set we can obtain not several multi-objective 
optimal points but the whole curve of multi-objective optimal 
objectives, presented in Fig. 5.

SOLVING OF MULTI-OBJECTIVE 
OPTIMIZATION PROBLEM: HOW FIND 
SET OF NON-DOMINATED SOLUTIONS

Monographies and books on the general problems of multi-
objective optimization are e.g.: [Eschenauer et al. (1990)], 
[Statnikov et al. (1995)], [Sen and Yang (1998)] and [Stadler 
(1998)]. Rare works focusing on multi-objective optimization 
of ship structure include: [Shi (1992)], [Das (1993)], [Das et 
al. (1993)], [Trincas et al. (1994)], [Ray and Sha (1994)], [Sen 
and Yang (1995)], [Jianguo and Zuoshui (1996)] and [Parsons 
and Singer (2000)].

The methods used for the solving of tasks of this type, 
outlined in monographies and currently applied in practice, 
my be divided into two basic groups: (1) classical methods, 
and (2) methods inspired by natural systems, evolutionary 
methods in the peculiarity. [Cohon (1978)], [Stadler (1988)], 
[Statnikov et al. (1995)] discuss classical methods, which 
include two basic methods used for the solving such tasks: 
(1.1) optimization problems are solved with regard to all 
optimization criteria taken individually one by one while the 
remaining criteria are included in the set of constraints, (1.2) 
a substitute optimization criterion is formed of the adopted 
ones as a linear combination of the original component criteria 
multiplied by the appropriately selected weight coefficients, and 
then the optimization problem is solved with regard to such 
a newly formed aggregate criterion. For case (1.2) a series of 
calculations is usually carried out for variously adopted values 
of weight coefficients, and the best among the found solutions 
is taken as the solution of the problem. The methods based on 
a aggregation of the vector objective function have been used 
in wide-ranging applications also in the methods of evolution-
based multi-objective optimization, as they allow for the use 
of well developed single-objective optimization algorithms. 
Fundamental disadvantages of methods from this group are: 
(a) seeking only a single point on the non-dominated solutions 
front and resulting necessity to make numerous calculation runs 
for the single optimization task, (b) sensitivity of some solutions 
to the shape of non-dominated solutions front, and (c) the fact 
that expert knowledge is required at the beginning to specify the 
weight coefficients used for component optimization criteria.

Classical methods used for the solving of multi-objective 
optimization problems based primarily on the aggregation of 
vector objective functions are easy to implement but ineffective 
in many cases. However, evolutionary multi-objective 
optimization algorithms developed in the recent years have 
been proven to be highly effective in this regard [Deb (2001)], 
[Osyczka (2002)], [Sarker et al. (2002)], [Abraham et al. 
(2005)] and [Coello Coello et al. (2007)].

Not numerous but highly promising results in the field of 
genetic algorithms use for multi-objective optimization tasks 

have been obtained lately including also the results in the field 
of ship structures: [Okada and Neki (1992)], [Hutchinson et 
al. (1998)], [Kitamura et al. (2000)], [Klanac et al. (2009)] 
and [Sekulski (2010)]. [Jang and Shin (1997)] have applied 
the Evolutionary Strategy method for the multi-objective 
optimization of ship structures.

Special evolutionary multi-objective optimization methods 
can also be applied as far as genetic algorithms are concerned: 
VEGA – [Schaffer (1985)], HLGA – [Hajela and Lin (1992)], 
FFGA – [Fonseca and Fleming (1993)], NPGA – [Horn et al. 
(1994)], NSGA – [Srinivas and Deb (1995)], RWGA – [Murata 
and Ishibuchi (1995)], MOBES – [Binh and Korn (1997)], SPEA 
– [Zitzler and Thiele (1998)], MOMGA – [Veldhiuzen (1999)], 
PAES – [Knowles et al. (1999)], NSGA-II – [Deb et al. (2000)], 
SPEA2 – [Zitzler et al. (2001)]. Fundamental advantages of 
these methods are: (1) effective search of solution space and 
(2) capability to illustrate the non-dominated solutions front in 
a single simulation run. Excellent presentation of evolutionary 
methods of multi-objective optimization can be found in 
recently published monographs [Deb (2001)], [Osyczka (2002)] 
and [Coello Coello et al. (2007)]. The principal elements of 
these algorithms are: (1) selection strategies based on the 
Pareto-domination relation, (2) niching strategies to preserve 
diversity in the consecutive populations, (3) elitist strategy 
to ensure survival of non-dominated solutions in the time of 
evolution. Methods based on aggregation of the objective 
function are considered less effective and are closed and no 
more developed stage of the history of the evolutionary multi-
objective optimization. Despite it, we can, however, claim that 
the algorithms employing aggregation of the objective functions 
are efficient algorithms transient from the classic methods to the 
advanced algorithms employing the Pareto-domination relation 
for the variant selection. The researchers have reported for 
several years that if the number of the optimization criteria is 
greater than 3, the methods based on the domination relation turn 
to be ineffective since together with the increase of the number 
of optimization criteria the number of non-dominated variants 
decreases reducing the effectiveness of the selection operator 
[Hughes (2003)], [Purshouse and Fleming (2003)], [Jaszkiewicz 
(2004)] and [Hughes (2005)]. The aggregation methods have 
been found promising again with the hope to: (1) developing 
more simple and intuitive algorithms than algorithms based 
on the domination relation, obtaining expertise on the multi-
objective ship structural optimization, (2) developing effective 
algorithms for problems with a large number of the optimization 
criteria. Of course, it needs to be considered what number of 
criteria is practically justified. With regard to capability of 
processing data by human beings and capability to work out 
decisions it seems that the number of the optimization criteria 
in practical problems should be between 5 and 7.

Due to the following practical problems (1) lack of 
information about the actual localization of non-dominated 
solutions set, and (2) necessity to deploy significant 
computational resources to solve the multi-objective 
optimization problem, main effort in the practical evolution-
based multi-objective optimization is directed at determining 
the acceptable approximation of Pareto set instead of accurate 
composition of this set. With regard to this it can be assumed 
that in practice the result of multi-objective optimization 
process is a set of non-dominated solutions called shortly 
the approximation of Pareto set and not the exact Pareto-
optimal solutions set. Practical formulation of multi-objective 
optimization problem and of attained results should follow 
this guideline.

Opposite to single-objective optimization problems, where 
the objective function and fitness function are often the same, 
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the evolution-based algorithms of multi-objective optimization 
feature both the fitness function and the selection process 
taking into account a number of criteria which are included in 
a single fitness function. From this point of view these methods 
can be in general divided by the type of fitness function used 
for calculations into the following classes: a) selection with 
respect to the scalar objective function with fixed weights of 
optimization criteria, b) selection with respect to the scalar 
objective function with random weights of optimization criteria, 
c) division of the variant set into sub-sets and selection in each 
of them with respect to single criteria, Fig. 6.

First proposal of Fig. 6a, stemming from classical methods 
used for the determination of compromise surface, consists in 
summing the criteria up and formulating a single, parameterized 
objective function. Parameters of this substitute objective 
function are fixed during the optimization run, which allows 
for finding the one non-dominated solution. The multi-objective 
optimization problem is reduced to the single-objective 
problems, with the criteria being usually referred to as objective 
functions. The simplest concept is the introduction of objective 
function F as a linear combination S of partial optimization 
criteria fs:

(4)

where: 
ws – coefficients determining the weights given to particular 

criteria.

Next proposals, illustrated on Fig. 6b and Fig. 6c, are based 
on the weighted sum of optimization criteria, where weight 
coefficients represent the values changing in the process of 
evolution [Hajela and Lin (1992)], [Ishibuchi and Murata 
(1996)]. Weight coefficients of the substitute objective function 
change in a specific way during the optimization run, which 
allows for finding the non-dominated solutions set instead of 
a single compromise solution.

Methods based on selection with respect to the scalar 
objective function with random weights of optimization criteria 
Fig. 6b employ numerical procedures for setting random values 
of weight coefficients ws. The simplest and most frequently 
applied implementation of the method is setting random values 
of uniform distribution in range [0, 1].

Methods based on selection according to single criteria as 
it is illustrated on Fig. 6c consist of mechanisms switching 
between the criteria during the selection phase. In each case 
where the algorithm commences the execution of reproduction, 
some criterion (potentially other) decides which member of 
population is going to be copied to the set of variants earmarked 
for crossbreeding. For example, [Schaffer (1985)] proposed 
an algorithm, where the population is divided in advance to 
identical parts and then a different, single criterion is used 
on the members of each of groups one by one and [Kursawe 
(1991)] proposed a different method consisting in the random 
selection of a single optimization criterion to be used in the 
next step of selection process, with probabilities to be set by 
the user or randomly adjusted during the evolution.

Fig. 6. Graphical illustration of selected strategies for taking into account the particular optimization criteria used in the multi-objective optimization 
algorithms: a) selection with respect to the scalar objective function with fixed weights of optimization criteria, b) selection with respect to the scalar 
objective function with random weights of optimization criteria, c) division of the variant set into sub-sets and selection in each of them with respect 

to single criteria, d) selection with respect to attributes of Pareto domination; f1 → min!, f2 → min!
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Assigned to feasible variants two-argumental domination 
attribute is a rather general information and does not refer to 
inner structure of feasible set. Particularly it does not provide 
knowledge e.g. about (1) what number of variants is dominated 
by every of feasible variants, (2) what number of solutions is 
dominated by a given not-dominated variant, (3) how distant is 
a given dominated feasible variant from Pareto front, etc. Detail 
study of feasible set structure enables the use of additional 
knowledge and elaboration of very refined and useful tools 
supporting desirable convergence of computing algorithm. 
Different detailed solutions using this concept can be found 
in bibliography, for example: [Fonseca and Fleming (1993)], 
[Zitzler and Thiele (1999)], [Deb (2001)], [Osyczka (2002)], 
[Abraham et al. (2005)], [Coello Coello et al. (2007)].

The concept of calculating the fitness of variants while 
accounting for the Pareto-type domination, Fig. 6d, has 
already been proposed by [Goldberg (1989)] and since then 
taking the advantage of partial order being present in the 
population, Fig. 7a, has been facilitated by many various 
methods developed specifically for purpose. Basing on the 
concept of dominance depth proposed by [Goldberg (1989)], 
the feasible variants appearing in the consecutive generations 
are divided into consecutive fronts of non-dominated variants 
located deeper and deeper in the feasible set, or in other words, 
further and further from Pareto front. Other proposals are based 
on the concept of dominance rank, Fig. 7b, which is based on 
use of the number of variants dominated by a selected variant 
for the calculation of fitness function value [Fonseca and 
Fleming (1993)]. Also a dominance count (which is a number 
of variants dominating a selected variant), Fig. 7b, may be 
taken into account. For example SPEA strategies [Zitzler 
and Thiele (1999)] and SPEA2 [Zitzler et al. (2001)] for the 
calculations of fitness function are based on both approaches, 
i.e. the rank and the dominance count. Disregarding the specific 
strategy applied, in case of these methods the value of fitness 
depends on the characteristics of the variants remaining in the 
population, in contrast with strategies based on aggregation 
of objectives or the selection of variants on the basis of less 
or more arbitrary selected single criteria, where the adaptation 
values are independent from the characteristics of other variants 
in the population.

The multi-objective evolution-based optimization 
algorithms outlined above have been tested by other authors 
on simple problems of multi-objective optimization eg. [Zitzler 

(1999)], [Zitzler et al. (1999)], [Zitzler and Thiele (1999)]. As 
no systematic research into the suitability of these algorithms 
for the solving of optimization problems involved in the design 
of seagoing ship structures has been carried out so far, then 
the application of a particular method should be preceded 
by systematic research into its effectiveness in the problems 
involved in the design of such structures.

LOOKING INSIDE THE FEASIBLE 
SOLUTIONS SET: DOMINANCE RANK AND 

DOMINANCE COUNT

Let us recall that assignation of a two-argument dominance 
attribute (0 or 1) to the feasible variants allows for dividing the 
feasible variants set into two subsets: (0) subset of dominated 
variants and (1) subset of non-dominated variants, Fig. 8a. As 
can be seen, this information is quite general and does to refer 
to the internal structure of the feasible set, and in particular 
does not provide any knowledge about e.g. the following: 
(1) what number of variants is dominated by each of feasible 
variants, (2) what number of solutions is dominated by a given 
non-dominated variant, (3) how far away from Pareto front 
lies a given dominated feasible variant, etc. [Goldberg (1989)] 
proposed for ordering the feasible solutions depending on 
the depth of consecutive fronts of non-dominated solutions, 
Fig. 8b. As can be seen, the dominance attribute which in this 
case is the domination depth takes discrete values: 1, 2, 3, etc. 
More detailed analysis of the structure of feasible set allows 
for the use of following concepts as dominance attributes: 
(a) rank of feasible variants, dominance rank, Fig. 8c, and 
(b) feasible variant evaluation dominance count, Fig. 8d. 
Values of both attributes vary in continuous way over the set 
of feasible solutions, depending on the strategies adopted for 
their determination.

The dominance rank for a given variant is proportional to 
the number of feasible variants dominated by a given variant, 
Fig. 8c. The value of dominance rank is then highest for non-
dominated variants approximating the Pareto front. For the 
variants lying outside of Pareto front (or its approximation), 
deeper and deeper in the feasible variants set, the values of 
dominance rank are a falling measure of their distance from the 
front. The dominance count of a feasible variant is proportional 
to the number of other feasible variants dominating a given 
variant, Fig. 8d. Its value is then lowest and equals zero in 

Fig. 7. Graphical illustration of basic concepts used for taking into account of variant domination in the multi-objective optimization algorithms:
a) domination depth, b) dominance rank, and dominance count; for non-dominated solutions (Pareto-optimal) dominance count equals zero; dominance 

rank for feasible solutions not dominating any other solution equal zero; f1 → min!, f2 → min!
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case of non-dominated variants which approximate the Pareto 
front. For the variants lying outside of Pareto front (or its 
approximation), deeper and deeper in the feasible variants set, 
the values of count are a rising measure of their distance from 
the front. Other schemes for dominance attributes have been 
proposed by e.g. [Fonseca and Flaming (1993)], [Zitzler and 
Thiele (1999)]. Proper application of both attributes allows 
for development of very subtle and useful tools supporting the 
desired convergence of the calculation algorithm.

Attention should be paid to the fact that the values of objective 
function for each variant are determined after its characteristics 
(evaluation of design criteria and compliance with imposed 
constraints) are calculated, and the distances between variants in 
objective space of already determined objective function values 
are constant and may be used as a measure of absolute mutual 
similarity of solutions. It is however a different story in case 
of dominance attribute. It is not an absolute measure of variant 
location in the objective space, but rather a relative measure 
of variant location in this space determined in relation to other 
feasible solutions of the set. As the feasible set continuously 
evolves, then the dominance attribute of its elements, feasible 
solutions, evolves as well, because in consecutive generations it 
is determined over a different set of feasible solutions, in spite 
of the fact that the objective function values remain unchanged. 
This is quite obvious: in the population initiating the simulation 
the first solution (non-dominated) shall be granted dominance 
depth 1 according to the proposal by [Goldberg (1989)]. As 
a result of the progress of simulation and the feasible solutions 
gradually approaching the Pareto optimal front, this solution is 
going to be overtaken by other ones and its dominance depth 
is going to drop lower and lower. Moreover, the difference in 
dominance depth between two solutions is not fixed and may 
not be used as a relative measure of value for two compared 
solutions. Of course, in each case the non-dominated solution 

is better than any dominated one, but it cannot be simply 
claimed that in case solution B has a dominance depth lower 
by 1 from solution A, and solution C has a dominance depth 
lower by 3 from solution A, then the solution B is going to 
be better than solution C with regard to optimization criteria. 
Let’s analyze the example illustrated in Fig. 9, with initial set 
from Fig. 9a consisting of solutions A, B and C, where solution 
a dominates the others, but they do not dominate each other. 
Solution a has dominance depth equal 1 while solutions B and 
C have dominance depth 2. Let’s then assume that two new 
feasible solutions D and E are added to the feasible set in the 
next generation as shown in Fig. 9b. Solution D is dominated 
by a and at the same time dominates the solutions C and E. 
Solution E is dominated by solutions a and D and at the same 
time dominates the solution C. Now, solution C obtains a new 
value of domination depth, equaling depth 4 (used to have 
depth 2 before), while the solution B retains dominance depth 
2, which takes place in spite of the fact that solutions C and B 
did not change their locations in the objective space.

Like dominance depth neither dominance rank nor 
dominance count of a given solution are then objective 
measures of its value, yet they are practicable and widely used 
in practice for the evaluation of solutions sought for in the 
problems of multi-objective optimization.

Various particular methods based on application of these 
concepts of dominance attributes are found in literature, 
for example [Fonseca and Fleming (1993)], [Zitzler and 
Thiele (1999)]. Each such a method has its own particular 
characteristics, but the early experiences of the author and 
also other researchers, e.g. [Leyland (2002)] suggest that 
the influence of particular dominance rank strategies on the 
convergence of optimization process may be insignificant. In 
particular, while applying modern elite strategies the solutions 
quickly converge to non-dominated solutions set.

Fig. 8. Graphical illustration of the groups of dominance attributes: a) classifying the feasible variants basing on Pareto-domination relation, 
b) classifying the feasible variants basing on domination depth, c) dominance rank (proposed strategy for the determination of a number 

of variants dominated by a given variant) in the objective space, and d) dominance count (proposed strategy for the determination 
of a number of variants dominating a given variant); f1 → min!, f2 → min!
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CALCULATION TOOL FOR 
EVOLUTIONARY MULTI-OBJECTIVE 
OPTIMIZATION OF SHIP STRUCTURE

The essence of the classic Darwin’s theory of evolution 
[Darwin (1859)] is an idea that the evolution of biological 
organisms is driven by natural selection which affects 
hereditary traits ensuring survival (in the environment). 
According to the concept of the natural selection some 
organisms in certain environmental conditions manage better 
than others: they survive more often, have more numerous 
offspring and in time there are more and more of them. 
Therefore “the environment” selects beings better adjusted to 
certain situation. If environmental conditions were to change, 
the organism with a set of traits best suited for adapting to 
them, it will start to dominate. The concept describing this 
occurrence in evolutionary biology is adaptation or fitness, 
which means probability of surviving or reproduction in certain 
environment. There are mutations in every generation that 
provide the population with new variants. Natural selection 
sifts them: environmental severity decreases the number of 
“bad” ones (relatively unfit) variants and increases the number 
of “good” ones (relatively fit). Therefore adaptive evolution is 
a two-phase process in which tasks are strictly divided between 
mutation and selection. It is worth to notice that there are many 
variants in the population that can help it adapt to change in 
environmental conditions simultaneously. Consequently, the 
better the individual is adapted to environment, the faster 
its share in population will grow. Natural selection has very 
good “eyesight”, which allows to perceive slight differences in 
adaptation between individuals. Modern theory of evolution, 
Neo-Darwinism, performs a synthesis of classic Darwin 
theory and genetics, considering natural selection for basis of 
species evolution, in which the key role is played by variations 
(mutations, also random) of genetic code.

Genetic algorithms are an example of concepts of adaptation 
and evolutionary mechanism such as inheritance, mutation, 
natural selection, and recombination (or crossover) to solve 
complex optimization problems see eg. [Goldberg (1989)], 
[Michalewicz (1996)], [Coley (1999)] and [Man et al. (1999)], 
Population of rapidly reproducing creatures/individuals 
(representing models of optimized objects) is placed in the 
artificial environment (represented by optimization criteria and 
constraints), in which adaptation differences are exaggerated 
in order to speed up the evolution. The size of the population 

is determined in a way to make it large enough to ensure 
steady flow of high number of newly occurring mutations. 
Applied in experimental evolution selective pressure can be 
abnormally strong – probably much harder than in nature. 
Individuals with feature variants that are favorable in inhabited 
environment will survive longer and have more offspring than 
those with unfavorable features. Therefore favorable features 
will accumulate over time in process of inevitable “natural 
selection”. That kind of lab procedure simulated with computers 
allows to quickly obtain variants of optimized objects (in our 
case ship structures) with desirable features and produce better 
and better solutions.

Genetic algorithms (GA) have already been extensively 
described in literature discussing their theoretical foundations, 
details of calculation procedures and their practical applications, 
so these problems are not going to be discussed here again and 
the reader is referred to respective literature e.g. [Goldberg 
(1989)], [Davis (1991)], [Michalewicz (1996)].

The genetic algorithm is typically implemented in the 
form of computer simulations where a population of abstract 
representations (called chromosomes) of candidate solutions 
(called individuals) to an optimization problem evolves gradually 
towards better solutions. Traditionally, solutions are represented 
in the binary system as strings of 0s and 1s but different encodings 
are also possible. The evolution starts from a population of 
completely random individuals and is continued in subsequent 
generations. In each generation, the fitness of the whole 
population is evaluated, multiple individuals are stochastically 
selected from the current population (based on their fitness), 
modified (mutated or recombined) to form a new population 
which becomes current in the next generation. Procedures of 
creation and evaluation of the successive generations of trial 
solutions are repeated until the condition of termination of 
computations is fulfilled, e.g. forming a predefined number 
of generations or lack of correction of the fitness function in 
a number of successive generations. The best variant found is 
then taken as the solution of the optimization problem.

The most important point of calculation tool for multi-
objective optimization of ship structure is appropriate 
formulation of fitness function which governs the optimization 
process. In the first step a single, parameterized objective 
function was formulated, consists in summing the objective 
criteria with proper weight coefficients. The weight coefficients 
values of this substitute objective function are taken accordingly 
corresponding to multi-objective optimization strategy. The 

Fig. 9. Illustration of the concept of dominance depth shift without the relocation of solutions in the objective space, for min! type criteria; a) dominance 
depth values for solutions A, B and C in initial population (preceding one); b) extension of feasible solutions set by solutions D and E does not cause 

a change of dominance depth of solutions a and B but does cause a change of dominance depth of solution C without causing its relocation in the objective 
space: what is changed only is the relative location of this solution in relation to the remaining feasible solutions
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simplest concept is the introduction of objective function F(x) 
as a linear combination S of partial objective criteria fs(x):

(5)

objective = criteria
where:
ws – coefficients determining the weights given to particular 

criteria, 
no – the number of partial optimization criteria. 

The multi-objective optimization problem is then reduced 
to the single-objective problems, with the criteria being usually 
called objective functions.

Formulating of fitness function in the form of scalar 
substitute optimization criteria in form of Eq. 5 is a commonly 
accepted practice. Written in Eq. 5 partial optimization criteria 
were replaced by properly formulated utility functions of these 
criteria: fs(x) → us[fs(x)]:

ui(x) =  → max! ⇔ fi(x) → max!      (6a)

uj(x) =  → max! ⇔ fj(x) → min! (6b)

where:
fi,max and fj,max – the greatest values of respective optimization 

criteria anticipated in computations. These 
values are in practice set during test 
computations.

After assuming utility function in form of Eq. 6 the scalar 
substitute optimization criterion can be written down in 
form:

(7)

objective = criteria

Advantages of proposed substitutions are:
1. scalar substitute optimization criterion is maximized 

for any types of partial optimization criteria, that means 
F(x) → max!,

2. values of utility function are dimensionless and normalized 
to a unit, that means us[fs(x)] → [0, 1].

The calculation tool developed for use in optimization 
of ship structure should of course allow for accounting for 
a series of constraints imposed by design, local strength and 
overall strength. On the other hand, implementation of genetic 
algorithms requires that the equivalent problem is formulated 
without any constraints. Observing that genetic algorithms do 
not require continuity nor the existence of derivative functions, 
an external penalty function has been used [Fox (1971)], [Ryan 
(1974)], [Reklaitis et al. (1983)], [Vanderplaats (1984)]. The 
augmented objective function of unconstrained maximization 
problem f(x), has been formulated as a penalty function:

(8)

objective = criteria + constraints

where:
us(x) – utility function in the constrained problem (Eq. 7),
 no – number of optimization criteria, 

Pk(x) – component of penalty function for the violation of 
k-th constraint, 

wk – penalty coefficient for the violation of k-th 
constraint, 

nc – number of constraints.

To adjustment mathematical form of penalty function 
Pk(x) with dimensionless and normalized utility functions 
us(x) similar requirements were put before penalty functions. 
Mathematical form of the penalty function was therefore 
proposed in form:

(9)

where: 
Pk(x) – appropriate component of penalty function, 
x – vector of current values of design variables, 
xk – vector of design variables ensuring the least permissible 

value of appropriate constrain condition, (e.g. vector 
containing the least required by classification rules 
thickness of hull plate or the least required value of 
section modulus of stiffener). 

Assumed forms of penalty functions components ensure 
normalization of penalty function components to a unit and 
introduce „soft” selection to the search, from a point of view 
of a factor defined by an appropriate component of penalty 
function Pk(x).

As the augmented objective function f(x) expressed by the 
relation Eq. 8 with penalty components expressed by Eq. 9 is: 
(1) defined, (2) single-valued, (3) ascending, having real values 
and positive in the search space, it has been adopted directly 
as the fitness function.

As we already know the scheme of multi-objective 
optimization proposed in Eq. 8 allows only for rough 
differentiation of feasible solutions with regard to domination 
relation in Pareto sense, see Fig. 8a, and does not account 
for information about how many solutions are dominated by 
a given solution.

For the solving of the mentioned problem the author 
proposed a scheme in which the feasible solutions are ranked 
by the number of other solutions dominated by them, relative 
to the number of feasible solutions in the current population. 
Therefore, dominance rank Rfi of i-th feasible solution is 
specified by an equation:

(10)

where:
dm(i, j) = 1 when i dominates j, 
dm(i, j) = 0 in other cases, 
i, j – indices of verified feasible solutions, 
Nfi – number of feasible solutions in the current 

population.

Fig. 8c and Fig. 10a. The advantages of proposed strategy 
are: (1) ease of calculations, (2) standardization of dominance 
rank values in [0, 1] range, and (3) ascending values of 
dominance rank for solutions approaching the Pareto front 
(lying at the edge of feasible set). Thanks to properties (2) and 
(3) the value of dominance rank calculated in a proposed way 
may be directly included in the fitness function. In such a case 
selection is going to promote feasible solutions located close 
to Pareto front, while the solutions lying gradually further and 
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further from the Pareto front are going to be promoted weaker 
and weaker, which is a numerical realization of selection 
pressure exerted on solutions located close to Pareto front 
and which thus enhances the exploitational performance of 
the algorithm. A disadvantage of the proposed strategy is 
computational complexity N2.

Similarly, feasible solutions may be classified by the number 
of solutions dominating them, relative to the number of feasible 
solutions. Thus, evaluation dominance count Cfi of i-th feasible 
solution is expressed by the formula:

(11)

where:
dm(i, j) = 1 when i dominates j, 
dm(i, j) = 0 in other cases, 
i, j – indices of verified feasible solutions, 
Nfi – number of feasible solutions in the current 

population.

Fig. 8d and Fig. 10b. The dominance count defined in 
this way has the above mentioned properties (1) and (2), and 
property (3) ascending values of dominance count for the 
variants lying further and further from Pareto front (located 
deep inside the feasible set). Thanks to properties (2) and (3) 
the value of dominance count calculated in the proposed way 
may also be directly included in the feasible function - in 
such a case selection is going to promote feasible solutions 
located far from Pareto front, while the solutions approaching 
the Pareto front are going to be promoted weaker and weaker, 
which is a numerical realization of selection pressure exerted 
on solutions located far from Pareto front and which thus 
enhances the exploratory properties of the algorithm. Same as 
in the previous case, the disadvantage of the proposed strategy 
is computational complexity N2.

As it has already been mentioned, the strategies for 
dominance ranking and the dominance count the feasible 
variants proposed by the author allows for their inclusion 

directly in the earlier formulated (Eq. 8) extended objective 
function of a unconstrained maximization problem f(x):

f(x) =  + wrRfi(x) +
(12)

+ wcCfi(x) + 
combined objective = criteria + rank + count + constraints

where: 
us(x) – utility function for the constrained problem (Eq. 7), 
no – number of optimization criteria, 
Rfi(x) – dominance rank of feasible variant, 
wr – dominance rank weight coefficient, 
Cfi(x) – dominance count of feasible variant, 
wc – dominance count weight coefficient, 
Pk(x) – penalty function component for the violation of k-th 

constraint, 
wk – penalty coefficient for the violation of k-th constraint, 
nc – number of constraints. Giving a zero value to the 

respective weight coefficient lets the user deactivate 
a given component of combined fitness function.

For indicate a single solution which may be considered to 
be „the best” solution of a multi-objective optimization problem 
and the monitoring of evolution of non-dominated solution in 
the direction of theoretically lowest values of optimization 
criteria fi → 0! as moving the set of non-dominated solutions in 
the desired direction the author has then introduced a concept of 
a asymptotic objective (asymptotic solution), which represents 
an objective/solution corresponding to asymptotical values 
of optimization criteria: f1 → 0! f2 → 0!3), Fig. 12b. Such 
a definition of a asymptotic solution it is possible to: (1) 
determine the distance between each non-dominated solution 
from and this point, and then choose a asymptotic closest 
solution, and additionally (2) monitor the evolution of set of 
non-dominated solutions distance from this solution during 
the simulation.

3) It is then assumed that in case of min! type criteria the respective objectives (co-ordinates) are equal to zero. However, in case of max!
 type criteria the user shall set the value of these objectives (co-ordinates) as some known from experience values of respective criteria
 which are impossible to attain, but which are going to be approached asymptotically by the non-dominated solutions.

Fig. 10. Illustration proposed strategy of value calculation of: 
a) dominance rank, b) dominance count for feasible solutions; f1 → min!, f2 → min!
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The method of calculating the distances between feasible 
solutions and a asymptotic solution allow for including 
a distance from an asymptotic solution directly in the earlier 
formulated extended objective function used for unconstrained 
maximization problem, f(x):

f(x) =  + wrRfi(x) + wcCfi(x) +

(13)
+ wd[1 - dfi(x)] + 

combined objective = criteria + rank +
+ count + distance + constraints

where: 
us(x) – objective function for the constrained problem 

(Eq. 7), 
no – number of optimization criteria, 
Rfi(x) – dominance rank of feasible solution, 
wr – dominance rank weight coefficient, 
Cfi(x) – dominance count of feasible solution, 
wc – weight coefficient of dominance count, 
dfi(x) – distance between the feasible solution and the 

asymptotic solution, 
wd – distance weight coefficient, 
Pk(x) – penalty function component for the violation of k-th 

constraint, 
wk – penalty coefficient for the violation of k-th constraint, 
nc – number of constraints.

The combined fitness function used in the proposed form 
(Eq. 13), includes instruments which provide for effective 
solving of constrained multi-objective optimization ship 
structure problem. These are: combined fitness = objectives + 
rank + count + distance + constraints; objectives – represents 
selective pressure exerted in the direction of the desired values 
of optimization criteria, dominance rank as well as dominance 
count – represents selective pressure related to the location 
of an feasible variant with regard to non-dominated solutions 
set, measured with appropriate dominance attributes, distance 
– represents selective pressure related to the distance between 
an feasible solution and the asymptotic solution, constraints 
– represents the reduction of solution quality and the related 
reduction of selection probability caused by the violation of 
constraints. As the values of dominance rank, dominance count 
and the distance to asymptotic solution are calculated only 
for feasible variants, this involves also additional promotion 
of such variants. Proper use of the proposed components of 
the combined fitness function by the experienced user makes 
for a highly flexible and effective solving of multi-objective 
optimization problems based on a genetic algorithm or other 
evolutionary algorithms in general.

Domination of rank component is used for promoting 
the variants belonging to non-dominated solutions set which 
increases their chances for participation in reproduction 
and transmission of their characteristics to a larger number 
of descendant specimens, and thus boosts the propensity 
for exploration of solution space areas which contain good 
solutions. Variants lying far from non-dominated solutions 
set have lesser chances for reproduction. Such a strategy is 
going to reinforce the existing composition of non-dominated 
solutions set but it is not going to be conducive to supply of 
new, potentially interesting/attracting/desired solutions. It is 
then a strategy biased towards exploitation of areas with non-
dominated solutions set variants as opposed to the exploration 
of a whole solution space. Domination of count component is 

going to have an opposite effect: reduction of reproduction 
probability for variants belonging to non-dominated solutions 
set (use of elitist strategies may however dampen this effect) 
and the amplification of chances for adding new variants to 
non-dominated solutions set, potentially having the desired 
characteristics. It is then a strategy biased towards exploration 
a whole solution space as opposed to the exploitation of areas 
containing variants of the desired characteristics. The choice of 
strategy depends on a specific problem at hand and should be 
preceded with testing calculations. The author proposes to use 
the domination of dominance count in cases where the number 
of variants created during a simulation run is a small fraction 
of a number all variants which may be created within a given 
optimization model, and the requirements concerning the 
accuracy obtained in pinpointing the compromise solution are 
not very high. In such a case intensive exploration of solution 
space boosts the chances for finding a satisfactory solution. 
However, in case the user emphasizes the requirement for the 
accuracy of a located non-dominated solution approximating 
the Pareto front, rank component domination is going to be 
recommended.

The proposed combined fitness multi-objective evolutionary 
algorithm (CFMOEA) using in the selection process a scalar 
objective function expressed in the Eq. 13, which is a weighted 
sum of elements representing: (1) optimization criteria, (2) 
ranking in relation on dominance, (3) dominance count, (4) 
distance from the asymptotic solution, and (5) the degree of 
constraint violation, shall be tested in the next parts of the 
paper using a fast passenger-car ferry structure as an example 
of a multi-objective optimization.

The computer code used for multi-objective optimization 
of ship structures with combined fitness function has been 
built on the basis of a software package for multi-objective 
optimization while supplementing it with a series of calculation 
procedures providing for combined fitness multi-objective 
optimization of the ship hull structure. The most important 
of them are the procedures for: (1) encoded of genotype and 
generation of the ship hull structure variants, (2) analysis of 
constraints, (3) analysis of feasible solutions set with regard 
to dominance relation, (4) control of domination, including 
the determination of domination attribute values, dominance 
rank and dominance count, and the building of non-dominated 
solutions set approximating the Pareto set, (5) calculations of 
the distance of feasible solutions to the asymptotic one, and 
(6) calculation of combined fitness function values, while 
accounting for the domination attributes and distance to 
asymptotic solution of feasible solutions. Block-type diagram 
presenting the main concepts of developed calculation software 
is shown in Fig. 11.

The code carries out the calculations automatically, starting 
from an input data set prepared by the user, which the following 
data regard to multi-objective optimization strategies: (1) values 
of switches specifying the selection of strategy which is going 
to be used for the calculation of fitness function values basing 
on optimization criteria values, and (2) the values of weight 
coefficients assigned to combined fitness function components. 
In the computer code a population of individuals of a fixed size 
is randomly generated. Each individual is characterized by 
a string of bits and represents one possible solution to the ship 
structure. Each new created variant of solution (an individual 
being a candidate to the progeny generation) is analyzed 
by the pre-processor. In the pre-processor binary strings of 
chromosomes (genotypes) are decoded into the corresponding 
strings of decimal values representing design variables 
(phenotypes). Then for the actual values of the design variables 
defining spatial layout of the structural elements (topology) and 
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their scantlings it is checked whether the actual configuration 
complies with the rules of the classification society. In the next 
step performance of solution is evaluated and it is checked 
whether the variant meets the constraints.

The domination relation is checked over a set of individuals 
considered to be feasible . The set of non-dominated individuals, 
updated for each generation, constitutes an approximation 
of Pareto front. At the end, the value of fitness function, 
proportional to the individual selection probability and its 
participation in the genetic operations of the next generation, 
is calculated. Calculation of combined fitness function value 
takes into account the of multi-objective optimization strategy, 
selected by the user. The computer software developed herein 
implements three selection strategies, Fig. 6: (1) strategy 

based on the aggregation of vector objective function, with 
appropriate weight coefficients (fixed values for (1a) strategy 
or random values for (1b) strategy), (2) strategy executing the 
selection of variants on the basis of randomly selected single 
optimization criteria, and (3) strategy based on selection with 
respect to attributes of Pareto domination.

The code analyses the feasible individuals of successive 
generations, selects the non-dominated solutions and this way 
builds the archive of non-dominated solutions (Pareto-optimal 
ones). The archive of non-dominated variants is an external set 
and the variants which are recorded in it do not take part in the 
„breeding” of successive generation solutions, unless they have 
managed to survive in successive populations in a natural way, 
remaining not destroyed and not excluded by genetic operators. 

Fig. 11. Diagram presenting the main concepts of the developed computer software 
for the multi-objective optimization of seagoing ship structures, based on a CFMOGA
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Process of building and evaluation of descendant populations 
of tested variants and the updating of non-dominated variants 
archive is repeated until a fixed number of generations used 
as a simulation halt condition is reached. After a simulation 
is completed, the non-dominated solutions preserved in the 
archive are recognized to be the sought solutions of a multi-
objective optimization problem.

At the end the value of the fitness function is calculated 
which is used for ordering the variants necessary to starting 
of selection. Variants are ordered with respect to this value. 
Knowing adaptation of each variant the random process 
is restarted to select variants of the successive progeny 
generation.

After selection the code determines randomly which genes 
of these whole population will mutate. This population is then 
mutated where small random changes are made to the mutants 
to maintain diversity. After that the mutate pool is created. Then 
decision is made how much information is swapped between 
the different population members. The mutated individuals are 
then paired up randomly and mated in the process commonly 
known as crossover. The idea is to derive better qualities from 
the parents to have even better offspring qualities. That is 
done by creating, with fixed probability, „cutting points” and 
then the parts of the chromosomes located between “cuts” are 
interchanged. The mating process is continued until the full 
population is generated. The resulting population member 
is then referred to as an offspring. The newly generated 
individuals are then re-evaluated and given fitness score, and 
the process is repeated until it is stopped after a fixed number 
of generations.

All genetic parameters are specified by the user before the 
calculations. The population size, number of design variables 
and number of bits per variable, the total genome length, 
number of individuals in the population are limited by the 
available computer memory.

The code carries out the calculations automatically, 
starting from an input data set prepared by the user, which 
has been supplemented with the following data with regard 
to its aggregated multi-objective predecessor: (1) values of 
switches specifying the selection of strategy which is going 
to be used for the calculation of fitness function values 
basing on optimization criteria values, and (2) the values of 
weight coefficients assigned to combined fitness function 
components and depending on dominance attributes and 
distance to asymptotic solution. The domination relations 
allowing for the determination of dominance rank and 
dominance count values for particular feasible variants are 
checked over a set of variants considered to be feasible. The 
set of non-dominated variants, updated for each generation, 
constitutes an approximation of the Pareto-optimal front. 
At the end, the value of fitness function, proportional to the 
variant selection probability and its participation in the genetic 
operations of the next generation, is calculated. Calculation 
of fitness function value takes into account the strategy of 
combined fitness multi-objective evolutionary algorithm, 
selected by the user. The computer software developed 
herein implements several multi-objective genetic algorithm 
selection strategies, Fig. 6. First of all, optimization is possible 
only with regard to optimization criteria: (1) strategy based on 
the aggregation of vector objective function, with appropriate 
weight coefficients, (2) strategy executing the selection of 
variants on the basis of randomly selected single optimization 
criteria. By assuming different from zero values of weight 
coefficients it is possible in optimization process to also take 
into consideration domination attributes as well as distance 
to asymptotic solution.

The values of parameters controlling the genetic operators 
are specified by the user before the start of simulation. Proper 
setting of these values is very important and requires extensive 
experience on the part of the user, but it is crucial for the 
attainment of the desired calculations convergence expressed 
in (1) quality of found solutions, (2) rapidity of their finding, 
and (3) required computation resources.

In case of multi-objective optimization problem we have 
to consider how to collect and present the information about 
the determined non-dominated solutions (Pareto-optimal) and 
how to archive them. It is commonly accepted to graphically 
present all the feasible solutions as points in the objective 
space. Only a part of them are going to be non-dominated 
(dominating, Pareto-optimal) solutions, and their set is going 
to be called a non-dominated set or a Pareto front containing 
trade-off solutions (actually we know this is going to be a set 
of non-dominated solutions approximating the Pareto set).

Non-dominated solutions produced during the simulation 
are recorded in a separate set (file) which is continuously 
supplemented and updated during the simulation. The solutions 
collected in the non-dominated solutions set may be dealt with 
in two possible ways: (1) set membership has no influence on 
the selection of individuals (egalitarian strategy) (2) individuals 
from the set (non-dominated solutions) enjoy a guaranteed 
participation in selection (elite strategy). Egalitarian strategy 
has been adopted in the underlying paper.

It is a well-known fact that in case many optimization 
criteria are used, it is going to be impossible to find a single best 
solution, as such a solution does not exist. In practice however 
the user awaits automatic or quasi-automatic determination of 
a single solution or a few solutions, which could be taken as 
a solution of the problem. Moreover, users are accustomed to 
the monitoring of evolution of a single value, which lets them 
evaluate the correctness of the calculation run, the convergence 
of solutions and the quality of solutions being found. In single-
objective cases it is natural to monitor the values of fitness 
function and optimization criterion. In case of multi-objective 
optimization simultaneous evaluation of the evolving criteria 
is difficult to realization and interpretation. In order to alleviate 
this problem, the author has used the concept of ideal or utopia 
solution, well-known in literature [Cohon (1978)], [Stadler 
(1988)], [Statnikov and Matosov (1995)], see Fig. 12. In the 
generally accepted understanding an ideal point refers to the 
lowest values of all criteria analyzed singly and not together. 
It means that if f*1, f*2, … f*s, …, f*S will be used to denote 
the individual minima of each respective objective function, 
and the ideal solution (in objective space) is defined as f* = 
[f*1 f*2 … f*s … f*S]

T. As f* simultaneously minimizes all 
objectives, it is an ideal solution that is rarely feasible. In such 
a case however it is then possible to locate a solution closest 
to the ideal point (nearest to the ideal solution):

(14)

with the concept of closeness being understood here usually 
in the sense of Euclidean metrics where f≈

m(x) is the closest 
solution found in the m generation.

The concept of non-dominated feasible solution nearest to 
the ideal objective f≈(x) is sufficient to find a single solution 
which may be considered to be „the best” solution of a multi-
objective optimization problem. It is however inappropriate for 
the monitoring of evolution of non-dominated solution in the 
direction of theoretically lowest values of optimization criteria 
fi → 0! as moving the set of non-dominated solutions in the 
desired direction may also take place with unchanging distances 
of these solutions from ideal solution, Fig. 13. The author has 
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then introduced a concept of a asymptotic objective (asymptotic 
solution) f0, which represents an objective corresponding to 
asymptotical values of optimization criteria: f1 → 0! f2 → 
0!, Fig. 13. According to this definition, the location of ideal 
objective f* in the objective space is not fixed, Fig. 13, and 
this means that its location changes during simulation, so the 
distance to such a moving objective is not a good indicator of 
solution quality. Therefore, a definition of asymptotic objective 
f0 has been adopted in such a way as to make it stationary. It 
is then necessary to have such a definition which would make 
the co-ordinates of this objective constant in the objective 
space, which means fixed values of optimization criteria. It is 
then assumed that in case of min! type criteria the respective 
objectives (co-ordinates) are equal to zero. However, in case of 
max! type criteria the user shall set the value of these objectives 
(co-ordinates) as some known from experience values of 
respective criteria which are impossible to attain, but which are 

Fig. 12. a) Graphical illustration of a non-dominated solution nearest to the ideal one f*, for the case of min! type criteria. 
b) Graphical illustration of the concept of a non-dominated feasible solution nearest to a asymptotic objective f0, in case of min! type criteria

Fig. 13. Graphical illustration of the movement of solutions nearest to the ideal solution f≈ in the direction of asymptotic solution during the evolution, in 
case of min! type criteria; for constant distances from the ideal solution the distance from asymptotic one changes (evolves) instead

going to be approached asymptotically by the non-dominated 
solutions. After defining the asymptotic objective f0 let’s assume 
that as the nearest solution f≈(x) we mean nearest solution with 
regard to the asymptotic objective f0.
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