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APPLICATIONS OF THE LMI 

Linear Matrix Inequalities (LMI) methods are used mostly 
for theoretical numerical calculations. Additionally in the 
past few years a rising demand for practical use of LMI in 
science and industrial applications, such as different kinds of 
complex networks (e.g. power systems, computer networks) 
and industrial engineering, was observed. 

The use of LMI for modelling synchronization problems 
in complex networks with rapidly changing topology was 
presented in [1]. Examples of such networks were the Internet 
and power grids. More specifically the LMI method was 
used to design a controller used for damping oscillations in 
a power grid which was described in [2]. The idea was to 
stop the controller operation when the grid was in a stable 
state. A controller with such a design could be used both in 
decentralized and centralized networks. Similar design was 
described in [3] where a controller was damping oscillations 
of a synchronous generator connected to a rigid power 
grid. A related example was also a thyristor controller for 
a capacitor bank stabilizing a flexible power grid which was 
described in [4]. A real industrial application was described 
in [5] where a control system was controlling several steam 
boilers supplying a decentralized steam consumer network 
characterized with frequent and large load changes. A similar 
example was a controller for chemical to electrical energy 
conversion or more precisely a steam boiler – steam turbine 
with generator couple. The complexity of the process was 
caused by the need to parameter steam generation, steam 
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input to the turbine and electrical energy from the generator 
parameters all at the same time as described in [6]. Another 
application was a system to control skyscraper movemen`t 
under extreme wind conditions by the use of an active mass 
driver. The mass driver was installed on a real building model 
and was tested in a wind tunnel as described in [7].

The most closely related to marine applications, and thus the 
most practical use of LMI was the controller of an autonomous 
underwater vehicle MR-X1 (Marine Robot Experimental 1) 
built by the Japanese Agency for Marine-Earth Science and 
Technology (JAMSTEC). The robot was equipped with 5 
propellers, it could work in remote control mode or as a fully 
autonomous unit. Aquarium test trials gave very promising 
results, a detailed description can be found in [8].

THE PRINCIPLES OF USE 
OF THE LMI METHOD

Linear Matrix Inequalities LMI are described by canonical 
form [9, 10]:

(1)

where:
F(x) – variable affinic function of the variable x 

is a positive definite matrix, x ∈ Rm, 
  Fi ∈ Rnxn.
Fi, i = 0, 1….m – constant and symmetrical,
x – the variable (unknown).
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ABSTRACT

This paper explains the basics of the Linear Matrix Inequalities (LMI), with examples of 
simulations and calculations created in Matlab/Simulink programming environment where 
the controlled plant is the “Blue Lady” ship model. First chapter of this paper gives a short 
overview of publications describing the use of Linear Matrix Inequalities method. Second 
chapter contains basic definitions and equations for the LMI method. Chapter three presents 
the use of LMI method for ship control by describing controller synthesis for the “Blue 
Lady”. Chapter four compares the operation of two controllers, the first one consisting of 

three independent proper adjusted PID controllers and the second one being a multivariable LMI controller. 
Finally conclusions from the above comparison are drawn.

Keywords: linear matrix inequality; use of LMI; synthesis of regulators; multivariable system; ship’s control

POLISH MARITIME RESEARCH Special Issue S1 (74) 2012 Vol 19; pp. 37-44
10.2478/v10012-012-0021-7

Linear Matrix Inequalities in multivariable ship’s steering



38 POLISH MARITIME RESEARCH, Special Issue 2012/S1

The LMI method is related to the feasibility problem, which 
comes down to searching for the answer to the question whether 
there exists a solution x to the LMI problem in it’s overall form 
shown below: 

A(x) < 0                                   (2)

Where a is the state matrix of the control system.
In order to create an LMI for a control system for the 

object is necessary to check if the eigenvalues of the matrix 
a of the controlled closed loop system are placed in the left 
half complex plane.

Next the feasibility problem and stability can be checked 
with the Laypunov function shown below:

V(x) = xTPx                               (3)

Where P is a positively symmetric matrix.
The stability condition can be formulated with the use of 

LMI as shown below:

ATP + PA < 0, P = PT  0                  (4)

Fulfilling the P = PT  0 (operand „ ” means that 
eigenvalues of matrix P are positive) condition determines 
whether the control system is stable and solves the feasibility 
problem, which is finding a positive definite matrix P for the 
given state matrix A. After checking the above conditions 
dynamic properties of the control system can be designed 
by pole placement in a specific part of the left half complex 
plane. A defined plane for pole placement was designated 
Cstab [12]. 

Three exemplary limit areas have been shown below and 
the first case has been used in simulations described in this 
paper: 

a) First case

(5)

Where:
r – radius of the circle,
q – centre of the circle 

Fig. 1. Left half plane with a circle

b) Second case

(6)

where:
α1, α2 – vertical bars

Fig. 2. Left half plane with two vertical bars

c) Third case

(7)

where:
 – angle of flare

Fig. 3. Left half plane with an angle of flare θ sector

After pole placement in the left half complex plane a further 
controller synthesis requires a description according to a defined 
standard such as H∞.

A multidimensional control system MIMO (Multiple Input 
Multiple Output) for controlled system G is shown in Fig. 4,

Fig. 4. Structure of a system for tracking set value to synthesize 
a multivariable regulator

and has the below transfer function:

(8)

where:
Z(s) – Laplace transform of output vector,
W(s) – Laplace transform of input vector,
z(t) – output signal vector,
w(t) – input signal vector.

Controlled system G described by equation (8) was 
presented in matrix transfer operator form shown below:

(9)

For which the space state equalities are as follows: 

(10)
z = Cx + Dw

where:
A – state matrix with dimensions n x n, 
B – input matrix with dimensions n x r, 
C – output matrix with dimensions m x n, 
D – direct feedback matrix with dimensions m x r, 
x – state of the system with a vector dimension n, 
w – input signal with a vector dimension r, 
z – output signal, with a vector dimension m, measured by 

sensors.
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In control theory [9, 16] many criteria are used to determine 
the quality of control. In this paper the H∞ standard was 
selected, it determines the relation between input signal vector 
w(t) and output signal vector z(t) for G controlled system 
(see Fig. 4):

(11)

Where σmax(Z) is the highest singular value of matrix A, 
which is equivalent to a square root of the highest eigenvalue 
of the matrix ATA. In numerical calculations the upper limit 
value of H∞ was called scalar variable gamma γ. 

The H∞ standard for G system matrix is lesser than the 
scalar variable gamma γ [12, 16] if, and only if γ2I – DT > 0 
and there exists a matrix P = PT f 0 that fulfils the linear matrix 
inequality shown below:

(ATP + PA + CTC) + (PB + CTD)
(12) 

(γ2I – DTD)-1(BTP + DTC) p 0
After calculations, the value of variable gamma is an 

approximation of the upper limit of the H∞ standard. During 
controller synthesis there are two possibilities, the H∞ can 
be minimalized or can be a restriction if gamma is set to be 
a constant value. In this paper gamma, by means of trial and 
error, was set to be a constant value of 1.5. 

After using Schur’s complement to linear matrix inequality 
(12) we received the H∞ standard in the form of an LMI 
requirement:

(13)

If we assume that the transmittance Tw→z∞(s) describes the 
control system deviation transmittance, where z∞ is defined as 
z∞ = w – z (see Fig. 4) then the minimalization of the standard 
of the defined transmittance tends to assume the smallest value 
for all frequencies. 

CASE STUDY

a) Controlled system description

The training ship “Blue Lady” is a 1:24 scale model of 
a VLCC (Very Large Crude Carrier) tanker that was meant to 
carry large amounts of crude oil but unfortunately was never 
built. 

Main propulsion is a d.c. electric motor driving a five 
blade, fixed pitch, propeller through a reduction gear [15]. The 
propulsion characteristic corresponds to turbine propulsion but 
it has an option to be changed to diesel engine propulsion. The 
model is also equipped with two tunnel thrusters and two side 
thrusters simulating 60 ton tug boats. „Blue Lady’s” cockpit 
has enough space for two people. The silhouette of the ship is 
shown below.

Fig. 5. Silhouette of “Blue Lady” with cockpit arrangement 
and GPS antenna

Tab. 1. “Blue Lady” model and real ship parameter comparison

Ship Model

Overall lenght 330.65 [m] 13.78 [m]

Breadth 57.00 [m]  2.38 [m]

Maximum speed 28150[m/h]  5741.2 [m/h]

Training ship “Blue Lady”, being the controlled system 
in the considered case, had three input signals [τx τy τp] (see 
Fig. 6) where:
τx – required force (thrust) in the ships longitudinal axis,
τy – required force (thrust) in the ships lateral axis,
τp – required turning moment. 

Taking into consideration the number and type of propellers 
eight command signals for propulsion and steering equipment 
were implemented [ngc δc sstdc sstrc ssodc αdc ssorc αrc] (see 
Fig. 6). 
Where:
[XI YI NI] – were forces and moments created by propulsion 

and steering equipment, and the three output 
signals were position coordinates x(t), y(t) and 
the heading ψ(t).

For future controller synthesis with the LMI method the 
state model aspect had to be determined. Considering input 
and output signals of the future controller for the “Blue Lady” 
model the following were taken into account: dynamics and 
kinematics of the ship, Kalman’s filter, geographic coordinates 
and a system for recalculating command signals to particular 
thrusters. It should be noted that dynamic equations of the ship 
had the following form (so called 3DOF model): 

(14)

Where:
m – ship’s displacement,
u – linear velocity in respect to X axis,
v – linear velocity in respect to Y axis,
r – angular velocity around Z axis. 

Whereas course changes and ships position which were 
the kinematic equations had been calculated from the below 
formula:

(15)

A block diagram of the controlled system has been presented 
on  Fig. 6.

b) Linear model of the controlled object

It turned out, during identification process, that three signal 
channels demonstrated weak correlation between output and 
input signals:
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(16)

therefore these subsystems were canceled from the final model 
(see Fig. 7):

Fig. 7. Control channels after identification process

Finally the multivariable linear state model of the system 
had the following form:

(17)

where 0 values denoted cancelled channels.

The coefficient values of the model parameters were 
obtained as average values from all identification experiments. 
State model coefficients were as follows [11]:

Tab. 2. Values of ”Blue Lady” model coefficients in state space

parameter value parameter value
auu -3.36 * 10-3 buu 3.62 * 10-3

avv -9.00 * 10-3 bvv 2.06 * 10-3

arv -2.00 * 10-4 brv 1.61 * 10-5

aur -3.00 * 10-3 bur 3.00 * 10-5

avr -1.00 * 10-3 bvr 1.15 * 10-5

arr -7.75 * 10-3 brr 7,00 * 10-3

c) Controller synthesis

The first condition for the LMI method applied to the 
feasibility problem (2) and required checking if the eigenvalues 
of the system matrix were placed in the left half complex 
plane. For the state matrix of the simulated system a that had 
the below form:

(18)

Next the stability had to be checked, which came down 
to fulfilling the Laypunov inequality (4) which meant that for 
the given state matrix a you looked for a positively determined 
symmetric matrix P = PT f 0 [9, 12, 13].

For the state matrix of the simulated controller a symmetric 
matrix P was found, and had the following values:

(19)

After describing LMI conditions from the theoretical part 
of the article with matrix form, a multivariable controller was 
designed for a MIMO system, the described ”Blue Lady” 
ship model. First step was to determine the matrices based 
on system structure (see Fig. 4) and system description (22). 
Below a system of equations for the controlled system has been 
presented together with output equations defining signals for 
H∞ standard, measured signal from system to controller “e” 
and output signal “z”.

(20)

LMI matrices had the following form:

(21)

where the matrices representing input signals ”w” and ”u” 
were vector matrices [3x1] because they applied to [τx , τy , τp]
signals. Additionally vector matrices for output signals “z” 
and ”z∞” were also [3x1] and they applied to: longitudinal “u”, 
lateral “v” and rotational “r” velocity signals.

After checking that the controlled system fulfilled the 
feasibility condition (2) and stability condition (4) its dynamic 
properties had to be specified by pole placement in the left 
half complex plane [12, 14]. In this paper limit area (5) was 
used.

For the input and calculation of the above parameters 
with the LMI method the LMI Control Toolbox in Matlab 
together with additional toolboxes SeDuMi (Self – Dual 
– Minimization) and YALMIP (Yet Another LMI Preprocessor) 
was used [18, 19]. 

Fig. 6. Block diagram of the controlled system for identification process. 
u, v, r – ships velocities; x, y, ψ – ships position and course; 

[ngc, δc . . . ]T vectors – command signals for propulsion 
and steering equipment, [XI YI NI]T vectors – forces 

and moments generated by propulsion and steering equipment

Linear Matrix Inequalities in multivariable ship’s steering
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Experimentally selected parameters of the limit area had 
the following values (see Fig. 1):

- radius of the circle – 0.04
- centre of the circle – 0.02

For controller synthesis, after determining the limit area, 
additional evaluation of the H∞ standard was done, for which 
the scalar variable “γ” was the estimated upper limit value.

After using Schur’s complement and making some 
modifications to the controlled system described by (24) and 
based on (13) the following H∞ standard condition for LMI 
method was received: 

(22)

In the above matrix inequality new matrices R and S were 
used. They were calculated by congruence transformation of 
LMI conditions which was true for the below equations of 
a closed loop circuit:

(23)

Above equations contained N and M matrices which were 
connected to Laypunov variable factorization of matrix X 
related to LMI conditions describing H∞standard together with 
pole placement limit area, as described in [9, 12, 16]. 

For the simulations in this paper H∞ was calculated to be: 
1.08, for a constant upper limit value of the scalar variable “γ” 
equal to: 1.5. After calculating LMI method conditions the 
matrices for the designed controller were following:

(24)

SIMULATION RESULTS
For the simulations in this paper basic assumptions have 

been analyzed. Fig. 9 below shows changes made to the 
structure of the system from Fig. 8 

Fig. 9. Upper is the structure of a system for tracking set value with 
dynamic and kinematic parameters, lower is the standard structure using 

the LMI method to synthesize a multivariable regulator where the system is 
“Blue Lady” ship model

The practical aim was to realize ”Blue Lady” ship 
model steering for three velocities. In the simulations 
a multidimensional LMI controller designed by the author was 
compared with a controller consisting of three independent 
PID controllers designed by an M.Sc. graduate of Maritime 
Academy in Gdynia, as described in his paper [17]. Simulation 
results were achieved in Matlab with YALMIP and SeDuMi 
toolboxes and had parameters from the table 3. 

Fig. 8. Up side is the structure of a system for tracking set value, down side 
is the standard structure using the LMI method to synthesize a multivariable 

controller where the object is “Blue Lady” ship model

Linear Matrix Inequalities in multivariable ship’s steering
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Tab. 3. simulation parameters

Simulations with one velocity

simulation no.
longitudinal 

velocity
[m/s]

lateral 
velocity

[m/s]

rotational 
velocity
[rad/s]

I 0.2 0 0
II -0.2 i 0.2 0 0

Simulations with two velocities

simulation no.
longitudinal 

velocity
[m/s]

lateral 
velocity

[m/s]

rotational 
velocity
[rad/s]

III 0.2 0.08 0
IV -0.2 i 0.2 -0.08 i 0.08 0

Simulations with three velocities

simulation no.
longitudinal 

velocity
[m/s]

lateral 
velocity

[m/s]

rotational 
velocity
[rad/s]

V 0.2 0.08 0.1
VI -0.2 i 0.2 -0.08 i 0.08 - 0.1 i 0.1

Every simulation was started from ψ0 = 0 [deg]. 
In order to determine the quality of control the following 

formula was used:

(25)

where:
n – number of measurements, 
x – reference signal value,
xre – output signal value received from the system.

a) Simulations for one velocity, with a given value of 
longitudinal velocity u = 0.2 [m/s]

Fig. 10. Graphs for three components of sideways movement. Solid line 
– received velocity, dashed line – given velocity. Left side – PID controller, 

right side LMI controller simulation results

Tab. 4. Comparison of average value deviations from given velocities

Velocity for PID 
controller

for LMI 
controller

longitudinal – u [m/s] 0.0004433 0.0009162
lateral – v[m/s] 0.0000000 0.0000010

rotational – r [rad/s] 0.0000004 0.0000501

Comment:
For the LMI controller the average deviation value 

from given longitudinal velocity was twice as big as for the 
PID controller. Settling time for the received velocity was 
comparable for both controllers. Unfortunately the average 
deviation value from given rotational velocity was significantly 
higher for the LMI controller than for the PID controller.

b) Simulations for two velocities, with given values of 
longitudinal velocity u = 0.2 [m/s] and lateral velocity 
v = 0.08 [m/s]

Fig. 11. Graphs for three components of sideways movement. Solid line 
– received velocity, dashed line – given velocity. Left side – PID controller, 

right side LMI controller simulation results.

Tab. 5. Comparison of average value deviations from given velocities

Velocity for PID 
controller

for LMI 
controller

longitudinal – u [m/s] 0.0004 0.0010
lateral – v[m/s] 0.0033 0.0002

rotational – r [rad/s] 0.0000 0.0004
Comment:
Average deviation value from given lateral velocity for 

the PID controller was unacceptable since the settling time 
was significantly higher than 2000 [s]. The deviation factor 
for lateral velocity was more than 30 times smaller for the 
LMI controller than for the PID controller. The remaining 
deviations for both controllers were considered standard and 
acceptable.

c) Simulations for three velocities, with given values 
of longitudinal velocity u = 0.2 [m/s], lateral velocity 
v = 0.08 [m/s] and rotational velocity r = 0.1 [rad/s]

Tab. 6. Comparison of average value deviations from given velocities

Velocity for PID 
controller

for LMI 
controller

longitudinal – u [m/s] 0.0004 0.0010
lateral – v[m/s] 0.0041 0.0002

rotational – r [rad/s] 0.0001 0.0002
Comment:
Comparing both controllers for this case the LMI controller 

had better parameters. Lateral velocity settling time was 
significantly shorter (approx. 1000 [s]) compared to PID 
controller (more than 2000 [s]). Deviation factor for lateral 
velocity was almost 40 times smaller for the LMI controller than 

Linear Matrix Inequalities in multivariable ship’s steering
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for the PID controller. For longitudinal and rotational velocities 
both controllers had comparable parameters.

Fig. 12. Graphs for three components of sideways movement. Solid line 
– received velocity, dashed line – given velocity. Left side – PID controller, 

right side LMI controller simulation results

d) Simulations for one velocity, with a given value of 
longitudinal velocity alternating between u = 0.2 [m/s] 
and u = - 0.2 [m/s] in time instant equal to 0[s], 600 [s], 
1100 [s] and 1600 [s]

Fig. 13. Graphs for three components of sideways movement. Solid line 
– received velocity, dashed line – given velocity. Left side – PID controller, 

right side LMI controller simulation results.

Tab. 7. Comparison of average value deviations from given velocities

Velocity for PID 
controller

for LMI 
controller

longitudinal – u [m/s] 0.0124 0.0152
lateral – v[m/s] 0.0000 0.0000

rotational – r [rad/s] 0.0001 0.0019
Comment:
Above simulations presented both controllers with given 

longitudinal velocity changes during the simulation. Average 
deviation value from given longitudinal velocity was similar for 
both controllers. The LMI controller however had worse results 
for given zero velocities, there have been some interference in 
the system. 

e) Simulations for two velocities, with given values of 
longitudinal velocity alternating between u = 0.2 [m/s]
and u = -0.2 [m/s] and lateral velocity alternating 
between v = 0.08 [m/s] and v = - 0.08 [m/s] in time instant 
equal to 0 [s], 600 [s], 1100 [s] and 1600 [s]

Fig. 14. Graphs for three components of sideways movement. Solid line 
– received velocity, dashed line – given velocity. Left side – PID controller, 

right side LMI controller simulation results

Tab. 8. Comparison of average value deviations from given velocities

Velocity for PID 
controller

for LMI 
controller

longitudinal – u [m/s] 0.0127 0.0133
lateral – v[m/s] 0.0041 0.0030

rotational – r [rad/s] 0.0001 0.0024
Comment:
In the above case both controllers were presented with given 

longitudinal and lateral velocity changes during the simulation. 
Looking at settling times and average deviation values from 
given velocities the LMI controller had worse results than in 
the previous case but they were still satisfactory as for this 
stage of the design.

f) Simulations for three velocities, with given values of 
longitudinal velocity alternating between u = 0.2 [m/s] 
and u = - 0.2 [m/s], lateral velocity alternating between 
v = 0.08 [m/s] and v = - 0.08 [m/s] and rotational velocity 
alternating between r = 0.2 [rad/s] and r = - 0.2[rad/s] in 
time instant equal to 0 [s], 600 [s], 1100 [s] and 1600 [s]

Fig. 15. Graphs for three components of sideways movement. Solid line 
– received velocity, dashed line – given velocity. Left side – PID controller, 
right side LMI controller simulation results

Linear Matrix Inequalities in multivariable ship’s steering
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Tab. 9. Comparison of average value deviations from given velocities

Velocity for PID 
controller

for LMI 
controller

longitudinal – u [m/s] 0.0125 0.0153
lateral – v[m/s] 0.0040 0.0031

rotational – r [rad/s] 0.0011 0.0076
Comment:
In the above simulations both controllers were presented 

with given longitudinal, lateral and rotational velocity changes 
during the simulation. Best results for the LMI controller were 
obtained for deviation values from given lateral velocity, for 
the other two velocities the PID controller presented better 
results. The LMI controller however, had better settling times 
than the PID controller. In the LMI controller, despite having 
a worse result for rotational velocity, the settling time was not 
affected as much as the settling time for lateral velocity in the 
PID controller.

CONCLUSIONS

This paper was based on results of simulations for a “Blue 
Lady” ship model trajectory simulator created in Matlab/
Simulink. For LMI calculations to be possible additional 
Yalmip and SeDuMi toolboxes had to be installed into Matlab 
libraries. Above simulations have proven that both the LMI 
and PID controllers have different proprieties. In order for the 
correct controller to be selected the brief foredesigns have to 
be taken into consideration. If the important factor would be 
the output signal settling time than the LMI controller would 
be the better choice. Despite having different average value 
deviations from given signals the LMI controller was more 
resistant to interference during the simulations. Furthermore 
the LMI controller was of the sixth stage and the control was 
multidimensional. In future studies external interference will be 
added to the system to allow further study of the controller.
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