
31POLISH MARITIME RESEARCH, Special Issue 2012/S1

INTRODUCTION

Development of control systems in recent years is

determined by the expansion of relatively cheap computing
power. This process is obviously present in the field of ship
motion control systems too. As a result one can observe
a progress from course keeping autopilots to trajectory tracking
autopilots and further to integrated motion control systems with
functionality of route planning, anti-collision subsystem and
advanced multi-variable autopilot [3].

Fig. 1. Block diagram of the proposed extension
of the ship motion control system

If the system is to be fully autonomous it should incorporate
block of trajectory determination for in-harbour and harbour
approaching manoeuvres. This task is significantly different
from open waters or restricted areas anti-collision manoeuvres.

The ship is moving with relatively small velocities and
trajectory should be determined simultaneously for position,
transversal and longitudinal velocities as well as heading
signals. Trajectory generator has to cooperate with multi-
variable autopilot capable to control all of mentioned signals
[3, 4, 8]. The proposed location of such block in ship motion
control system is shown in Fig. 1.

Present paper describes the results of application of
reinforcement learning (RL) algorithms to the generation of
a ship trajectory. RL applications in the ship motion control
system are quite rare. There are only a few examples in the
openly accessible bibliographical sources [7, 9, 12].

In the first section the idea of the reinforcement learning
and Markov decision processes (MDP) as a formal notation
of RL problem are discussed, They deliver theoretical
background of the algorithms. In the second and third sections
learning algorithms in the discrete and continuous domains are
presented. The results of computer simulations are shown in
section fourth. Fifth section concludes the paper.

REINFORCEMENT LEARNING AND
MARKOV DECISION PROCESSES

In reinforcement learning procedure a controller (agent)
interacts with the process (environment) by means of three
signals: a state signal which determines current state of the
process, action signal which is used by the controller to

Reinforcement Learning in Discrete
and Continuous Domains Applied

to Ship Trajectory Generation

Andrzej Rak, M. Sc.,
Witold Gierusz, Ph. D.,
Gdynia Maritime University

ABSTRACT

This paper presents the application of the reinforcement learning algorithms
to the task of autonomous determination of the ship trajectory during the
in-harbour and harbour approaching manoeuvres. Authors used Markov
decision processes formalism to build up the background of algorithm
presentation. Two versions of RL algorithms were tested in the simulations:
discrete (Q-learning) and continuous form (Least-Squares Policy Iteration).
The results show that in both cases ship trajectory can be found. However
discrete Q-learning algorithm suffered from many limitations (mainly curse

of dimensionality) and practically is not applicable to the examined task. On the other hand, LSPI gave
promising results. To be fully operational, proposed solution should be extended by taking into account

ship heading and velocity and coupling with advanced multi-variable controller.

Keywords: ship motion control; trajectory generation; autonomous navigation;
reinforcement learning; least-squares policy iteration

POLISH MARITIME RESEARCH Special Issue S1 (74) 2012 Vol 19; pp. 31-36
10.2478/v10012-012-0020-8

Reinforcement Learning in Discrete and Continuous Domains Applied to Ship Trajectory Generation

32 POLISH MARITIME RESEARCH, Special Issue 2012/S1

influence the process and a reward given by the reward function
which gives the measure of the controller performance (see
Fig. 2). In each consecutive time step the controller observes
a state of a process and issues an action to move the process to
a next state. At the same moment the reward function, based on
a state and chosen action, evaluates this move issuing value of
reward. In a next time instance whole procedure is repeated.
The goal of the reinforcement learning process is to find (learn)
a strategy of action selection for the controller which maximises
the cumulative reward in a long term.

Fig. 2. Interactions in the reinforcement learning process

The dynamics of the process can be deterministic or
stochastic. In this paper the deterministic case will be discussed:
it means we assume that in particular state choice of certain
action always gives the same next state1). Extension to the
stochastic case can be easy find in the references [1, 2, 10].

It is easy to notice that the problem of reinforcement
learning can be described in the Markov decision process
(MDP) formalism. Markov decision process is defined as
a quadruple (X, U, f, p) where X = {x1, x2, ..., xn} is finite
set of states; U = {u1, u2, ..., un} is finite set of actions and
f: X × U → X is transitions function determining the state
in a next time step:

xk+1 = f(xk, uk) (1)

At the same time the controller receives the value of reward
according to the reward function ρ: X × U → [:

rk+1 = ρ(xk, uk) (2)

where we assume that ||ρ||∞ = supx,u|ρ(x, u)|

The controller chooses action according to its own policy
h: X → U, using:

uk = h(xk) (3)

Taking into account above definitions we can state that
given functions f and ρ as well as current state xk and action uk
are sufficient to determine the next state xk+1 and reward rk+1.
This fulfils Markov property.

LEARNING IN DISCRETE SPACE

As we mentioned in the previous section, the goal of RL
is to find an optimal policy that maximises the return from
any initial state x0. The return is cumulative value of rewards
collected along a trajectory originating in x0. There exist a few
types of return definitions. We will use one of them; infinite
horizon discounted sum:

(4)

The infinite horizon return has better theoretical properties
leading to the stationary optimal policies. But in a practical
case the sum is limited by the number of steps in a trajectory
between initial and final states.

Discount factor γ controls a trade-off between the quality of
the solution and convergence rate of RL algorithm and usually
is set by trial and error procedure.

A convenient way to represent policies are their value
functions [10]. In an area of RL two types value functions are
used: state value function (V) and state-action value function
(Q). The latter one is more general and incorporates the first. In
this section algorithms based on the Q-functions are presented.
It is a mapping Qh: X × U → [and represents a reward of
choosing action u in a state x according to the followed policy
h cumulated with the return from the next state [1].

(5)

The optimal Q-function is defined as the best Q-function
that can be obtained by any policy:

(6)

Any policy h* that selects at each state an action with the
largest optimal Q-value i.e., that satisfies;

(7)

is optimal. In general, for a given Q-function Q, a policy h
that satisfies:

(8)

is said to be greedy in Q. So finding an optimal policy can be
done by first finding Q*, and then using (7) to compute a greedy
policy in it. If a process for which the learning is applied (Fig.
2) is known (we have exact model of the process), Q-functions
Qh and Q* can be easily found from the iterative Bellman
equations [2, 10]. This leads to the dynamic programming
Q-iteration algorithms [1].

In the case of RL the model of the process is unknown, so
the next state and reward values are collected in the interactions
with it. Therefore these algorithms are often called model-free.
One of them, most widely used, is Q-learning:

(9)

where ak ∈ (0,1] is the learning rate. The term between square
brackets is the temporal difference, i.e., the difference between
the updated estimate of the optimal
Q-value of (xk, uk) and the current estimate Qk(xk, uk).

As the number of transitions k approaches infinity
Q-learning asymptotically converges to Q* if the state and
action spaces are discrete and finite, and under the following
conditions [11]:

- the sum gives a finite value, whereas the sum
produces an infinite value.

- all the state-action pairs are (asymptotically) visited
infinitely often.

The first condition is easy to satisfy. To fulfil the second
one, a stochastic parameter ε is introduced. It represents the
probability of selection of any action in encountered state. This
is called exploration. On the contrary, the controller should
also exploit current knowledge to improve performance by

1) This condition is partly violated by the need of exploration of
the discrete RL algorithms [10].

Reinforcement Learning in Discrete and Continuous Domains Applied to Ship Trajectory Generation

33POLISH MARITIME RESEARCH, Special Issue 2012/S1

selecting greedy actions in the current Q-function. The balance
of exploration-exploitation is usually implemented in a form
of ε-greedy exploitation [10].

The complete algorithm, developed from equation (9) is
presented in the frame Algorithm 1 in this section. This version
of Q-learning was used in the computer simulations.

LEARNING IN CONTINUOUS SPACES
USING FUNCTION APPROXIMATORS

Discrete algorithm for RL has a significant drawback.
It requires an exact representation of a value function and
policy. It means distinct values of the return estimates for
each state-action pair has to be stored as well as actions for
every state. When an action space or state space is large this
can be extremely difficult or practically impossible. To reduce
a number of parameters that has to be stored approximation
techniques are used.

Generally in the RL algorithms approximation is used
not only for function representation. Policy iteration which
will be introduced in the subsequent parts of this paper must
repeatedly solve potentially difficult maximisation problems
over the action variables (policy evaluation). This can be done
by sample-based approximation. In this research parametric
approximation was used.

Parametric approximators are mappings from a parameter
space into a space of functions [6]. The functional form of the
mapping and the number of parameters are usually set by the
skilled operator in advance and do not depend on data collected
during the interaction with the process. The parameters are
tuned using the data about target function.

Let as consider the Q-function approximator parameterised
by an n-dimensional vector θ. The approximator is the mapping
F: n → where n is the parameter space and is the space
of Q-functions. Every parameter vector θ provides a compact
representation of a corresponding approximate Q-function:

(x,u) = [F(θ)](x,u) (10)

where [F(θ)](x,u) denotes the Q-function evaluated at the state-
action pair (x,u). Therefore, instead of storing distinct Q-values
for every pair (x,u), it is only necessary to store n parameters.
But, it must be noticed that, since the set of Q-functions represent
by F is only a subset of any arbitrary Q-function, it can be
reproduced only up to the certain approximation error [5].

The mapping F(θ) can be generally non-linear. However,
linearly parameterised approximators are preferred because they
simplify an analysis of resulting RL algorithm. In presented
algorithms we use linear approximators built with n Gaussian

normalised radial basis functions (BF) φ1, ... φn: X × U → [
and n-dimensional vector of parameters θ. Approximate values
were therefore computed as:

(11)

Let us consider now model-based value iteration with
parametric approximation. This procedure explains the ideas
used in a final algorithm. One can observe that iteration formula
(9) rewritten for model-based case can be generally stated as:

Ql+1 = T(Q1) (12)

for consecutive l iterations, where T is Q-iteration mapping [1].
In approximate Q-iteration Q1 cannot be represented exactly.
Therefore, an approximation (10) has to be used:

(13)

Using this approximation in iteration formula (12) leads to:

(14)

But the function T cannot be stored explicitly either.
Instead it is represented by approximation using new parameter
vector θl+1. This vector is specified by the projection mapping
P : → n:

(15)

which should keep 1+1 = F(θ1+1) as close as possible to .
Usually a least-squares regression is chosen for P. Finally,
approximate Q-iteration is a composition of mappings:

θ1+1 = (P ◦ T ◦ F)(θ1) (16)
The algorithm should be stopped when suitable parameter

vector is found. Eventually the estimate should be kept
as close as possible to the fixed point θ* of iteration (16). The
whole procedure is illustrated on Fig. 3. The cycle of mappings:
Q-value approximation (F), Q-iteration (T) and projection back
to parameter space (P) is repeated until fixed point θ* is reached.

Fig. 3. An idea of approximate Q-iteration

Similar considerations lead to the analogous approximate
policy evaluation algorithm for Q-functions. This algorithm
starts from arbitrary chosen vector of parameters and updates
this vector in every iteration τ using:

(17)

As we mentioned before, approximators used in these
considerations have linear properties. Based on this, it is
possible to derive projected Bellman equation. Because state
and action spaces are now finite by assumption we can rewrite
policy evaluation mapping Th.

(18)

Reinforcement Learning in Discrete and Continuous Domains Applied to Ship Trajectory Generation

34 POLISH MARITIME RESEARCH, Special Issue 2012/S1

In a linear case approximate Q-function that has the form
of (13) can be written as:

(19)

where φ(x,u) = [φ1(x,u), ..., φn(x,u)]2 is the vector of BFs
and θh is the vector of parameters. This relationship satisfies
approximate version of Bellman equation (projected Bellman
equation):

(20)

where Pw performs a weighted least-squares projection onto
the space of approximate Q-functions spanned by the BFs. To
derive proper algorithm let us rewrite (18) in a matrix form:

(21)

Using symbols φ to denote BF matrix and w to denote
diagonal weight matrix of Pw we can write:

 = φθ (22)

and Bellman equation (20) as:

PwTh(h) = h (23)

Rearranging this equation and substituting:

Г = φTwφ
(24)

the projected Bellman equation can be written in a final
form:

Гθh = γΛθh + z (25)

Solving this equation leads directly to the Least-Squares
Policy Iteration (LSPI) algorithm presented in a frame
Algorithm 2 [6].

This procedure was employed in simulation software
used to the generation of the ship trajectory in a continuous
state space. The next section presents some of the simulation
results.

EXAMPLE OF SHIP TRAJECTORY

GENERATION FOR NAVIGATION IN
RESTRICTED WATERS

The simulation experiments were done in the MATLAB
environment. First the Q-learning algorithm was tested. Two
variants were implemented:
- Classic one: where the state transition can be done only

to the neighbour-state in the discrete grid. It means that
there are seven possible actions to chose. Six of them are
“king moves” [10] to the neighbour state, and seventh is
the loopback to the current state. The value function was
set to -1 for all state transfers except last move to the goal
state which yields 0 reward2).

- Modified one: prepared to overcome limitations of
neighbour-state only transitions. In this case action chosen
can “jump” from every state to the any of states that are not
blocked by obstacles. The reward is equal to the negative
Euclidean distance from k + 1 state to the goal state. In this
case action value function has to store n2 distinct values,
where n is the number of states in the whole grid.

The results of the simulation for classic (step-by-step)
variant are depicted on Fig. 4 and Fig. 5. Q-value function
on Fig. 4 is marked by colours. More red for particular state
means that the return (negative) associated with this state is
bigger. It is easy to notice that trajectories from all states will
tend towards the goal state; even starting point for the learning
algorithm was not changed. This property is a result of ε-greedy
exploration part of the Algorithm 1.

Fig. 4. Q-value surface of Q-learning with step-by-step type strategy.
Corresponding proposed trajectory is presented on the Fig. 5.

Obstacles are dark blue. (2500 episodes)

The corresponding greedy trajectory originating from the
starting state (9, 14) is shown on Fig. 5. It can be easy noticed
that it is not unique trajectory passing minimal number of state
on the way to the goal.

Results of the second variant (point-to-point) of the Q-
learning algorithm are presented in Fig. 6. In this and next figure
the colour map for values is reversed. Except modifications
mentioned above, one more change to the standard algorithm

2) Very often the reward is of negative value. It means it works as
a “punishment”, not a “reward”. However it is a standard in RL not
to change the term “reward” even for negative values.

Reinforcement Learning in Discrete and Continuous Domains Applied to Ship Trajectory Generation

35POLISH MARITIME RESEARCH, Special Issue 2012/S1

was done. Along with the obstacle collision check in every step,
there is a test if there exists straight, direct path from the current
state to the goal. If so, then the state transition is done directly
to the goal and algorithm finishes. This modification caused
brown “shadows” over certain states of the grid. Because these
states lie on the “open” side of the obstacles, learning algorithm
did not “visit” them. The proposed modifications accelerated
convergence of the solution.

Fig. 5. Final greedy trajectory of Q-learning with step-by-step type strategy
- see Fig. 4 (2500 episodes)

Fig. 6. Results of Q-learning with point-to-point type strategy.
Proposed trajectory is marked by the red doted line.

Obstacles are white. (15 000 episodes)

On the contrary to the step-by step variant this one produces
unique, broken-line trajectory. Unfortunately, this version is
exceptionally computing power demanding. On the Fig. 4
there are 15 x 15 = 225 states in the grid. Multiplying them by

7 possible actions yields 1575 state-action pairs for Q-function
evaluation. The same grid for the second case will give
(15 × 15)2 = 50525 state action pairs to process. This number
will expand very quickly if one wants to improve the precision
of the ship positioning by the grid refinement or supplement
a heading angle.

It means that Q-learning algorithms in a discrete version
are of limited usability for manoeuvring ship trajectory
generation.

Last figure presents the LSPI approximate Q-value surface
(precisely: one of the cross sections through it) given by linear
approximation over a (5x5) grid of RBFs. Additionally, action
space was also approximated by (11x11) grid of RBFs. As
one can notice, there is not the starting point for the learning
algorithm. Version of the LSPI algorithm implemented in
the research works in a batch mode doing calculations off-
line for all previously collected data samples. The starting
point was set to show only an exemplary trajectory. Whole
surface is parameterised, therefore the problem of the grid
scale mentioned earlier vanishes. The same factor makes it
susceptible to heading control extension.

Fig. 7. Least-Squares Policy Iteration. Surface of approximate
Q-value function with proposed trajectory.

Obstacle is white. (11 iterations for 17000 samples)

CONCLUSIONS

Results of the research presented in a previous section
allow conclude that:
- The discrete Q-learning algorithms can be used for ship

trajectory generation only when precision of the motions
is not of major importance or the maneuvring area is
significantly small.

- Point-to-point version of the algorithm is very vulnerable
to the curse of dimensionality.

- Off-line, continuous domain, LSPI algorithm seems to
be good alternative to the discrete Q-learning. To test all
its properties in a context of ship trajectory generation,
it should be expanded to incorporate heading set-point
values and, in a next step, longitudinal and transversal
velocities.

Reinforcement Learning in Discrete and Continuous Domains Applied to Ship Trajectory Generation

36 POLISH MARITIME RESEARCH, Special Issue 2012/S1

BIBLIOGRAPHY

1. Busoniu L., Babuska R., De Schutter B., Ernst D.:
Reinforcement Learning and Dynamic Programming Using
Function Approximators. CRC Press. Automation and Control
Engineering Series. 2010.

2. Cichosz P.: Learning Systems. WNT. Warszawa 2000. (in
Polish).

3. Gierusz W.: Synthesis of Multi-variable systems of Precise Ship
Motion Control Using Selected Robust Control Design Methods.
Gdynia Maritime University. 2005. (in Polish).

4. Gierusz W., Nguyen Cong V., Rak A.: Maneuvering Control
and Trajectory Tracking of Very Large Crude Carrier, Ocean
Engineering, 2007. No 34, pp. 932-945.

5. Kudrewicz J.: Functional Analysis for Control and Electronics
Engineers. PWN. Warszawa 1976. (in Polish).

6. Lagoudakis M. G., Parr R.: Least-Squares Policy Iteration.
Journal of Machine Learning Research. 2003. Vol. 4,
pp. 1107-1149.

7. Mitsubori K., Kamio T., Tanaka T.: On a Course Determination
based on the Reinforcement Learning in Maneuvering motion of
a ship with the tidal current effect. International Symposium on
Nonlinear Theory and its Applications. Xi’an 2002.

8. Morawski L., Nguyen Cong V., Rak A.: Full-Mission Marine
Autopilot Based on Fuzzy Logic Techniques. Gdynia Maritime
University. 2008.

9. Rak A.: Application of Reinforcement Learning to Ship Motion
Control Systems. Zeszyty Naukowe AM w Gdyni. 2009. No 62,
pp. 133-140. (in Polish).

10. Sutton R. S., Barto A. G.: Reinforcement Learning An
Introduction. MIT Press. 1998.

11. Watkins C. J. C. H., Dayan P.: Q-learning. Machine Learning.
1992. Vol. 8, no 3-4, pp. 279-292.

12. Zhipeng S., Chen G., Jianbo S.: Reinforcement learning control
for ship steering based on general fuzzified CMAC. Proc. of 5-th
Asian Control Conference. 2005. Vol. 3, pp. 1552-1557.

CONTACT WITH THE AUTHOR
Andrzej Rak, M. Sc.,

Witold Gierusz, Ph. D.,
Faculty of Marine Electrical Engineering,

Gdynia Maritime University,
Morska 81-87

81-225 Gdynia, POLAND
e-mail: anrak@am.gdynia.pl

e-mail: wgierusz@am.gdynia.pl

Reinforcement Learning in Discrete and Continuous Domains Applied to Ship Trajectory Generation

