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1. Introduction
In ordinary space, commutation relations for coordi-

nates and momenta

[X1,X2] = 0 (1)

[X1,P1] = [X2,P2] = ih̄, (2)

[P1,P2] = 0, (3)

are invariant upon time reversal [1].
If we consider transformations of coordinates and

momenta upon time reversal as in the ordinary case

Xi → Xi, (4)

Pi →−Pi, (5)

taking into account that in the quantum case the time re-
versal operation also involves the operation of complex
conjugation [1], in the case of a noncommutative algebra
of the canonical type

[X1,X2] = ih̄θ , (6)

[X1,P1] = [X2,P2] = ih̄(1+ γ), (7)

[P1,P2] = ih̄η , (8)

with θ , η , γ being the parameters of noncommutativity,
we find

[X1,X2] =−ih̄θ , (9)

[X1,P1] = [X2,P2] = ih̄(1+ γ), (10)

[P1,P2] =−ih̄η . (11)

In the present paper, we introduce an algebra with
noncommutativity of coordinates and noncommutativity
of momenta that does not lead to the violation of rota-
tional and time-reversal symmetries and is equivalent
to the noncommutative algebra of the canonical type.
Within this algebraic framework, the motion of a system
of free particles is studied, and the spectrum of particles
in a uniform field is determined. Additionally, the motion
in a gravitational field is analyzed. We obtain a stringent
upper bound for the momentum scale based on studies of
the perihelion shift of the planet Mercury.

The paper is organized as follows. In Section 2 trans-
formation of noncommutative coordinated and noncom-
mutative momenta upon time reversal is considered. In
Section 3, circular motion is studied in a noncommutative
phase space of the canonical type. In Section 4, we con-
struct an algebra that is rotationally invariant and does
not lead to the breaking of time-reversal symmetry. Sec-

tion 5 studies themotion of a free particle system in a non-
commutative phase space with preserved rotational and
time-reversal symmetries. Section 6 is devoted to study-
ing the energy of a particle in a uniform field in noncom-
mutative phase space. In Section 7, the motion of a par-
ticle in a uniform gravitational field is analyzed, and the
weak equivalence principle is examined. In Section 8, the
equivalence principle is studied in the case of motion in
a non-uniform gravitational field. Section 9 is devoted to
the calculation of the perihelion shift of the planet Mer-
cury in a rotationally invariant and time-reversal invari-
ant noncommutative phase space. In Section 10, upper
bounds for the parameters of coordinate noncommutativ-
ity and momentum noncommutativity are obtained. The
conclusions are presented in Section 11

Results presented in this paper are published in [2–
4].

2. Transformation of noncommu-
tative coordinates and non-
commutative momenta upon
time-reversal
Because of (9)-(11) the transformation of coordinates

and momenta Xi, Pi after time reversal depends on rep-
resentation. Noncommutative coordinates and momenta
satisfying (6)-(8) can be represented by coordinates and
momenta that satisfy the ordinary commutation relations
as

X1 = ε
(
x1 −θ

′
1 p2
)
, (12)

X2 = ε
(
x2 +θ

′
2 p1
)
, (13)

P1 = ε
(

p1 +η
′
1x2
)
, (14)

P2 = ε
(

p2 −η
′
2x1
)
. (15)

Here ε , θ ′
1, θ ′

2, η ′
2, η ′

2 are constants.
After time reversal, if we consider transformations

for coordinates and momenta as in ordinary space xi → xi,
pi →−pi, we obtain

X1 → X ′
1 = ε

(
x1 +θ

′
1 p2
)
, (16)

X2 → X ′
2 = ε

(
x2 −θ

′
2 p1
)
, (17)

P1 →−P′
1 = ε

(
−p1 +η

′
1x2
)
, (18)

P2 →−P′
2 = ε

(
−p2 −η

′
2x1
)
. (19)

The results (16)-(19) depend on the parameters ε , θ ′
1, θ ′

2,
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η ′
2, η ′

2. So, the transformation of the noncommutative co-
ordinates depends on the representation.

One can choose parameters ε , θ ′
1, θ ′

2, η ′
2, η ′

2 in differ-
ent ways. On the basis of (12)-(15) we can write

[X1,X2] = ih̄ε
2(θ ′

1 +θ
′
2), (20)

[X1,P1] = ih̄ε
2(1+θ

′
1η

′
1) (21)

[X2,P2] = ih̄ε
2(1+θ

′
2η

′
2), (22)

[P1,P2] = ih̄ε
2(η ′

1 +η
′
2). (23)

Comparing (6)-(8) and (20)-(23) we obtain

ε
2 = 1, θ

′
1η

′
1 = θ

′
2η

′
2 = γ, (24)

θ
′
1 +θ

′
2 = θ , (25)

η
′
1 +η

′
2 = η . (26)

Based on the equations, we find

θ
′
1 =

1
2

(
θ ±

√
θ 2 −4

θγ

η

)
, (27)

θ
′
2 =

1
2

(
θ ∓

√
θ 2 −4

θγ

η

)
, (28)

η
′
1 =

1
2

(
η ∓

√
η2 −4

ηγ

θ

)
, (29)

η
′
2 =

1
2

(
η ±

√
η2 −4

ηγ

θ

)
, (30)

and γ ≤ θη/4. So, we have two different representations
for noncommutative coordinates and noncommutative
momenta. These representations determine two different
transformations after time reversal (16)-(19).

Well-known is the symmetric representation

ε = 1, (31)

θ
′
1 = θ

′
2 =

θ

2
, (32)

η
′
1 = η

′
2 =

η

2
. (33)

In this case

γ =
θη

4
, (34)

see [5]. If γ = 0, one has the ordinary commutation rela-
tion for coordinates and momenta. The commutator for
coordinates and momenta is equal to ih̄. Taking into ac-

count (6)-(8), (20)-(23), γ = 0 we have

ε
2 =

1
1+θ ′

1η ′
1
, (35)

θ
′
1η

′
1 = θ

′
2η

′
2, (36)

ε
2(θ ′

1 +θ
′
2) = θ , (37)

ε
2(η ′

1 +η
′
2) = η , (38)

One has one free parameter. Namely, five parameters ε ,
θ ′

1, θ ′
2, η ′

1, η ′
2 are related with four equations (35)-(38). So,

by choosing one of the parameters one can obtain differ-
ent representations for noncommutative coordinates and
momenta which satisfy (6)-(8) with γ = 0. So, one can
write different transformations after time reversal (16)-
(19).

If we choose θ ′
2 = 0 we find ε = 1, η ′

1 = 0, η ′
2 = η ,

θ ′
1 = θ . The representation is the following

X1 = x1 −θ p2, (39)

X2 = x2, (40)

P1 = p1, (41)

P2 = p2 −ηx1. (42)

So, upon time reversal the coordinate X2, and mo-
mentum P1 transform as in ordinary space X2 → X2, P1 →
−P1. For coordinates and momenta X1, P2 we obtain

X1 → X ′
1 = x1 +θ p2, (43)

P2 →−P′
2 =−p2 −ηx1. (44)

If we choose

ε = (1+θ
′
η
′)−

1
2 , (45)

θ
′
1 = θ

′
2 =

1±
√

1−θη

η
, (46)

η
′
1 = η

′
2 =

1±
√

1−θη

θ
, (47)

we can write two symmetric representations (12)-(15) [5,
6]. These representations also lead to different transfor-
mations under the time reversal.
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3. Circular motion in noncommuta-
tive phase space of the canonical
type
Considering the Hamiltonian

H =
P2

1
2m

+
P2

2
2m

− k
X
, (48)

(here X =
√

X2
1 +X2

2 ) and taking into account that coor-
dinates and momenta Xi, Pi satisfy relations of noncom-
mutative algebra of the canonical type, we find

Ẋ1 =
P1

m
(1+ γ)+

kθX2

X3 , (49)

Ẋ2 =
P2

m
(1+ γ)− kθX1

X3 , (50)

Ṗ1 =
ηP2

m
− kX1

X3 (1+ γ) , (51)

Ṗ2 =−ηP1

m
− kX2

X3 (1+ γ) . (52)

Solutions of the equations that correspond to the circular
motion read

X1(t) = R0 cos(ωt), (53)

X2(t) = R0 sin(ωt), (54)

P1(t) =−P0 sin(ωt), (55)

P2(t) = P0 cos(ωt). (56)

Here R0 is the radius of the circle. The momentum reads

P0 =
mωR3

0 + kmθ

R2
0 (1+ γ)

, (57)

and frequency is defined as

ω =
1
2

√ 4k
mR3

0
((1+ γ)2 −θη)+

(
kθ

R3
0
+

η

m

)2

+

− η

m
− kθ

R3
0

)
. (58)

For the period of motion, we have

T = 4π

√ 4k
mR3

0
((1+ γ)2 −θη)+

(
kθ

R3
0
+

η

m

)2

+

− η

m
− kθ

R3
0

)−1

. (59)

If we study the motion in the opposite direction with
the same radius R0, we find

X1(t) = R0 cos(ωt), (60)

X2(t) =−R0 sin(ωt), (61)

P1(t) = P′
0 sin(ωt), (62)

P2(t) = P′
0 cos(ωt). (63)

Here we use notions P′
0 to distinguish momentum in the

case of motion in the opposite direction. Using (60)-(63),
(49)-(52) we find

ω
′ =

1
2

√ 4k
mR3

0
((1+ γ)2 −θη)+

(
kθ

R3
0
+

η

m

)2

+

+
η

m
+

kθ

R3
0

)
, (64)

T ′ = 4π

√ 4k
mR3

0
((1+ γ)2 −θη)+

(
kθ

R3
0
+

η

m

)2

+

+
η

m
+

kθ

R3
0

)−1

, (65)

and the momentum reads

P′
0 =−

mω ′R3
0 − kmθ

R2
0 (1+ γ)

. (66)

It is important to stress that the expressions (58), (59), (64),
(65) are different. We have

∆ω = ω
′−ω =

η

m
+

kθ

R3
0
. (67)

Expressions for ω ′, T ′ contain terms with parameters of
noncommutativity with opposite signs in comparison to
(58), (59). It is also important to stress that P′

0 ̸= −P0. All
these conclusions are caused by the breaking of the time-
reversal symmetry in the noncommutative phase space of
the canonical type.
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4. Noncommutative phase space
with preserved time reversal
and rotational symmetries
To preserve rotational and time-reversal symmetries

in noncommutative space, we introduce tensors of non-
commutativity θi j, ηi j that transform under the time re-
versal as follows

θi j →−θi j, (68)

ηi j →−ηi j. (69)

and read

θi j =
cθ

h̄ ∑
k

εi jk pa
k , (70)

ηi j =
cη

h̄ ∑
k

εi jk pb
k . (71)

Here cθ , cη are constants, and pa
i , pb

i are additional mo-
menta that correspond to harmonic oscillators

Ha
osc =

(pa)2

2mosc
+

moscω2a2

2
, (72)

Hb
osc =

(pb)2

2mosc
+

moscω2b2

2
. (73)

with very large frequency ω and
√

h̄/
√

moscω = lP, lP is
the Planck’s length. So, rotationally-invariant and time-
reversal invariant algebra reads

[Xi,X j] = icθ ∑
k

εi jk pa
k , (74)

[Xi,Pj] = ih̄
(

δi j +
cθ cη

4h̄2 (pa ·pb)δi j −
cθ cη

4h̄2 pa
j pb

i

)
, (75)

[Pi,Pj] = icη ∑
k

εi jk pb
k . (76)

Additional coordinates and additional momenta satisfy
the ordinary commutation relations.

It is important to stress that independently of rep-
resentation coordinates and momenta upon time reversal
transforms as Xi → Xi, Pi → −Pi. Coordinates and mo-
menta which satisfy relations of noncommutative algebra
(74)-(76) can be represented as

Xi = xi +
cθ

2h̄
[pa ×p]i, (77)

Pi = pi −
cη

2h̄
[x×pb]i, (78)

where operators xi, pi satisfy the ordinary relations

[xi,x j] = [pi, p j] = 0, (79)

[xi, p j] = ih̄δi j. (80)

Upon time reversal, we have

xi → xi, (81)

pi →−pi, (82)

pa
i →−pa

i , (83)

pb
i →−pb

i . (84)

So, from (77), (78) we obtain that upon time reversal non-
commutative coordinates and noncommutative momenta
transform as

Xi → Xi, (85)

Pi →−Pi. (86)

Also, it is important that algebra (74)-(76) is rotation-
ally invariant. After transformations

X ′
i =U(ϕ)XiU+(ϕ), (87)

P′
i =U(ϕ)PiU+(ϕ), (88)

pa′
i =U(ϕ)pa

i U+(ϕ), (89)

pb′
i =U(ϕ)pb

i U+(ϕ), (90)

we have

[X ′
i ,X

′
j] = icθ ∑

k
εi jk pa′

k , (91)

[X ′
i ,P

′
j] = ih̄

(
δi j +

cθ cη

4h̄
(pa′ ·pb′)δi j −

cθ cη

4h̄
pa′

j pb′
i

)
, (92)

[P′
i ,P

′
j] = icη ∑

k
εi jk pb′

k , (93)

where U(ϕ) = exp(iϕ(n ·Lt)/h̄), with Lt = [x×p]+ [a×
pa]+ [b×pb].

The algebra is consistent. This follows from the ex-
plicit representation (77), (78).
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5. Effect of noncommutativity of
momentum on the motion of
a system of free particles in
time reversal and rotationally
invariant noncommutative space
Let us consider a system of N particles in time-

reversal and rotationally invariant noncommutative
phase space. The Hamiltonian reads

H = ∑
n

(P(n))2

2mn
+Ha

osc +Hb
osc. (94)

Here index n labels the particles. Using representation
for noncommutative momenta with coordinates and mo-
menta satisfying the ordinary commutation relation, we
can write

H = ∑
n

(
(p(n))2

2mn
− (ηηη(n) ·L(n))

2mn
+

[ηηη(n)×x(n)]2

8mn

)
+

+ h̄ωosc

(
(p̃a)2

2
+

ã2

2

)
+ h̄ωosc

(
(p̃b)2

2
+

b̃2

2

)
,

(95)

where L(n) reads

L(n) = [x(n)×p(n)]. (96)

In the case of a system of free particles, we have the fol-
lowing expressions for H0 and ∆H

H0 = ∑
n

(
(p(n))2

2mn
+

⟨(η(n))2⟩(x(n))2

12mn

)
+

+ h̄ωosc

(
(p̃a)2

2
+

ã2

2

)
+

+ h̄ωosc

(
(p̃b)2

2
+

b̃2

2

)
, (97)

∆H = ∑
n

(
−(ηηη(n) ·L(n))

2mn
+

+
[ηηη(n)×x(n)]2

8mn
− ⟨(η(n))2⟩(x(n))2

12m

)
. (98)

So, up to the second order in the parameter of momentum
noncommutativity we can study Hamiltonian H0.

It is important that the following commutation rela-

tion is satisfied[
∑
n

(
(p(n))2

2mn
+

⟨(η(n))2⟩(x(n))2

12mn

)
,Ha

osc +Hb
osc

]
= 0.

(99)

Coordinates x(n)i and momenta p(n)i satisfy the ordinary
commutation relations and therefore in the classical limit
they satisfy the ordinary Poisson brackets. We have

{x(n)i ,x(m)
j }= 0, (100)

{x(n)i , p(m)
j }= δi jδnm, (101)

{p(n)i , p(m)
j }= 0. (102)

So, the Hamiltonian that describes a system of free parti-
cles reads

Hs = ∑
n

(
(p(n))2

2mn
+

⟨(η(n))2⟩(x(n))2

12mn

)
. (103)

It corresponds to a Hamiltonian of a system of harmonic
oscillators with frequencies determined by the parameters
of momentum noncommutativity ⟨(η(n))2⟩ in the follow-
ing way

ωn =

√
⟨(η(n))2⟩

6m2
n

. (104)

On the basis of expression (103) we can write the fol-
lowing equations

x(n)i (t) = x(n)0i cos

√⟨(η(n))2⟩
6m2

n
t

+

+ υ
(n)
0i

√
6m2

n

⟨(η(n))2⟩
sin

√⟨(η(n))2⟩
6m2

n
t

 ,

(105)

where x(n)0i , υ
(n)
0i are the initial coordinates and initial ve-

locity. It is important to stress that the trajectory of a free
particle (151) depends onmass. This is because of the non-
commutativity of momenta. As a result, even in the case
when all particles have the same velocities υ

(n)
0i = υ0i the

free particles fly away. For the trajectory of the center-of-
mass and the relative motion we have the following ex-
pressions
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x̃i(t) = ∑
n

µnx(n)0i cos

√⟨(η(n))2⟩
6m2

n
t

+

+ ∑
n

µnυ
(n)
0i

√
6m2

n

⟨(η(n))2⟩
sin

√⟨(η(n))2⟩
6m2

n
t

 ,

(106)

∆x(n)i (t) = x(n)0i cos

√⟨(η(n))2⟩
6m2

n
t

+

+ υ
(n)
0i

√
6m2

n

⟨(η(n))2⟩
sin

√⟨(η(n))2⟩
6m2

n
t

+

− ∑
l

µlx
(l)
0i cos

(√
⟨(η(l))2⟩

6m2
l

t

)
+

+ ∑
l

µlυ
(l)
0i

√
6m2

l

⟨(η(l))2⟩
sin

(√
⟨(η(l))2⟩

6m2
l

t

)
,

(107)

where µn = mn/∑l ml . It is important to stress that if the
tensor of momentum noncommutativity is defined as

η
(n)
i j =

α̃mnh̄
l2
P

∑
k

εi jk p̃b
k , (108)

(here constant α̃ does not depend on mass), we can write

⟨(η(n))2⟩
m2

n
=

3h̄2
α̃2

2l4
P

= B. (109)

Here we use notation B for a constant which is the same
for particles with different masses. Taking into account
(200), we have the following expression for the trajectory

x(n)i (t) = x(n)0i cos

(√
B
6

t

)
+υ

(n)
0i

√
6
B

sin

(√
B
6

t

)
.

(110)

If the initial velocities are the same

υ
(n)
0i = υ0i, (111)

the trajectory of the center-of-mass reads

x̃i(t) = x̃0i cos

(√
B
6

t

)
+υ0i

√
6
B

sin

(√
B
6

t

)
. (112)

Here

x̃0i = ∑
n

µnx(n)0i , (113)

and the relative coordinates of particles do not depend on
time

∆x(n)i (t) = x(n)0i − x̃0i. (114)

So, the dependence of the parameter of momentum
noncommutativity on mass is important for solving the
problem of flying away from a system of free particles.

6. Exact results for energy and
wavefunctions of a particle in a
uniform field in noncommuta-
tive phase space
We examine a particle withmassm in a uniform field.

The Hamiltonian reads

Hp =
P2

2m
−αX3, (115)

α is a constant. Without loss of generality, we study the
case when the field is pointed in the X3 direction (in (115).
The total Hamiltonian reads

H =
P2

2m
−αX3 +

(pa)2

2mosc
+

moscω2
osca2

2
. (116)

Using representation for noncommutative coordinates
and noncommutative momenta, we can write

H =
p2

2m
−αx3 −

1
2
[θθθ ×p]3 +

(pa)2

2mosc
+

moscω2
osca2

2
=

=
p2

2m
−αx3 −

αcθ

2h̄
(pa

1 p2 − pa
2 p1)+

(pa)2

2mosc
+

+
moscω2

osca2

2
. (117)

Let us rewrite Hamiltonian (117) as follows
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H =

(
1−

α2c2
θ

mmosc

4h̄2

)
p2

1
2m

+

+

(
1−

α2c2
θ

mmosc

4h̄2

)
p2

2
2m

+
p2

3
2m

−αx3 +

+
1

2mosc

(
pa

1 −
αcθ mosc

2h̄
p2

)2
+

+
1

2mosc

(
pa

2 +
αcθ mosc

2h̄
p1

)2
+

(pa
3)

2

2mosc
+

+
moscω2

osca2
1

2
+

moscω2
osca2

2
2

+
moscω2

osca2
3

2
.

(118)

It is important to note that operators

H̃p =

(
1−

α2c2
θ

m
4h̄ωoscl2

P

)
p2

1
2m

+

+

(
1−

α2c2
θ

m
4h̄ωoscl2

P

)
p2

2
2m

+
p2

3
2m

−αx3, (119)

H̃osc =
1

2mosc

(
pa

1 −
αcθ

2ωoscl2
P

p2

)2

+

+
1

2mosc

(
pa

2 +
αcθ

2ωoscl2
P

p1

)2

+

+
(pa

3)
2

2mosc
+

moscω2
osca2

1
2

+
moscω2

osca2
2

2
+

+
moscω2

osca2
3

2
, (120)

commute

[H̃p, H̃osc] = 0. (121)

The Hamiltonian of the particle H̃p can be rewritten as

H̃p = H̃1 + H̃2 + H̃3, (122)

where

H̃1 =
p2

1
2me f f

, (123)

H̃2 =
p2

2
2me f f

, (124)

H̃3 =
p2

3
2m

−αx3, (125)

[H̃1, H̃2] = [H̃2, H̃3] = [H̃1, H̃3] = 0, (126)

with effective mass

me f f = m
(

1−
α2c2

θ
mmosc

4h̄2

)−1

=

= m
(

1−
α2c2

θ
m

4h̄ωoscl2
P

)−1

. (127)

It is important to mention that x3, p3 in H̃3 satisfy the
ordinary commutation relations. So, Hamiltonian H̃3 is
the Hamiltonian of a particle in a uniform field in ordinary
space. Let us introduce

p̃a
1 = pa

1 −
αcθ

2ωoscl2
P

p2, (128)

p̃a
2 = pa

2 +
αcθ

2ωoscl2
P

p1, (129)

p̃a
3 = pa

3. (130)

So, we can write (120) as follows

H̃osc =
(p̃a)2

2mosc
+

moscω2
osca2

2
. (131)

For operators ai and p̃a
i we have the ordinary com-

mutation relations

[ai,a j] = [p̃a
i , p̃a

j ] = 0, (132)

[ai, p̃a
j ] = ih̄δi j. (133)

For operators H̃1, H̃2, H̃3, H̃osc we have (121), (126).
So, the exact expression for the spectrum of a particle in
a uniform field reads

E =
h̄2k2

1
2m

(
1−

α2c2
θ

m
4h̄ωoscl2

P

)
+

+
h̄2k2

2
2m

(
1−

α2c2
θ

m
4h̄ωoscl2

P

)
+E3 +

3
2

h̄ωosc.

(134)

It is important to mention that we have free motion
of a particle in the directions perpendicular to the field.
Values k1, k2 are components of the wave vector that cor-
respond to this free motion. Notation E3 is used for denot-
ing continuous eigenvalues of Hamiltonian H̃3. In (134)
the last term corresponds to the ground state of the har-
monic oscillator.

The eigenfunctions of the total Hamiltonian (118) can
be written as

ψ(x,a) = ψ̃1(x1)ψ̃2(x2)ψ̃3(x3)ψ̃(a). (135)

Here ψ̃i(xi) are eigenfunctions of H̃i that are defined as
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(123)-(125). The eigenfunction of a particle in the uniform
field in the space with commutative coordinates and com-
mutative momenta ψ(3)(x3) reads

ψ
(3)(x3) =

(
4m2

π3α h̄4

) 1
6

Φ

((
2mα

h̄2

) 1
3
(
−x3 −

E3

α

))
,

(136)

where Φ is the Airy function

Φ(x) =
1√
π

∫
∞

0
cos
(

t3

3
+ tx

)
dt. (137)

Functions ψ̃(a) denote eigenfunctions of Hamiltonian

H ′
osc =

1
2mosc

(
pa

1 −
αcθ h̄k2

2ωoscl2
P

)2

+

+
1

2mosc

(
pa

2 +
αcθ h̄k1

2ωoscl2
P

)2

+

+
(pa

3)
2

2mosc
+

moscω2
osca2

1
2

+
moscω2

osca2
2

2
+

+
moscω2

osca2
3

2
. (138)

Note that expression for Hamiltonian (138) is obtained re-
placing p1 by h̄k1 and p2 by h̄k2, in (120). The ground state
of harmonic oscillator (138) is as follows

ψ̃(a) =
1

π
3
4 l

3
2
P

e
− a2

2l2P
−iβ (k1a2−k2a1)

, (139)

with

β =
αcθ

2ωoscl2
P
. (140)

So, for the total Hamiltonian (118) we have the fol-
lowing eigenfunctions

ψ(x,a) =

=Ceik1x1eik2x2Φ

((
2mα

h̄2

) 1
3
(
−x3 −

E3

α

))

e
− a2

2l2P
−iβ (k1a2−k2a1)

, (141)

where C is the normalization constant.
It is important to stress that noncommutativity af-

fects the motion of a particle in the directions perpendic-
ular to the direction of the field. Namely, it affects the
mass of the particle in uniform field.

7. Motion of a particle in a uni-
form gravitational field in non-
commutative phase space with
preserved time reversal and
rotational symmetries
Let us consider the motion of a particle of mass m

in rotationally-invariant and time-reversal invariant non-
commutative phase space (74)-(76). The Hamiltonian of a
particle in a uniform field is as follows

Hp =
P2

2m
+mgX1. (142)

In the Hamiltonian, we considered the X1 axis to be di-
rected along the field direction. The total Hamiltonian
in terms of commuting coordinates and commuting mo-
menta reads

H =
p2

2m
+mgx1 −

(ηηη ·L)
2m

+
mg
2
[θθθ ×p]1 +

+
[ηηη ×x]2

8m
+Ha

osc +Hb
osc. (143)

This Hamiltonian can be represented as

H = H0 +∆H, (144)

H0 = ⟨Hp⟩ab +Ha
osc +Hb

osc, (145)

∆H = H −H0 = Hp −⟨Hp⟩ab, (146)

H0 =
p2

2m
+mgx1 +

⟨η2⟩x2

12m
+Ha

osc +Hb
osc, (147)

∆H = −(ηηη ·L)
2m

+
mg
2
[θθθ ×p]1

+
[ηηη ×x]2

8m
− ⟨η2⟩x2

12m
. (148)

Up to the second order in ∆H one can study Hamiltonian
H0. In this approximation, one can write the equations of
motion of the particle

ẋi =
pi

m
, (149)

ṗi =−mgδi,1 −
⟨η2⟩xi

6m
. (150)

9



The solution of the equations is as follows

xi(t) =

(
x0i +6g

m2

⟨η2⟩
δ1,i

)
cos

(√
⟨η2⟩
6m2 t

)
+

+ υ0i

√
6m2

⟨η2⟩
sin

(√
⟨η2⟩
6m2 t

)
−6g

m2

⟨η2⟩
δ1,i,

(151)

where we considered notations x0i, υ0i for initial coordi-
nates and velocities of the particle. Note that onlymomen-
tum noncommutativity affects the motion of a particle in
a gravitational field. Considering limit ⟨η2⟩ → 0 we find
the well-known result in ordinary space

xi(t) = δ1,i
gt2

2
+ x0i. (152)

Analyzing (151) we can see that the weak equivalence
principle is violated because of noncommutativity.
According to the principle, the velocity and position of
a point mass in a gravitational field are independent of
mass.

If we consider the parameter of momentum noncom-
mutativity to be dependent on mass as

⟨η2⟩
m2 =

3h̄2
α̃2

2l4
P

= B = const, (153)

where B does not depend on mass, one obtains the follow-
ing trajectory

xi(t) =

(
x0i +

6g
B

δ1,i

)
cos

(√
B
6

t

)
+

+ υ0i

√
6
B

sin

(√
B
6

t

)
− 6g

B
δ1,i. (154)

Let us consider a case when the parameters of non-
commutativity are related with mass

c(n)
θ

=
γ̃

mn
, (155)

c(n)η = α̃mn, (156)

see [7]. Due to condition (156) the trajectory of a particle
in the gravitational field does not depend onmass, and the
weak equivalence principle is preserved.

Let us study a more general case. For a composite
system in the gravitational field we have the following
Hamiltonian

Hs =
(Pc)2

2M
+MgX (c)

1 +Hrel, (157)

whereX(c), Pc are coordinates andmomenta of the center-
of-mass of the composite system. Hamiltonian Hrel rep-
resents the relative motion. In the case when conditions
(155), (156) are satisfied, we can represent theHamiltonian
as follows

H0 =
(pc)2

2M
+Mgxc

1 +
⟨(ηc)2⟩(xc)2

12M
+ ⟨Hrel⟩ab +

+ H(a)
osc +H(b)

osc . (158)

Taking into account that

[H0,⟨Hrel⟩ab] = 0, (159)

we can write

xc
i (t) =

(
xc

0i +6g
M2

⟨(ηc)2⟩
δ1,i

)
cos

(√
⟨(ηc)2⟩

6M2 t

)
+

+ υ
c
0i

√
6M2

⟨(ηc)2⟩
sin

(√
⟨(ηc)2⟩

6M2 t

)
+

− 6g
M2

⟨(ηc)2⟩
δ1,i, (160)

Due to condition (156) the trajectory can be rewritten as

⟨(ηc)2⟩
M2 =

3h̄2
α̃2

2l4
P

= B = const, (161)

xc
i (t) =

(
xc

0i +
6g
B

δ1,i

)
cos

(√
B
6

t

)
+

+ υ0i

√
6
B

sin

(√
B
6

t

)
− 6g

B
δ1,i, (162)

So, the weak equivalence principle is satisfied.
Using (151) for the trajectory of the center-of-mass

of a system of N non-interacting particles in a uniform
gravitational field we have

xc
i (t) = ∑

a
µax(a)i (t) =−∑

a
6gµa

m2
a

⟨(η(a))2⟩
δ1,i +

+ ∑
a

µa

(
x(a)0i +6g

m2
a

⟨(η(a))2⟩
δ1,i

)
×

× cos

√⟨(η(a))2⟩
6m2

a
t

+

+ ∑
a

µaυ
(a)
0i

√
6m2

a

⟨(ηa)2⟩
sin

(√
⟨(ηa)2⟩

6m2
a

t

)
,

(163)
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Here ma is the mass of particle a, x(a)0i , υ
(a)
0i are initial coor-

dinates and initial velocities. Note, that due to condition
(156), taking into account

x(c)0i = ∑
a

µax(a)0i , (164)

υ
(c)
0i = ∑

a
µaυ

(a)
0i , (165)

one finds that expression (163) reduces to (160).

8. Motion in a non-uniform gravi-
tational field in rotationally- and
time-reversal invariant noncom-
mutative phase space
For a particle in a non-uniform gravitational field, we

have the following Hamiltonian

Hp =
P2

2m
− GM̃m

X
, (166)

where m is the mass of the particle,

X = |X|=
√

∑
i

X2
i . (167)

Similarly as in the previous sections, up to the second or-
der in the parameters of noncommutativity, we can con-
sider the Hamiltonian as follows

H0 =
p2

2m
− GM̃m

x
+

⟨η2⟩x2

12m
− GM̃mL2⟨θ 2⟩

8x5 +

+
GM̃m⟨θ 2⟩

24

(
2
x3 p2 +

6ih̄
x5 (x ·p)− h̄2

x5

)
+

+ Ha
osc +Hb

osc. (168)

So, in this approximation of a particle in a non-uniform
gravitational field, we have the following equations ofmo-
tion

ẋ =
p
m
− GM̃m⟨θ 2⟩

12

(
1
x3 p− 3x

x5 (x ·p)
)
, (169)

ṗ = −GM̃mx
x3 − ⟨η2⟩x

6m
− GM̃m⟨θ 2⟩

4

(
1
x5 (x ·p)p+

− 2x
x5 p2 +

5x
2x7 L2 +

5h̄2x
6x7 − 5ih̄

x7 x(x ·p)
)
. (170)

In the limit h̄ → 0 we can write

ẋ = υυυ − GM̃m2⟨θ 2⟩
12

(
1
x3 υυυ − 3x

x5 (x ·υυυ)
)
, (171)

υ̇υυ = −GM̃x
x3 − ⟨η2⟩x

6m2 +

− GM̃m2⟨θ 2⟩
4

(
1
x5 (x ·υυυ)υυυ − 2x

x5 υ
2 +

5x
2x7 [x×υυυ ]2

)
.

(172)

Here we use notation

υυυ =
p
m

(173)

Note that the obtained results depend on m2⟨θ 2⟩ and
⟨η2⟩/m2. So, if we consider conditions (155), (156) we can
write

ẋ = υυυ − GM̃A
12

(
1
x3 υυυ − 3x

x5 (x ·υυυ)
)
, (174)

υ̇υυ = −GM̃x
x3 − Bx

6
−

− GM̃A
4

(
1
x5 (x ·υυυ)υυυ − 2x

x5 υ
2 +

5x
2x7 [x×υυυ ]2

)
.

(175)

Here we take into account (153), (155) and

⟨θ 2⟩m2 =
3α2l4

Pm2

2h̄2 = A = const. (176)

Constant A does not depend on mass.
Results for the equations of motion (174), (175) de-

pend on constants A, B. The constants are the same for
different particles. So, conditions (155), (156) open a pos-
sibility to recover the weak equivalence principle.

Let us also consider a quantum case. If relations (155),
(156) are satisfied, the equations (169), (170) can be rewrit-
ten as

ẋ = υυυ − GM̃B
12

(
1
x3 υυυ − 3x

x5 (x ·υυυ)
)
, (177)

υ̇υυ = −GM̃x
x3 − Bx

6
− GM̃A

4

(
1
x5 (x ·υυυ)υυυ − 2x

x5 υ
2+

+
5x
2x7 [x×υυυ ]2 +

5h̄2x
6m2x7 −

5ih̄
mx7 x(x ·υυυ)

)
. (178)

Note, that these equations depend on h̄/m, as it has to be.
This is due to commutation relation

[x,υυυ ] = ih̄
Î
m
. (179)
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(see [8] for the details).
So, if relations (155), (156) hold, the motion of a par-

ticle in a gravitational field is independent of its mass, and
the weak equivalence principle is preserved.

The same conclusion can be made in the case of mo-
tion of a composite system. We have

Hs =
(Pc)2

2M
− GM̃M

(Xc)2 +Hrel, (180)

H0 =
(pc)2

2M
− GM̃M

xc +
⟨(ηc)2⟩(xc)2

12M
+

− GM̃M(Lc)2⟨θ 2⟩
8(xc)5 +

GM̃M⟨(θ c)2⟩
24

(
2

(xc)3 (pc)2+

+
6ih̄
(xc)5 (x

c ·pc)− h̄2

(xc)5

)
+ ⟨Hrel⟩ab +Ha

osc +Hb
osc.

(181)

In the case when conditions (155), (156) are satisfied, we
can write

ẋc = υυυ
c − GM̃B

12

(
1

(xc)3 υυυ
c − 3xc

(xc)5 (x
c ·υυυc)

)
, (182)

υ̇υυc = −GM̃xc

(xc)3 − Bxc

6
− GM̃A

4

(
1

(xc)5 (x
c ·υυυc)υυυc−

− 2xc

(xc)5 (υ
c)2 +

5xc

2(xc)7 [x
c ×υυυ

c]2
)
. (183)

It is important to stress that if relations (155), (156) are not
preserved, the equations of motion of a composite system
depend on its mass and parameters ⟨(θ c)2⟩, ⟨(ηc)2⟩. The
parameters are defined as

θ
c
i j = ∑

n
µ

2
n θ

(n)
i j , (184)

η
c
i j = ∑

n
η
(n)
i j , (185)

and depend on the composition. So, this in addition causes
violation of the weak equivalence principle in quantum
space.

9. Studies of the effect of space
quantization on the motion of
Mercury
Let us first consider a particle of mass m in the gravi-

tational field −k/X in noncommutative phase space with
preserved rotational and time-reversal symmetries (74)-

(76). So, the total Hamiltonian reads

H = Hp +Ha
osc +Hb

osc, (186)

Hp =
P2

2m
− mk

X
. (187)

Here Xi, Pi satisfy relations (74)-(76), terms Ha
osc, Hb

osc are
Hamiltonians of harmonic oscillators. Up to the second
order in the parameters of noncommutativity, we can con-
sider Hamiltonian as follows

⟨Hp⟩ab =
p2

2m
− mk

x
+

⟨η2⟩x2

12m
− ⟨θ 2⟩mkL2

8x5 +

+
⟨θ 2⟩mkp2

12x3 . (188)

Noncommutativity of coordinates and noncommutativity
of momenta cause the precession of the orbit of the parti-
cle. To find the precession rate of the orbit, we consider

u =
p
m
− mk[L×x]

xL2 , (189)

and calculate

ΩΩΩ =
[u× u̇]

u2 . (190)

We obtain {
u,

p2

2m
− mk

x

}
= 0, (191)

u̇ =

{
u,

⟨η2⟩x2

12m
− ⟨θ 2⟩mkL2

8x5 +
⟨θ 2⟩mkp2

12x3

}
=

= −⟨η2⟩x
6m2 − k⟨θ 2⟩

4

(
(x ·p)p

x5 − 2p2x
x5 +

5L2x
2x7

)
+

+
m2k2⟨θ 2⟩[L×p]

12L2x4 − m2k2⟨θ 2⟩(x ·p)[L×x]
12L2x6 . (192)

It is known that in ordinary space

u2 =
m2k2e2

L2 , (193)

where e is the eccentricity of the orbit. So, we find

Ω = ⟨θ 2⟩
(

5L4

8km3x7e2 −
p2L2

2m3x5ke2+

+
p2

4me2x4 −
7L2

24mx6e2 −
mk

12x5e2

)
L+

+ ⟨η2⟩
(

L2

6m5k2e2 −
x

6m3ke2

)
L. (194)

12



For the perihelion shift per revolution, we can write

∆φp =
∫ T

0
Ωdt =

∫ 2π

0

Ω

φ̇
dφ =

= ⟨θ 2⟩πkm2(4+ e2)

8a3(1− e2)3 +

− ⟨η2⟩πa3
√

1− e2

2m2k
, (195)

with a being the semi-major axis, φ being the polar angle.
To find (195) we take into account that in ordinary space

L = mx2
φ̇ , (196)

x =
a(1− e2)

1+ ecosφ
, (197)

p2

2m
− mk

x
=−mk

2a
. (198)

It is important to stress that the perihelion shift de-
pends on themass of the particlem. If relations (155), (156)
hold, we obtain

⟨θ 2⟩m2 =
3γ̃2

2l2
P
= A, (199)

⟨η2⟩
m2 =

3α̃2

2l2
P

= B, (200)

whereA, B are constants that do not depend on themasses
of particles.

Taking into account (195), (199), and (200) we find

∆φp = A
πk(4+ e2)

8a3(1− e2)3 −B
πa3

√
1− e2

2k
. (201)

It is worth mentioning that the proposed conditions (155),
(156) are important for solving the problem of violation of
the weak equivalence principle in quantum space.

For a composite system with mass M in gravitational
field, we have

Hs = Hcm +Hrel, (202)

Hcm =
(Pc)2

2M
− Mk

Xc , (203)

Xc
i , Pc

i are coordinates and momenta of the center-of-
mass, Hrel describes the relative motion. If relations (155),
(156) are satisfied, commutators for coordinates and
momenta correspond to noncommutative algebra (74),
(76). The coordinates and momenta of the center-of-mass

can be represented as

Xc
i = xc

i −
θ c

i j p
c
j

2
, (204)

Pc
i = pc

i +
ηc

i jx
c
j

2
. (205)

So, up to the second order in the parameters of non-
commutativity we can study the Hamiltonian as follows

H0 = ⟨Hs⟩ab +Ha
osc +Hb

osc =

=
(pc)2

2M
− Mk

xc +
⟨(ηc)2⟩(xc)2

12M
−

− ⟨(θ c)2⟩Mk(Lc)2

8(xc)5 +

+
⟨(θ c)2⟩Mk

24

(
1

(xc)2 (pc)2 1
xc+

+
1
xc (pc)2 1

(xc)2 +
h̄2

(xc)5

)
+

+ ⟨Hrel⟩ab +Ha
osc +Hb

osc. (206)

Here

Lc = [xc ×pc]. (207)

Using definitions

∆X(n) = X(n)−Xc, (208)

∆P(n) = P(n)−µnPc, (209)

and taking into account (155), (156), we have

∆X (n)
i = ∆x(n)i −

θ
(n)
i j ∆p(n)j

2
, (210)

∆P(n)
i = ∆p(n)i +

η
(n)
i j ∆x(n)j

2
. (211)

Here coordinates and momenta

∆x(n) = x(n)−xc, (212)

∆p(n) = p(n)−µnpc, (213)

satisfy the ordinary commutation relations. It is impor-
tant that ⟨Hrel⟩ab commutes with H0. So, one can consider
the following Hamiltonian
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⟨Hcm⟩ab =
(pc)2

2M
− Mk

xc +
⟨(ηc)2⟩(xc)2

12M
+

− ⟨(θ c)2⟩Mk(Lc)2

8(xc)5 +
⟨(θ c)2⟩Mk(pc)2

12(xc)3 .

(214)

Using (195), for the perihelion shift of orbit of a macro-
scopic body we can write

∆φnc = ⟨(θ c)2⟩πkM2(4+ e2)

8a3(1− e2)3 −⟨(ηc)2⟩πa3
√

1− e2

2M2k
,

(215)

where

⟨(θ c)2⟩= 3γ̃2

2l2
PM2 =

A
M2 , (216)

⟨(ηc)2⟩= 3α̃2M2

2l2
P

= BM2. (217)

10. Upper bounds on the parame-
ters of noncommutativity

We apply the obtained result for the perihelion shift
for the planet Mercury. We compare the perihelion shift
caused by space quantization (215) with

∆φobs −∆φGR =

= 2π(−0.00049±0.00017)×

×10−8radians/revolution (218)

(here ∆φGR is the perihelion precession rate from General
Relativity predictions, ∆φobs is the result of observations).
We assume that |∆φnc| is less than |∆φobs −∆φGR| at 3σ

and write the following inequality

|∆φnc| ≤ 2π ·10−11radians/revolution, (219)

Parameter θ c
i j or parameter ηc

i j could be equal to zero.
Therefore, it is sufficient to consider the following
inequalities ∣∣∣∣⟨(θ c)2⟩πGM⊙M2(4+ e2)

8a3(1− e2)3

∣∣∣∣≤
2π ·10−11radians/revolution, (220)

∣∣∣∣∣⟨(ηc)2⟩πa3
√

1− e2

2GM⊙M2

∣∣∣∣∣≤
2π ·10−11radians/revolution, (221)

where M is the mass of Mercury, a, e are parameters of its
orbit. So, we find

h̄
√
⟨(θ c)2⟩< 2.3 ·10−57m2, (222)

h̄
√

⟨(ηc)2⟩< 1.8 ·10−22kg2m2/s2. (223)

Taking into account (199), (200), (216), 217), we have

⟨(θ c)2⟩M2 = ⟨(θ (n))2⟩m2
n, (224)

⟨(ηc)2⟩
M2 =

⟨(θ (n))2⟩
m2

n
, (225)

where parameters ⟨(θ (n))2⟩, ⟨(η(n))2⟩ correspond to a par-
ticle of mass mn.

Based on relations (222), (223), (224), (225) one can
find upper bounds on the parameters of noncommutativ-
ity of different particles. In the case of the electron, we
have

h̄
√
⟨(θ (e))2⟩< 8.3 ·10−4m2, (226)

h̄
√

⟨(η(e))2⟩< 5.1 ·10−76kg2m2/s2. (227)

We do not obtain a strong upper bound for the pa-
rameter of coordinate noncommutativity. This is because
the influence of the noncommutativity of coordinates on
the motion of macroscopic bodies is less than on the mo-
tion of particles. So, for strong upper bounds on the pa-
rameters of coordinate noncommutativity, data of high ac-
curacy are needed.

The result (227) is quite strong. This result is at least
ten orders less than that obtained based on studies of the
hydrogen and exotic atoms [7, 9, 10]. Using (227), we can
also estimate the minimal momentum

pmin =
4

√
3h̄2⟨(η(e))2⟩

2
< 2.5 ·10−38kg ·m/s.(228)

In the case of nucleons, we have

⟨(ηc)2⟩
M2 =

⟨(θ (nuc))2⟩
m2

nuc
, (229)

h̄
√
⟨(η(nuc))2⟩< 9.3 ·10−73kg2m2/s2, (230)

wheremnuc is the mass of the nucleon. The obtained result
(230) is 6 orders less than that estimated on the basis of
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studies of neutrons in a gravitational quantum well [11].

11. Conclusions
The noncommutative phase space of the canonical

type, with preserved rotational and time-reversal symme-
tries, has been considered (74)-(76). A corresponding non-
commutative algebra (74)-(76) is constructed by generaliz-
ing the parameters of noncommutativity to tensors, which
are defined with the help of additional momenta. These
momenta are governed by harmonic oscillators.

We have analyzed a particle in a uniform field within
the framework of the noncommutative algebra. The en-
ergy and wave functions of the particle have been detem-
ined precisely (134), (141). It was obtained that noncom-
mutativity affects the mass of the particle in directions
perpendicular to the field. However, the motion of the
particle along the field direction remains the same as in
ordinary space.

The effect of space quantization on a particle in a
Coulomb potential has also been studied. We derived an
expression for the perihelion shift of the particle’s orbit
up to the second order in the parameters of noncommu-
tativity. This result was generalized to the case of macro-
scopic body motion. Upper bounds (222), (223) have been
estimated based on the perihelion shift of the planet Mer-
cury in quantum space (215) and the precession data from
MESSENGER spacecraft ranging.

The obtained upper bounds for the parameters ofmo-
mentum noncommutativity (227), (230), and the minimal
momentum (52) are stringent. For the parameter of mo-
mentum noncommutativity for an electron, we obtained
an upper bound (227) that is at least 10 orders of magni-
tude smaller than the one based on studies of the hydrogen
atom [10, 12].
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