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Abstract

The aim of the study is to conduct a comparative analysis of HRV calculation methods and how they affect its measures
(SDNN, SDNN Index, SDANN, RSA Index, Mean RR, RMSSD, pNN50) and their quality. Modern medical devices offer
many possibilities, including heart rate and ECG measurement. An important issue in assessing heart function is HRV
and its measures, which allow us to determine how the heart responds to different conditions, but the question of
how to measure HRV and how its calculation works in different conditions remains open. The paper will show how
HRV changes depending on frequency during rest, activity (walking), and sleep. HRV will be calculated using both an

analytical method (using the Pan-Tompkins and U-Net algorithms) and a convolutional neural network.
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1. Introduction

Currently, we can see a growing availability of
wearable devices on the market, such as smartwatches
and smart rings, which are capable of measuring ECG
signals and heart rate. This has led to an increased de-
mand for HRV measurement. Thanks to HRV, we are able
to determine the body’s susceptibility to various heart
diseases as well as how it reacts to stressful situations.
The question arises as to how to obtain HRV values on
heart monitoring devices as most of them do not have
such functions. For this reason, we decided to examine
the relevant methods of obtaining HRV measurements
to determine which ones are the most accurate and in
which situations.

In this paper, we present an experiment in which we
compare three methods commonly used in scientific
research to obtain HRV measurements, namely the Pan-
Tompkins algorithm, a Convolutional Neural Network
(CNN), and a U-Net deep neural network architecture.
For this purpose, we use a dataset prepared by us, which
we obtained using a measuring device - the Aidmed One
chest band - during measurements in four different states
with varying degrees of activity in which one tested
person was involved.

This paper is divided into the following sections: Sec-
tion 2 defines the terms used in the paper, Section 3
reviews the literature from which we drew the knowledge
needed to conduct our study, and in Section 4 we propose
our experiment, in which we compare the performance
of existing algorithms on a dataset that we created which
consists of electrocardiographic measurements from the
device. In Section 5 we present the measurements taken
during our experiment and in Section 6 we discuss the
results obtained from the experiment.

2. Explanation of concepts

Supervised learning is characterized by the presence
of information indicating whether the model’s prediction
is correct or not. This enables the algorithm to learn
the relationships between features and classes, based on
which it makes categorization decisions. This method
requires data for which classes are labeled, which often
involves costly human involvement.

Measurement frequency - the number of data
measurements performed in a specified period of time.
The number of measurements per second is most com-
monly specified, and is determined by the following
formula: "

f=7 Hz=s"] (1)

» [ is the frequency of measurements, expressed in

hertz (Hz),
» n is the number of measurements taken,
» tis the duration of the measurement, expressed in sec-

onds (s).

There are no standards that strictly define how often
devices should collect the data needed to calculate HRV.
According to research conducted in [1] [2] [3], too low
a measurement frequency (around 25 Hz) can lead to
inaccurate HRV results, with an error rate of at least 5%
(for 25 Hz) if only raw data is used.

Heart rate — the number of heartbeats per unit of
time. This is a physiological symptom of the heart’s work
and reflects how often the heart pumps blood through the
body. The number of heartbeats per minute is most com-
monly determined and is defined by the formula:

number of heartbeats
Heart rate = - (2)
time

According to [4], the heart rate level affects the predicted
HRYV value in two areas, physiological and mathematical,
but in neither of them is this relationship linear.

ECG (electrocardiogram) - a test of the electrical
activity of the heart. It records the electrical impulses
that occur with each heartbeat and displays them in the
form of a graph, usually as waves on a timeline. It records
the differences in electrical potential between electrodes
placed on the skin [5]. An important element of the ECG
recording is the QRS complex (ventricular depolarization),
which consists of three parts: Q — the first negative wave,
R - alarge positive wave (this is the peak on the graph), S
— the decline after the peak (described in Figure 1). This is
important because it allows the heart rate to be calculated
from the ECG using the following formula:

60
= — 3
f= ©
» f is the heart rate in beats per minute,
» RR is the time interval between successive QRS com-
plexes in seconds [s].

HRYV (Heart Rate Variability) - the variability of
the intervals between successive heartbeats. It measures
how much these intervals (RR intervals) differ from each
other. The greater the variability, the better; higher vari-
ability means that the nervous system is flexible and re-
sponds well to stress, rest, and changes in the environ-
ment. Low HRV variability increases the risk of mortality
from heart diseases such as ischemic heart disease, heart
failure, hypertension, and diabetes [7]. There are sev-
eral measures that can be used to determine HRV, such
as SDNN, SDNN Index, SDANN, RSA Index, Mean RR,
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Figure 1: Q wave, R wave, S wave. The second one is very important
in ECG. [6]

RMSSD, and pNN50. All of these measures will be ex-
plained below.

PRV (Pulse Rate Variability) — heart rate variabil-
ity measured based on the intervals between successive
heartbeats, most often using a PPG (photoplethysmogra-
phy) signal, which is often used by devices such as smart-
watches and smartbands [8]. It is analogous to the afore-
mentioned HRV (Heart Rate Variability), but instead of a
direct ECG recording, it is based on the heart rate signal,
which allows it to be measured in a non-contact manner,
e.g., through an appropriate camera system [2].

SDNN (Standard Deviation of NN intervals) -
one of the basic measures of heart rate variability (HRV),
classified as a time domain measure. It represents the
standard deviation of all consecutive NN intervals (i.e.,
the time between heartbeats) in a given time interval. NN
(or RR) intervals are measured based on the ECG signal.
SDNN is determined by the formula:

1 X _
SDNN = \/ N1 ;(RRi —RR)? (4)

» RR; - the i-th interval between successive heartbeats,
» RR - the average value of all RR intervals,
» N —the number of RR intervals in the analyzed period.

SDNN Index (Standard Deviation of NN inter-
vals Index) - one of the measures of heart rate variabil-
ity (HRV) belonging to the category of time domain mea-
sures. It is the average standard deviation of NN inter-
vals (RR) calculated in successive short segments of the
ECG recording, usually one minute long. The SDNN Index

allows for the assessment of short-term heart rate vari-
ability in different parts of the measurement and comple-
ments the SDNN measure, which covers the entire mea-
surement period. There is no single universal formula
for the SDNN Index, but it can be described as the arith-
metic mean of SDNN calculated in M consecutive time
segments:

1 M
SDNNjygex = 7 Y SDNN; (5)
Jj=1
1 M 1 N )
D =— RR; i —RR;
S. NN[ndex M J;l NJ 1 1:1( i ]) (6)

» M - number of segments (e.g., one-minute segments),

» N; — number of RR intervals in segment j,

» RR; ; - i-th RR interval in segment j,

» RR; - mean RR interval in segment j,

» SDNN; - standard deviation of RR intervals in seg-
ment j.

SDANN (Standard Deviation of the Averages of
NN intervals) — a measure of heart rate variability be-
longing to the group of time domain measures. SDANN
measures the standard deviation of the averages of NN in-
tervals (i.e., RR) calculated in successive, usually 5-minute,
segments of the entire ECG recording. This means that we
first divide the ECG signal into equal intervals (e.g., one
minute), calculate the average time between heartbeats in
each of these intervals, and then determine the standard
deviation of these average values. It is defined by the for-
mula:

[ J——
SDANN = m ;(RRJ - RRtotall)2 (7)

» M - number of time segments (e.g., 5-minute
segments),

» RR; - average value of RR intervals in segment j,

» RRy, — average of all RR j» i.e., average RR interval
throughout the entire measurement period.

Its lower value is independently associated with the as-
sessment of polygenic anxiety risk (Anxiety PRS) and with
the use of certain antidepressants (venlafaxine and bupro-
pion) [9], so people with lower SDANN values may be
prone to depression.

RSA Index (Respiratory Sinus Arrhythmia In-
dex) — a measure of heart rate variability (HRV) that re-
flects the influence of breathing on heart rate. During in-
halation, the heart rate usually accelerates, and during
exhalation, it slows down. This phenomenon is called
respiratory sinus arrhythmia (RSA), and the RSA Index




quantifies this effect. The RSA Index is an indicator of
parasympathetic nervous system activity and is often used
in breathing training and psychophysiology. Although
there is no single, universal mathematical formula for the
RSA Index, it is often calculated as the difference between
the maximum and minimum RR (or heart rate) intervals
in a breathing cycle:

RSAIndex = max (RRexhalation) — min (RRinhalation) (8)

or in logarithmic form:

log max (RR exhale )
RSA pgex =108 | ——
Index & < min(RRinhale )

©)

» RRinhalation — RR intervals during inhalation (heart rate
accelerates),

» RRexhalation — RR intervals during exhalation (heart
rate slows down),

» max, min - the largest and smallest RR intervals
within the respiratory cycle.

Mean RR (Mean of RR intervals) — a basic time
measure in heart rate variability (HRV) analysis, deter-
mining the average duration of RR intervals (i.e., the in-
tervals between successive heartbeats). The RR interval is
measured from the ECG signal as the time between two
consecutive R waves in the electrocardiogram. The for-
mula for Mean RR is:

1 N
Mean RR= — ) RR; 10
ean N ; i (10)
» RR; - the i-th RR interval (time between successive
heartbeats),
» N — the number of all RR intervals in the analyzed pe-
riod.

RMSSD (Root Mean Square of Successive Differ-
ences) — one of the basic measures of heart rate variability
(HRV). RMSSD measures the root mean square of succes-
sive RR (NN) intervals. 1t is sensitive to rapid, short-term
activity of the parasympathetic nervous system, i.e., the
actions of the vagus nerve affecting the heart rhythm. It is
used as an indicator of the parasympathetic nervous sys-
tem’s response to stress, while deviations from its norma-
tive value may indicate sudden death in cases of epilepsy,
atrial fibrillation, and other cardiovascular complications,
such as congenital heart defects or sinus arrhythmia [10].
The formula for RMSSD is:

1 N—1
RMSSD = [ —— Y (RRi+1 — RR;)? (11)
N-13
» RR; - the i-th RR interval (the time between successive
heartbeats),

» N — the number of all RR intervals in the analyzed pe-
riod.

PNN50 (percentage of NN intervals that differ
by more than 50 ms from the previous one) - a time-
domain measure of heart rate variability (HRV) that repre-
sents the percentage of NN intervals (RR) whose difference
from the next interval exceeds 50 ms. It is sensitive to rapid
changes in heart rate and strongly reflects the influence of
the parasympathetic nervous system (vagus nerve) [11].
The formula for pNN50 is:

1 N—1
pNN50 = N1 ; 5; - 100%, where (12)
1, if |[RR;y 1 —RR;| > 50
6i — 9y 1 ’ +l | > ms (13)
0, otherwise

» RR; — the i-th interval between successive heartbeats
(known as NN or RR),

» N — the number of all RR intervals in the analyzed pe-
riod,

» 0; — a logical indicator of whether the difference ex-
ceeds 50 ms.

3. Literature review

We reviewed various available scientific publications
in order to gain a deeper understanding of the issues un-
der study, as well as to learn about previous research on
similar topics.

We started with An overview of heart rate variability
metrics and norms [12], which provides an overview
of HRV measurement methods, their physiological
significance and limitations. As a result of this work,
norms for many HRV measures were established, but
no recommended sampling ranges were provided. Next
was Heart rate variability in practical terms — appreciated
or forgotten parameter of Holter ECG monitoring? [13],
where the concept of Heart Rate Variability (HRV) and
related parameters such as SDNN, SDANN, rMSSD,
NN50, pNN50 are explained in Polish. The links be-
tween specific diseases and the predicted values of
these parameters are also listed there. Considering
that Polish is the native language of the authors of this
publication, the article proved useful in terms of using
concepts consistent with Polish medical terminology.
Subsequently, we looked atThe pNNx files: re-examining a
widely used heart rate variability measure [11], where the
effectiveness of pNN50 was evaluated in relation to other
threshold values in the variable pNNx, where x denotes
the minimum time between successive heartbeats under
consideration. The probability distributions for the pNNx




family of statistics were compared, where x ranged from
4 ms to 100 ms, in various configurations, for example,
what pNNx values are found among a group of young
people and what values are found among older people. A
systematic review of the literature on HRV analysis was
presented in Uncertainties in the Analysis of Heart Rate
Variability: A Systematic Review [14]. This made it easier
for us to find the information we needed, for example on
HRYV measures.

Let us move on to literature that no longer describes basic
issues. The publication entitled Assessing the accuracy
of popular commercial technologies that measure resting
heart rate and heart rate variability [10] examines the
accuracy of commercial solutions for measuring heart
rate variability (HRV) due to the negligible number of in-
dependent tests conducted on them. This article explains
the significance and impact of one of the HRV metrics
— rMSSD. The publication RR interval signal quality of a
heart rate monitor and an ECG Holter at rest and during
exercise [15] examines the signal quality of RR intervals
from medical devices monitoring electrocardiography
(ECG) using the Holter method, while the subjects per-
form various physical activities or are at rest. The article
provides an in-depth description of how measurements
from this type of medical device should be processed in
order to correctly analyze RR interval signals.

The authors of Heart rate variability and pulse rate
variability: do anatomical location and sampling rate
matter? [1] compared HRV (from ECG) and PRV (from
PPG), taking into account sensor location and sampling
frequency, showing that low sampling (25 Hz - 50
Hz) leads to significant differences in HRV. The publica-
tionSampling rate impact on heart rate variability [16] also
examines the impact of sampling at different frequencies
(in this case from 100 Hz to 500 Hz) on HRV. Researchers
indicated that there are significant differences between
even 100 Hz and 200 Hz, but in this particular study
the data was not tested under real conditions (it was
not noisy). Yet another study related to HRV examined
the direct impact of different sampling frequencies (125
Hz - 2000 Hz) on its accuracy. The authors conducting
the study in Insufficient sampling frequencies skew heart
rate variability estimates [17] showed that the recom-
mended minimum is 250 Hz for accurate detection of
R peaks. They also concluded that low values (e.g. 125
Hz) significantly reduce the accuracy of RMSSD and
SDNN parameters. Research in An extensive quantitative
analysis of the effects of errors in beat-to-beat intervals
on all commonly used HRV parameters [18] analyzed the
impact of various types of detection errors on over 60
HRV measures. It was established that the sensitivity of
HRV measures to errors varies — RMSSD is particularly
vulnerable, while SDNN is more stable. However, the
impact of sampling on the occurrence of these errors

was not analyzed. The influence of sampling frequency
(100-1000 Hz) on the accuracy of HRV spectral analysis
was investigated in Sampling frequency of the RR interval
time series for spectral analysis of heart rate variabil-
ity [19]. It was established that a frequency greater than
or equal to 250 Hz ensures spectral stability, but the study
did not take into account modern interpolation methods.
We also found an article showing how the accuracy of R
peak location affects heart rate complexity metrics. It was
determined in Uncertainty in heart rate complexity metrics
caused by R-peak perturbations [20] that all analyzed
measures are sensitive to even very slight disturbances in
R peak detection. Errors in HRV analysis may result from
inaccuracies in determining photoplethysmographic
(PPG) features, which can be caused, for example, by
lower sampling rates, as studied in Impact of sampling
rate and interpolation on photoplethysmography and
electrodermal activity signals’ waveform morphology and
feature extraction [21]. Another scientific publication we
reviewed,

Photoplethysmography sampling frequency: pilot
assessment of how low can we go to analyse pulse
rate variability with reliability? [22], also confirms the
thesis that too low a PPG sampling frequency leads
to a reduction in the quality of the data used for HRV
calculations. According to the researchers, a minimum
sampling frequency of at least 64 Hz is recommended. If
it is not possible to sample at the minimum recommended
sampling frequency, there are ways to improve such
a signal. Researchers in the article Quantifying errors
in spectral estimates of HRV due to beat replacement
and resampling [23] tried various techniques to correct
the signal through interpolation, resampling, or beat
replacement. This work showed that even single errors
in the positioning of R peaks significantly alter the
bandwidth. A study was also conducted to examine
the impact of missing data and strategies for filling in
the gaps (interpolation, imputation) on HRV values. It
has been shown that even 3-5% of missing data can
distort HRV, particularly RMSSD and pNN50, which are
more sensitive than SDNN. This research was included
in the publication Effects of missing data on heart rate
variability metrics [24]. The publication A careful look
at ECG sampling frequency and R-peak interpolation
on short-term measures of heart rate variability [25]
examined the impact of interpolation on the accuracy of
determining R peaks and demonstrated that interpolation
can effectively compensate for lower sampling of certain
measures — RMSSD and SDNN. However, the study was
conducted only on clean (noise-free) data. A publication
very similar to the previous one, Sampling frequency of
the electrocardiogram for spectral analysis of the heart
rate variability [26], also suggests that low ECG signal
sampling frequency may introduce measurement errors




in RR intervals, which in turn distorts the measurement
of Heart Rate Variability (HRV). Another publication,
Everything Hertz: methodological issues in short-term
frequency-domain HRV [27], criticized HRV spectral
analysis on inappropriate time segments, showing
that inappropriate time windows lead to erroneous
conclusions. Too short a measurement time leads to
HRV instability, which was also proven in Reliability
and accuracy of heart rate variability metrics versus ECG
segment duration [28], where the relationship between
ECG recording length and the stability and repeatability
of selected HRV measures was investigated. It should
be noted that these studies did not take into account
different frequencies.

The following publications that we would like to present
show correlations between HRV and various relation-
ships. The first such relationship is the non-linear
relationship between heart rate and Heart Rate Vari-
ability (HRV), which is described in Interaction between
Heart Rate and Heart Rate Variability [4]. According
to this article, heart rate is important in two aspects
of HRV, physiological as well as mathematical. The
author specifies in which cases not taking heart rate into
account improves the accuracy of HRV, and in which
cases it actually worsens it. Another relationship tries to
distinguish ‘chaotic’ heart rate variability from healthy
fluctuations regulated by the autonomic nervous system.
The authors of Impact of heart rate fragmentation on the
assessment of heart rate variability [29] describe a new
measure called Heart Rate Fragmentation (HRF) which
shows that RMSSD and pNN50 may be overestimated
if HRF is not taken into account. The problem of not
separating HRV from average heart rate or cardiac period
when analyzing data is pointed out in Should heart
rate variability be “corrected” for heart rate? Biological,
quantitative, and interpretive considerations [7]. The
author of this study indicates that low HRV variability
increases the risk of death in certain heart conditions.
Another correlation we found in publications is the cor-
relation between sleep quality and the parasympathetic
nervous system. This can be found described in The
relationship between sleep quality and cardiac autonomic
modulation according to physical activity levels in adults: a
cross-sectional study [30]. This correlation was measured
using HRV indicators such as RMSSD and SDNN. It is
also one example of research where these indicators
are used in practice. The relationship between poor
ADHF (Acute Decompensated Heart Failure) outcomes
and Heart Rate Variability (HRV) was presented in The
correlation between heart rate variability index and vul-
nerability prognosis in patients with acute decompensated
heart failure [31]. Worse ADHF means that the patient
may have shortness of breath or potentially chest pain.
The last relationship we used our knowledge about was

on how anxiety and antidepressant use are related to
Heart Rate Variability (HRV), a study about which can
be found in Integrating Genome-wide information and
Wearable Device Data to Explore the Link of Anxiety
and Antidepressants with Heart Rate Variability [9]. For
this purpose, the research team conducted a series of
measurements related to various types of antidepressants,
taking into account external factors such as the age of the
participants, their BMI and gender, and how these factors
affect the HRV-SDANN metric.

We did not rely solely on HRV measurement which is
obtained from ECG, as we also used PRV (Pulse Rate
Variability) which is obtained from photoplethysmog-
raphy (PPG). Pulse rate wvariability in cardiovascular
health: a review on its applications and relationship with
heart rate variability [8] presents Pulse Rate Variability
(PRV) in terms of its advantages, when it can be used,
and in which situations it can be compared to HRV.
Measurement frequency is also crucial in PRV as is seen
in Impact of the PPG Sampling Rate in the Pulse Rate
Variability Indices Evaluating Several Fiducial Points in
Different Pulse Waveforms [3]. This article presents a
study of the impact of measurement frequency on PRV.
This same topic was examined in another publication,
Noncontact imaging photoplethysmography to effectively
access pulse rate variability [2], which demonstrates the
effectiveness of PRV measurement, provided that a high
sampling frequency (200 fps) is used or appropriate signal
interpolation is applied in the case of low-budget cameras
performing the measurement.

We also reviewed the literature in search of descriptions
of the algorithms used in our work. A Real-Time QRS
Detection Algorithm [32] is a publication in which Jiapu
Pan and Willis J. Tompkins demonstrated the operation
of their algorithm, named after them, the Pan-Tompkins
algorithm. Another algorithm we examind was U-Net,
presented originally here [33]. It can be used in various
fields, so we wanted to find scientific publications on
its use in HRV measurement. For example Ventricular
Fibrillation Detection Based on Modified U-Net Feature Ex-
traction Model [34] shows an attempt to detect ventricular
fibrillation by extracting HRV data from an ECG signal
processed by a U-Net network that was successfully
undertaken. The accuracy of ventricular fibrillation
detection using this method was determined to be 99.56%.
Another publication, Validation of electrocardiogram-
based photoplethysmogram generated using U-Net-based
generative adversarial networks [35], presents the use of
U-Net to calculate one of the HRV metrics — SDNN -
based on a video showing the face of the test subject. The
recorded material is used to create a multidimensional
map image, from which the relevant data is extracted to
the U-Net layer, which then generates a PPG signal. This
signal is used to calculate SDNN.




4. Experiment proposal

Three methods were used to calculate HRV mea-
sures: the Pan-Tompkins algorithm, the U-Net network,
and a neural network. Below is an explanation of these
concepts and related terms, along with a description of
the measuring device.

The Pan-TompKkins algorithm is a classic and very
popular method for detecting R waves in ECG signals, de-
veloped by Jiapu Pan and Willis J. Tompkins in 1985 [32].
It operates in real time and uses signal processing to high-
light significant ECG features and eliminate noise. The
algorithm consists of several stages of signal processing:

1. Bandpass Filter — removes low-frequency noise
(e.g., baseline drift) and high-frequency noise (e.g.,
muscle interference).

2. Derivative — emphasizes the steep slopes character-
istic of the R wave.

3. Squaring — amplifies the signal and emphasizes
larger values (regardless of sign).

4. Moving Window Integration — smooths the signal
and allows for better identification of potential R-
wave regions.

5. Adaptive Thresholding - detects maxima in the pro-
cessed signal as potential R-waves, with dynamic
adjustment of the detection threshold.

The properties of the algorithm are:

» High detection efficiency even in the presence of
noise,

» Low computational complexity — suitable for real-time
applications (e.g., in ECG monitors, portable devices),

» Based on nonlinear processing — does not require fre-
quency domain transformation.

U-Net - an encoder—decoder deep neural network
architecture, originally designed for image segmenta-
tion [33], and now also successfully used in the analysis of
biological signals such as ECG [34] and PPG [35]. When
applied to R-wave detection, U-Net takes a fragment of
an ECG signal as input and returns a probability mask
indicating the locations of R-waves. Thanks to skip
connections between the encoding and decoding layers,
the network is able to precisely locate sharp transitions
in the signal (such as QRS). Advantages of using U-Net:

» high resistance to noise and interference,
» ability to detect R-peaks with atypical QRS morphol-

ogy,
» ability to operate without manual signal processing.

The U-Net architecture can be trained on data with
labeled R waves and then used for real-time or offline
detection.

CNN - Convolutional Neural Networks - a class
of deep neural networks designed for automatic analy-
sis of grid-structured data (e.g., images, time signals, se-
quences). CNNs use a convolution operation, which re-
places traditional fully connected layers with preprocess-
ing of local features. This allows the network to effectively
detect spatial and temporal patterns. The main elements
of CNN architecture:

» Convolutional layer — applies multiple filters (kernels)
to extract local features from the input data,

» Activation function - usually ReLU, adds non-
linearity to the model,

» Pooling layer (subsampling) - reduces the dimension-
ality of the data, e.g., by max pooling,

» Fully connected layers — at the end of the network,
usually for classification.

The advantages of CNNs are:

» Automatic feature detection from raw data,

» High resistance to interference and noise,

» Generalization to different types of spatial and tempo-
ral data.

Methods implementation — In our experiment we
used an implementation of each method mentioned above
from a repository related to an engineering thesis avail-
able here: [36]

Neural network model - The presented solution
for automatic analysis of heart rate variability (HRV) uses
a deep neural network designed to process raw ECG sig-
nals and calculate HRV measures. This architecture con-
sists of several modules that perform successive stages of
signal processing. The whole system operates in end-to-
end mode, i.e., from the input signal to the final HRV val-
ues without the need for manual segmentation. The first
stage is feature extraction using 1D convolutional layers
(CNN), which automatically learn to represent local pat-
terns in the ECG signal, such as QRS complexes. These
layers use convolution operations, ReLU activation func-
tions, and pooling layers, which allow for generalization
and compression of information. The processed data is
then passed to a segmentation module based on the U-Net
architecture. The U-Net network enables precise localiza-
tion of R waves through the use of a symmetric encoder-
decoder structure and skip connections that transfer in-
formation from high-resolution layers to the appropriate
decoding layers. The result of the U-Net operation is a bi-
nary mask indicating the positions of R waves in the sig-
nal. Based on the detected positions of R waves, RR inter-
vals are calculated, i.e., the time differences between suc-
cessive R waves. The sequence of RR intervals forms the
basis for calculating selected HRV measures. In the final
stage, fully connected layers are used to transform the in-
put data into final HRV measures, such as SDNN, RMSSD,




pNN50, or to classify the heart rhythm. This model com-
bines high R-wave detection efficiency with the possibility
of fully automating the HRV analysis process, making it
a useful tool for both clinical diagnostics and mobile ap-
plications. The neural network diagram is shown in Fig-

ure 2.
ECG signal

{ CNN layers }

(feature extraction)

I

L U-Net module }

(R wave segmentation)

|
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Figure 2: Block diagram of the neural network architecture for cal-
culating HRV measures.

Heart Rate Fragmentation (HRF) - a class of
indicators used to analyze heart rate dynamics, focusing
on short-term, often chaotic changes in successive RR
intervals. Unlike classic measures of heart rate variability
(HRV), which describe overall temporal variability, HRF
assesses irregularity and fragmentation of the rhythm —
particularly important in the context of assessing auto-
nomic aging and the risk of cardiovascular death. HRF
focuses on short-term oscillations in the RR sequence that
are not caused by physiological rhythms (e.g., breathing),
but rather by dysregulation of heart rate control mech-
anisms. HRF is considered an independent prognostic
marker — high levels of heart rhythm fragmentation are
associated with a poorer prognosis and even an increased
risk of death. HRF measures are particularly useful in
older patients, where traditional HRV measures may not
fully reflect the state of the autonomic nervous system.

PPG signal (photoplethysmographic) - a
non-invasive biological signal recorded using photo-
plethysmography, an optical method for measuring
changes in blood volume in microcirculation. This tech-
nology is widely used in medical and consumer devices
(e.g., smartwatches, fitness bands) to monitor heart rate,
blood oxygen saturation (SpO;), and derived parameters
such as heart rate variability (HRV). Photoplethysmogra-
phy is based on the emission of light (usually in the red
or infrared range) by an LED toward the skin. This light

is partially absorbed and reflected by the tissues and then
recorded by a photodetector. Since the degree of light
absorption varies with blood flow in the vessels (related
to the cardiac cycle), the PPG signal reflects pulsatile
changes in blood volume. The PPG signal is wave-like
and consists of:

» A constant component (DC) - dependent on tissue
structure and average perfusion level,

» A variable component (AC) — corresponding to pul-
satile changes in blood volume.

A typical PPG waveform contains an ascending systolic
wave (associated with heart contraction) and a secondary
(reflected) wave, from which characteristic points such as
peak, foot, and dicrotic notch can be distinguished.

EDA Electrodermal Activity signals — bioelectrical
signals reflecting changes in skin conductivity resulting
from the activity of sweat glands controlled by the Sympa-
thetic Nervous System. EDA measurement allows for the
assessment of emotional arousal, stress, anxiety, concen-
tration, and other psychophysiological states in humans.
Electrodermal activity is usually recorded as changes in
skin conductance (SC) measured between two electrodes
placed on the skin surface, most often on the hand or foot.
Changes in sweat gland activity, even in the absence of
visible sweat, cause changes in the amount of ions on the
skin surface, which affects its electrical conductivity. The
EDA signal consists of two main components:

» Tonic component (SCL - Skin Conductance Level) -
a slowly changing signal background reflecting the
overall level of autonomic arousal,

» Phasic component (SCR - Skin Conductance Re-
sponse) — rapid, transient changes in conductivity
associated with responses to stimuli (e.g., sounds,
emotions, stress).

EDA signals are non-invasive, relatively simple to
acquire, and very sensitive to changes in sympathetic
activity. However, their interpretation can be hampered
by external factors (e.g., temperature, humidity) and
individual variability.

Aidmed One - a medical wristband for testing
apnea and arrhythmia. It has features such as ECG
recording (1 channel, 250Hz, Holter ECG function),
sound intensity measurement (cough and snoring de-
tection), chest movement measurement, nasal airflow
measurement (nasal cannula), blood oxygen saturation
level (compatible finger pulse oximeter), skin temperature
measurement, movement and position testing,.

HRYV examination — HRV analysis was performed
on one-minute samples. Based on the ECG values, HRV




measures were calculated in three ways: analytically, i.e.,
using mathematical formulas with the times of successive
R peaks determined using the Pan-Tompkins or U-Net al-
gorithm, and using convolutional neural networks (CNN).

Creating own dataset — This was done by using
Aidmed One, which can collect ECG signal values 250
times per second. For this purpose one person wore this
device while doing various types of activity, i.e. rest,
walking (called "activity"), sleep and excercizing alter-
nately with resting (called "mixed activity"). For every
state, we measured for at least several dozen minutes.

Usage of prepared dataset — To use our own
dataset, we had to trim it to 10 minutes frame for each
One frame contains 150,000 samples. This is
because Aidmed One takes measurement 250 times per
second and multiplying this by 600 second (10 minutes)
gives us 150,000 values in a given frame.

state.

5. Results

The code and data used from our dataset are available
here: [37]. For data obtained during rest, ten one-minute
measurements were taken, using different methods of cal-
culating HRV:

Table 1: HRV values for resting measurements using the Pan-
Tompkins algorithm

Series SDANN | SDNN Index | RSA Index | Mean RR | SDNN | RMSSD | PNN50
1 10.54 39.25 19.33 827.06 48.15 36.66 15.49
2 3.63 32.47 16.07 846.23 43.71 27.85 8.7

3 57.69 44.83 23.47 850.26 71.23 | 32.89 10.29
4 0.97 43.45 14.15 913.23 4295 | 35.89 20.31
5 11.32 49.16 23.97 858.96 58.88 32.21 8.82
6 31.15 51.54 25.23 852.87 59.25 30.53 10.29
7 22.75 40.47 24.02 901.15 56.29 | 32.0 7.69
8 16.27 35.21 15.76 887.28 41.12 | 259 9.09
9 10.03 34.95 21.19 838.4 45.15 | 28.46 5.8

10 26.51 57.66 28.17 821.17 60.96 26.3 1.41
Average | 19.09 42.9 21.14 859.66 52.77 30.87 9.79
Std Dev | 16.65 8.07 4.65 31.03 9.96 3.75 5.13
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Figure 3: Chart of SDANN, SDNN Index, RSA Index, SDNN, RMSSD,
PNN50 measurements at rest using the Pan-Tompkins algorithm

Table 2: HRV measure values for resting measurements using the U-
Net network

Series SDANN | SDNN Index | RSA Index | Mean RR | SDNN | RMSSD | PNN50
1 31.29 122.8 50.25 851.41 159.23 | 213.43 | 19.12
2 6.55 178.25 47.85 884.16 183.31 | 261.4 13.64
3 21.54 109.91 48.28 862.75 115.1 | 137.14 | 13.43
4 9.48 40.18 12.53 915.1 40.56 35.36 19.05
5 12.75 89.29 45.72 871.65 92.28 131.19 13.43
6 18.67 99.68 54.35 862.36 109.2 | 144.26 | 11.76
7 4.22 50.43 24.03 902.95 54.84 | 32.25 6.25
8 14.01 101.97 41.56 900.72 113.45 | 154.64 | 10.77
9 43.35 154.2 59.46 877.15 217.51 | 312.18 12.31
10 34.25 47.95 28.37 821.18 61.07 26.68 1.41
Average | 19.61 99.47 41.24 874.94 114.66 | 144.85 | 12.12
Std Dev | 12.94 45.39 14.85 27.72 57.49 | 97.33 5.31
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Figure 4: Graph of SDANN, SDNN Index, RSA Index, SDNN, RMSSD,
pNN50 measurements at rest using the U-Net network

Table 3: HRV values for resting measurements using convolutional
neural networks

Series SDANN | SDNN Index | RSA Index | Mean RR | SDNN | RMSSD | PNN50
1 4.17 99.99 46.68 839.25 102.69 | 140.89 | 18.84
2 222 115.67 44.7 871.16 147.79 | 205.7 13.43
3 35.98 62.35 23.47 850.24 71.24 | 32.97 10.29
4 9.48 40.18 12.53 915.1 40.56 | 35.36 19.05
5 27.52 52.9 24.15 859.02 58.99 | 32.7 10.29
6 41.19 104.69 53.79 865.44 124.79 | 153.2 13.43
7 4.22 50.43 24.03 902.95 54.84 | 32.25 6.25
8 26.01 155.85 42.4 914.57 156.52 | 226.96 | 14.06
9 6.4 98.51 46.68 850.52 100.37 | 135.3 | 8.82
10 50.86 117.12 57.4 832.75 126.19 | 155.79 | 4.29
Average | 22.8 89.77 37.58 870.1 98.4 115.11 | 11.88
Std Dev | 16.57 36.98 15.22 30.46 40.61 | 75.76 4.87
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Figure 5: Graph of SDANN, SDNN Index, RSA Index, SDNN, RMSSD,
PNN50 measurements at rest using convolutional neural networks
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Figure 6: Mean RR graph for resting measurements

For data during activity (walking), ten one-minute
measurements were taken using different methods of cal-
culating HRV:

Table 4: HRV values for measurements during a walk using the Pan-
Tompkins algorithm
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HRV measurements

100 == SDANN
=== SDNN Index

80 —— RSA Index
o == SDNN
S 60
= —— RMSSD
= 40 = PNN50

20

0
2 4 6 8 10
Series

Figure 8: Graph of SDANN, SDNN Index, RSA Index, SDNN, RMSSD,
PNN50 measurements during walking using the U-Net network

Table 6: HRV values for measurements during walking using convo-
lutional neural networks

Series SDANN | SDNN Index | RSA Index | Mean RR | SDNN | RMSSD | PNN50 Series SDANN | SDNN Index | RSA Index | Mean RR | SDNN | RMSSD | PNN50
1 0.51 9.49 14.94 512.9 10.98 | 10.81 0.0 1 20.62 232.04 101.57 584.69 258.95 | 366.04 | 18.18
2 1.25 7.84 12.66 518.71 10.93 | 12.81 0.0 2 30.87 198.06 63.83 609.74 196.07 | 275.75 | 28.12
3 11.0 9.25 15.67 492.56 1512 | 8.88 0.0 3 4.58 183.55 88.65 562.29 184.8 | 280.87 | 26.67
4 11.03 12.02 16.8 490.61 16.69 | 10.68 0.0 4 27.88 152.21 89.52 530.03 152.18 | 220.96 | 14.41
5 7.96 9.37 12.46 518.71 13.04 | 14.23 0.0 5 15.54 130.64 65.32 552.24 128.52 | 188.84 | 13.08
6 2.14 10.99 9.46 505.05 10.25 | 12.71 0.0 6 7.57 185.65 83.38 578.61 190.44 | 249.22 | 21.57
7 0.19 7.77 10.01 511.83 8.76 14.28 0.0 7 7.29 134.94 80.37 544.67 142,56 | 201.81 | 10.19
8 3.9 8.43 11.84 517.46 10.84 | 10.24 0.0 8 30.41 175.99 80.52 589.83 189.43 | 262.51 | 23.23
9 25.78 37.58 29.35 580.24 4328 | 10.55 0.0 9 40.58 207.95 83.11 636.99 206.39 | 297.38 | 14.29
10 11.24 25.83 26.09 562.49 37.94 | 11.02 | 0.0 10 45.06 158.52 82.62 609.9 178.64 | 257.74 | 14.74
Average | 7.5 13.86 15.93 521.06 17.78 | 11.62 0.0 Average | 23.04 175.96 81.89 579.9 182.8 | 260.11 | 18.45
Std Dev | 7.86 9.89 6.68 28.66 12.32 | 1.79 0.0 Std Dev | 14.23 32.34 11.06 33.29 36.75 | 51.02 6.13
HRV measurements - Walking | Pan-Tompkins HRV measurements - Walking | CNN
40 HRV measurements 350 HRV measurements
=== SDANN 300 === SDANN
== SDNN Index === SDNN Index

30 == RSA Index 250 = RSA Index
o = SDNN 2 200 === SDNN
) === RMSSD g = RMSSD
= == PNN50 130 === PNN50

10 100

50 __—..
0 0
2 4 6 8 10 2 4 6 8 10
Series Series

Figure 7: Graph of SDANN, SDNN Index, RSA Index, SDNN, RMSSD,
PNN50 measurements during walking using the Pan-Tompkins algo-
rithm

Table 5: HRV measure values for measurements during walking us-
ing the U-Net network

Series SDANN | SDNN Index | RSA Index | Mean RR | SDNN | RMSSD | PNN50
1 3.81 43.49 66.07 517.42 4954 | 68.9 1.77
2 5.6 6.83 10.47 518.81 9.01 4.42 0.0
3 5.28 78.93 70.66 505.11 7772 | 111.42 | 5.13
4 17.08 44.04 71.1 494.7 50.36 66.71 1.68
5 6.9 8.93 10.91 518.62 11.25 5.31 0.0
6 0.28 34.73 64.63 509.38 47.07 | 66.72 1.72
7 6.83 40.92 61.94 516.26 4872 | 68.95 1.75
8 0.15 9.09 10.81 517.39 9.53 4.27 0.0
9 28.0 33.93 28.5 580.23 43.33 10.39 0.0
10 25.95 23.78 26.12 562.58 3762 | 7.1 0.0
Average | 9.99 32.47 42.12 524.05 38.42 | 41.42 1.2
Std Dev | 10.11 21.92 26.93 26.42 22.25 | 39.28 1.63
° P e . - . . -

Figure 9: Graph of SDANN, SDNN Index, RSA Index, SDNN, RMSSD,
pNN50 measurements during walking using convolutional neural net-
works
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Figure 10: Mean RR graph for measurements during walking
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Ten one-minute measurements were taken during

sleep, using different methods of calculating HRV:

Table 7: HRV values for measurements during sleep using the Pan-
Tompkins algorithm

Series SDANN | SDNN Index | RSA Index | Mean RR | SDNN | RMSSD | PNN50
1 12.11 48.0 10.49 999.93 4144 | 33.84 12.07
2 22.79 33.91 13.81 1004.41 48.63 | 38.69 15.52
3 7.33 31.06 7.75 981.8 32.0 28.32 6.78
4 33.08 65.57 22.37 983.8 54.41 39.43 18.64
5 4.61 51.76 23.04 1011.53 | 63.63 | 51.22 25.86
6 1.93 39.11 9.25 988.34 39.35 | 35.79 20.69
7 4.25 52.68 21.79 981.13 70.42 | 40.84 25.42
8 9.18 36.69 8.68 1009.63 37.61 36.38 18.97
9 4.44 34.01 10.07 983.2 37.46 32.18 15.25
10 9.42 31.89 11.08 975.33 38.89 | 34.35 11.86
Average | 10.91 42.47 13.83 991.91 46.38 | 37.1 17.11
Std Dev | 9.77 11.48 6.13 13.2 12.64 | 6.17 6.05
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Figure 11: Graph of SDANN, SDNN Index, RSA Index, SDNN,
RMSSD, pNN50 measurements during sleep using the Pan-Tompkins
algorithm

Table 8: HRV measure values for measurements during sleep using
the U-Net network

Series SDANN | SDNN Index | RSA Index | Mean RR | SDNN | RMSSD | PNN50
1 8.31 40.54 10.56 999.91 41.41 33.77 12.07
2 14.32 42.94 13.92 1004.38 48.61 | 38.49 17.24
3 5.03 31.2 7.81 981.81 32.06 28.29 6.78
4 6.87 53.33 22.46 983.8 54.53 39.63 20.34
5 7.64 58.12 23.15 1011.53 63.8 514 24.14
6 10.43 38.47 9.44 988.32 39.26 35.63 20.69
7 3.8 65.79 21.78 978.73 72.27 44.02 30.0

8 9.81 36.23 8.8 1009.65 37.52 35.91 17.24
9 10.38 36.55 10.01 983.15 37.38 31.98 13.56
10 1.08 37.24 11.19 975.32 39.08 34.66 11.86
Average | 7.77 44.04 13.91 991.66 46.59 37.38 17.39
Std Dev | 3.8 11.21 6.12 13.44 13.07 6.54 6.75
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Figure 12: Graph of SDANN, SDNN Index, RSA Index, SDNN,
RMSSD, pNN50 measures for measurements during sleep using the U-
Net network

Table 9: HRV values for measurements during sleep using convolu-
tional neural networks

Series SDANN | SDNN Index | RSA Index | Mean RR | SDNN | RMSSD | PNN50
1 8.31 40.54 10.56 999.91 4141 | 33.77 12.07
2 14.32 42.94 13.92 1004.38 | 48.61 | 38.49 17.24
3 5.03 31.2 7.81 981.81 32.06 | 28.29 6.78
4 6.87 53.33 22.46 983.8 54.53 | 39.63 20.34
5 7.64 58.12 23.15 1011.53 | 63.8 51.4 24.14
6 10.43 38.47 9.44 988.32 39.26 | 35.63 20.69
7 6.87 60.51 21.78 981.11 7047 | 41.01 28.81
8 9.81 36.23 8.8 1009.65 | 37.52 | 35.91 17.24
9 10.38 36.55 10.01 983.15 37.38 | 31.98 13.56
10 1.08 37.24 11.19 975.32 39.08 | 34.66 11.86
Average | 8.07 43,51 13.91 991.9 46.41 | 37.08 17.27
Std Dev | 3.56 10.14 6.12 13.2 12.69 | 6.26 6.51
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Figure 13: Graph of SDANN, SDNN Index, RSA Index, SDNN,
RMSSD, pNN50 measurements during sleep using convolutional neu-
ral networks
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Figure 14: Mean RR graph for measurements during sleep

For data during mixed activity (one-minute activity
interspersed with one-minute rest), ten one-minute mea-
surements were taken using different methods of calculat-
ing HRV:

Table 10: HRV values for measurements during mixed activity using
the Pan-Tompkins algorithm

Series SDANN | SDNN Index | RSA Index | Mean RR | SDNN | RMSSD | PNN50
1 35.66 39.02 55.42 538.65 68.52 19.12 4.59
2 80.58 70.64 56.49 582.04 87.32 18.37 2.97
3 29.84 34.23 186.02 507.25 60.94 41.09 2.59
4 48.59 42.78 47.42 519.51 48.68 | 10.48 0.88
5 16.17 35.82 61.11 522.51 6258 | 19.91 3.57
6 62.17 47.02 50.33 592.24 76.53 | 15.98 2.02
7 24.27 43.49 175.7 544.73 76.8 40.03 3.67
8 51.25 38.85 37.29 550.65 60.13 8.85 0.0
9 18.41 25.26 36.11 551.7 4541 | 11.47 0.0
10 63.75 35.43 34.78 581.53 70.37 | 7.81 0.0
Average | 43.07 41.25 74.07 549.08 65.73 | 19.31 2.03
Std Dev | 21.63 11.94 57.06 28.81 12.92 12.01 1.72

HRV measurements - Mixed Activity | Pan-Tompkins

Table 11: HRV measure values for measurements during mixed ac-
tivity using the U-Net network

Series SDANN | SDNN Index | RSA Index | Mean RR | SDNN | RMSSD | PNN50
1 48.8 127.84 89.65 564.31 143.2 188.41 12.5
2 70.74 120.34 83.97 605.81 137.98 | 161.33 | 11.34
3 13.57 207.54 102.95 565.19 204.67 | 274.03 14.42
4 28.89 80.08 78.75 528.74 83.0 97.76 4.46
5 33.52 211.97 102.13 574.05 235.99 | 329.64 13.86
6 49.04 90.01 157.17 592.05 104.55 | 105.17 8.0

7 31.26 152.08 148.25 580.12 159.95 | 220.22 12.87
8 43.07 62.92 64.91 566.53 92.38 117.65 5.83
9 13.17 96.42 61.14 566.61 95.86 129.14 | 5.83
10 59.75 51.57 60.0 587.29 81.71 71.34 2.0
Average | 39.18 120.08 94.89 573.07 133.93 | 169.47 9.11
Std Dev | 18.73 55.98 34.17 20.75 53.29 83.54 4.43
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Figure 16: Graph of SDANN, SDNN Index, RSA Index, SDNN,
RMSSD, pNN50 measures for measurements during mixed activity us-
ing the U-Net network

Table 12: HRV values for measurements during mixed activity using
convolutional neural networks

175 HRV measurements
150 === SDANN Series | SDANN | SDNN Index | RSA Index | Mean RR | SDNN | RMSSD | PNN50
= SDNN Index 1 323 133.01 79.46 569.74 135.88 | 178.62 | 16.5
125 e RSA Index 2 57.05 154.24 87.6 624.94 17258 | 233.86 | 15.96
. SDNN 3 24,53 183.63 92.78 565.19 183.07 | 265.24 | 1731
3 100 4 465 157.04 81.53 563.65 15831 | 21845 | 17.14
g == RMSSD 5 61.93 288.92 108.61 602.47 34351 | 496.79 | 20.62
75 == PNN50 6 41.02 | 188.46 113.6 623.42 279.65 | 382.15 | 6.38
50 7 24.99 253.95 85.09 643.18 253.75 | 32554 | 23.08
8 25.81 101.62 85.21 589.19 144.23 | 17351 | 9.09
25 9 45.22 145.79 79.58 589.28 17438 | 22657 | 10.1
10 64.98 106.49 75.17 599.16 | 12041 | 142.94 | 6.12
0 Average | 42.43 171.32 88.86 597.02 196.58 | 264.37 | 14.23
5 4 6 8 10 Std Dev | 15.39 60.35 12.75 27.15 72.03 | 108.76 | 5.93
Series
Figure 15: Chart of SDANN, SDNN Index, RSA Index, SDNN,
RMSSD, pNN50 measurements during mixed activity using the Pan-
Tompkins algorithm
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Figure 17: Graph of SDANN, SDNN Index, RSA Index, SDNN,
RMSSD, pNN50 measures for measurements during mixed activity us-
ing convolutional neural networks
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Figure 18: Mean RR graph for measurements during mixed activity

6. Conclusions

6.1. Resting

The resting state is characterized by stable heart
function, ie., RR intervals do not change significantly
over time, which makes it possible to determine with
high accuracy when successive heartbeats occur. Thanks
to predictable periodicity, R wave detection should not
pose any problems for algorithms. The Pan-Tompkins
algorithm generally shows more favorable standard
deviation results for HRV calculations compared to U-Net
or convolutional neural networks. Only in two of the
calculated measures, i.e. SDANN and Mean RR, were
the results the worst, and in the case of pNN50, neural
networks obtained a lower standard deviation value than
this algorithm. This difference is most noticeable in
RMSSD and SDNN, where in the case of the former, using
the Pan-Tompkins algorithm, the standard deviation is
3.75, and in U-Net and convolutional neural networks, it
is 97.33 and 75.76, respectively. Given that the average
results are 30.87, 144.85, and 115.11, respectively, the
standard deviation expressed as a percentage is 12.15%,
67.19%, and 65.82%. These results indicate that HRV

measurement using the Pan-Tompkins algorithm in a
person at rest is significantly more accurate than using
the other HRV calculation methods discussed.

6.2. Walking

When walking, a person already exerts some effort,
so their heart rate increases slightly compared to the
previously discussed resting state. This can be seen in
the lower HRV metrics we obtained, which only confirm
that the intervals between successive heartbeats are
shorter. Walking does not necessarily have to be done
at a constant speed, e.g., due to stopping at a crosswalk.
For this reason, the heart rate may also not be completely
regular. This can be seen in the higher standard deviation
values compared to the results obtained at rest. In the
case of measurements taken during a walk, we can
initially observe an interesting anomaly. In Table 4, i.e.
using the Pan-Tompkins algorithm, the pNN50 value
is 0 for each measurement, which can be interpreted
in two ways; either there was a series of errors in
calculating the pNN50 value for this algorithm, or the
values were calculated correctly and, according to the
research [11], the test subject may have had increased
stress levels during the heart rate measurement. Re-
gardless of this issue, when calculating almost every
variable, the Pan-Tompkins algorithm mentioned before
performed best, as apart from the standard deviation of
the Mean RR variable, it obtained the lowest value in
every other variable. The next algorithm that performed
well was U-Net, which, apart from the RSA Index, was
better at calculating the other variables compared to CNN.

6.3. Sleep

When considering the indicated types of activity,
sleep is characterized by the most stable heart function.
This is because people move the least during sleep, so
their muscles relax, allowing the heart to pump less oxy-
gen to them, which results in a stable, slower heartbeat.
This is also confirmed by the results we obtained, as we
achieved the highest HRV metrics for all types of activity
during sleep. For this reason, the standard deviation
results obtained for all variables are satisfactory when us-
ing each of the algorithms. Nevertheless, the best results
were obtained using convolutional neural networks, but
the difference compared to other methods of calculating
HRV was minor. Due to the visible difference in the
SDANN standard deviation, the Pan-Tompkins algorithm
performed the worst, with a value of 9.77, while U-Net
had 3.8 and CNN had 3.56.
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6.4. Mixed activity

Of the four types of activity examined, i.e. rest,
walking, sleeping and mixed activity, the algorithms
performed worst at calculating the exact result for this
one. This is due to a simple fact, namely the periodic
change in activity, i.e. every minute, the test subject
either performed physical exercise, which caused the
heart to beat faster, or rested, which caused the heart
to try to return to its normal rhythm. Such alternating
changes in heart rate complicate the operation of each of
these algorithms, as they are not adapted to continuous
rapid changes with each subsequent measurement. None
of the algorithms stood out significantly from the others
in terms of standard deviation results. As in previous
cases, the best results were obtained when using the
Pan-Tompkins algorithm, but its advantage in this case
was the smallest of all the types of activity compared.
Pan-Tompkins obtained a significantly lower standard
deviation value for RMSSD, i.e. 12.01, compared to 83.54
for U-Net and 108.76 for CNN. With regard to SDNN, the
values were 12.92, 53.29 and 72.03, respectively, and in
the case of SDNN Index, the standard deviation for the
individual algorithms was as follows: 11.94, 55.98 and
60.35. The other algorithms, on the other hand, showed
more promising results when calculating SDANN or RSA
Index, as in the case of the former, the values were 21.63,
18.73 and 15.39, and in the case of the latter, they were
57.06, 34.17 and 12.75.

6.5. Overall summary

In most cases, when activity was more dynamic the
most accurate method for calculating HRV values was the
Pan-Tompkins algorithm. When data was gathered from
periods when heart function was more stable, Convo-
lutional Neural Network and U-Net network performed
slightly better than the Pan-Tompkins algorithm. This
means the Pan-Tompkins algorithm should be used for
calculating HRV values in wristbands for runners and
other devices used during sport activities. CNN or U-Net
network may be used for devices that monitor heart
functions during sleep, e.g. in field hospitals or at home.

6.6. Future work

Future work will focus on testing methods of
calculating HRV on devices with different sampling rate
than Aidmed One, e.g significantly higher such as 500
Hz and 1000 Hz or lower such as 100 Hz and 50 Hz, but
the latter may be problematic because some HRV values

require high enough sampling rates. This difficulty,
however, may be overcome using interpolation. Future
work will also focus on comparing new methods of HRV
calculation, such as the Hamilton-Tompkins algorithm,
Christov Algorithm or Engelse-Zeelenberg algorithm.
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