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Abstract

Deep reinforcement learning models such as Deep Q-Networks (DQNs) have achieved great performance in both sim-
ple and complex environments, but their decision-making process remains largely opaque. This work addresses the
interpretability challenge by proposing a method of extracting and comparing symbolic rules from a trained DQN
and logic-based agents. The method is showcased in the popular Wumpus World domain. Rules extraction from the
agents is done via training decision trees to mimic the agent’s behavior. Comparison is done using Jaccard similarity
and simple structural metrics. Results show that despite similar performance, DQNs and logic agents rely on partially
overlapping but structurally largely distinct decision rules. This highlights the feasibility of translating subsymbolic

policies into interpretable rules and reveals meaningful structural differences between learned and symbolic strategies.
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1. Introduction

Deep reinforcement learning (DRL) has achieved
tremendous success in the treatment of sequential
decision-making problems. One of the algorithmic mile-
stones that has allowed this to occur is the development
of the Deep Q-Network (DQN) family of solutions [1-3].
DONs achieve outstanding performance in a wide variety
of environments, from simple grid-based experiments
to difficult tasks such as Atari games. The relevance
of this algorithm is confirmed by the fact that its ideas
are further developed in later deep reinforcement learn-
ing algorithms such as DDPG [4], SAC [5] or even
MuZero [6].

However, although these DRL algorithms achieve
great performance in a variety of tasks, they all share
a common disadvantage: they are extremely opaque for
a human interpreter that tries to understand their be-
havior, raising warning issues wherever interpretability,
transparency, and safety aspects of methods are very
important. The decision-making process of the DRL
agents is encoded in the form of numerical weights and
activations, making it difficult for humans to understand
why a specific action was taken.

In contrast, symbolic agents, i.e. those with rules-
based policies expressed in the language of First-Order
Logic (FOL) - FOL agents — offer inherently interpretable
decision processes. This contrast motivates our core re-
search question: Can the policy of a deep reinforcement
learning agent, such as the DON, be represented as a set of
symbolic rules comparable to those defined by a logic-based
agent? If so, what are the similarities and differences in
their internal reasoning patterns?

This work aims to make the behavior of DQN agents
more interpretable by approximating their policies by
learned symbolic rules and comparing these rules with
those used by a logic-based agent. The contributions of
this work are as follows.

» A comparison methodology between DQN and FOL
agents is proposed based on: (1) Jaccard similarity
to identify partially overlapping rules of their trans-
formed transparent policies, and (2) the structural
analysis of the extracted rules in terms of quantity,
depth, and logical similarity.

» Four different agents (one FOL-based and three differ-
ent DQN-based) operating in a Wumpus World under
the same sensory input have been prepared and their
policies have been transformed into explicit decision
rules using decision trees trained to mimic their be-
havior.

» Using the proposed methodology, an empirical evalu-
ation and comparison of the four agents is presented,
which uncovers their key similarities and differences.

The findings suggest that, although the DQN and
FOL agents achieve similar success rates, the underlying
reasoning captured by their rule sets is only partially
aligned. This indicates that subsymbolic (i.e., neural
network-based) agents may arrive at effective poli-
cies through structurally different paths compared to
explicitly programmed symbolic logic.

The remainder of this paper is structured as follows.
The next section describes some of the previous research
work related to explainable reinforcement learning and
FOL agents. Section 3 presents the proposed method of
interpretable comparison between agents. Section 4 de-
scribes the environment — Wumpus World - as well as
the four agents developed to act in this environment. In
Section 5, using the proposed method, logical rules for all
agents are extracted and, based on this, they are compared
and analyzed. A discussion about the presented method
and results is provided in Section 6, including possibili-
ties and limitations of the method. Finally, the last section
concludes the findings and presents possible future exten-
sions of this work.

2. Related Work

Explainable Reinforcement Learning (XRL) focuses
on increasing the transparency of DRL agents by mak-
ing their decision-making processes understandable
to humans. XRL belongs to the more general area of
explainable Artificial Intelligence (XAI). Both are topics
that are highly researched. The broad range of methods
developed in these fields, surveyed in [7-11], fall into two
main categories.

One group of methods relies on writing logical
agents or training only controller models that are in-
herently interpretable (e.g., Decision Trees (DTs)), thus
building systems that provide intrinsic explanations.
The classic approach to constructing logical agents is
to use First-Order Logic (FOL) and logic programming
in languages such as Prolog [12], Golog [13] and simi-
lar [14]. FOL provides a formal, interpretable framework
for representing knowledge and reasoning. In the context
of logical agents, FOL enables explicit modeling of the
environment and decision-making rules, often leading to
fully explainable behaviors. Examples of such agents can
be found, e.g., in [15-17].

The other group of techniques provides post-hoc ex-
planations to models, which are otherwise opaque to hu-
man interpretation, in particular neural network models.
These methods can be either model specific or model ag-
nostic. They can provide global explanations, that is, de-
scribing the full process of a response generation provided
a given input, or give only a local, partial clue for an inter-
preter. Popular saliency maps (e.g., [18]) used for models




with visual input which show where the focus of a model
is located in a given image can be classified as a post-
hoc, model specific, local explanation method. Linear In-
terpretable Model-agnostic Explanations (LIME) [19] and
SHapley Additive exPlanations (SHAP) [20] methods are
popular model agnostic post-hoc local explanation meth-
ods which work for any predictors, but are especially use-
ful for tabular data. The examples of global post-hoc ex-
planation methods for neural network-based agents in-
clude building interpretable policy summarizations [21,
22], causal models [23-25] and symbolic approximations
through e.g. genetic programming [26], Neurally Directed
Program Search [27], converting neural activations into
logical rules [28] or query-based rule extraction into Horn
logic [29].

Finally, a symbolic approximation of a neural net-
work can be obtained, as in this work, by training a de-
cision tree to mimic the original neural network-based
controller [30]. Such surrogate models provide human-
understandable decision paths and enable analysis of the
learned policy structure. As in this work, these decision
paths of a decision tree can be converted into a set of log-
ical rules.

The testing environment used in the work - Wum-
pus World - is a simple grid-based toy world, popularized
by [31], where it was used to illustrate concepts such as
logical reasoning, knowledge representation, and decision
making under uncertainty, which has to be considered to
develop a successful logical agent. There are many pub-
lished solutions implementing agents for various versions
of Wumpus World, both FOL-based [17,32,33] and DRL-
based [34-36].

Although DTs have been used to interpret the be-
havior of DQN controllers before, e.g., in [37,38], this has
not been done for agents operating in the Wumpus World.
Moreover, to our best knowledge, in no prior work have
DON controllers been compared against each other and
with an FOL controller based on the generated rule sets.

5. Rule Set-Based Comparison of
Agents

The proposed method of interpretable comparison of
agents relies on transforming the original controllers (ei-
ther written in an FOL language or trained using a DRL
algorithm, like DQN) into sets of logic rules. These rule
sets are then compared using the proposed structural met-
rics to obtain quantitative results. The rule sets also allow
for qualitative analysis of each agent individually, as well
as a detailed assessment of the similarities and differences
in the decision rules of the agents.

3.1. Obtaining Rule Sets

To analyze the strategies learned by the DQN and
First-Order Logic (FOL) agents in an interpretable way,
the first step is to construct decision trees that mimic their
behavior, which are later transformed into rule sets. In
order to train decision trees, training data has to be col-
lected. This is done as follows:

» each agent is run for N independent episodes a given
environment — same for all agents;

» for every agent, each decision (i.e., each observation
— action pair), is recorded; each episode provides a
trajectory T of such training pairs;

» as a result, a dataset containing N = M *avg_len(T)
such decision examples, with the exact number vary-
ing depending on the lengths of individual episodes
(some agents have shorter average length of episodes
than others).

Using such datasets, a separate decision tree for
each agent is trained. The training is done in a standard
way. Each dataset is split into training and test subsets
using an 80/20 split.
binary indicators representing the agent’s perception
of the environment, while action labels representing all
possible agent decisions are treated as class indicators.
The trees are trained using Gini impurity as the splitting
criterion, with a maximum depth of 36 and a minimum
of 10 samples per leaf node. These hyperparameters
are chosen to balance accuracy and interpretability. To
further simplify the models, a custom pruning algorithm
is applied, which substitutes subtrees with identical class
predictions in both children with a leaf node with that
class prediction.

The input features consists of

After training, the decision trees are transformed
into rule sets. A single decision rule is represented as
a conjunction of conditions imposed by each node along
aroot-to-leaf path in the decision tree. Extracted rules are
expressed using standard logical notation. The following
symbols are used throughout:

Negation (NOT)

Conjunction (AND)

Implication (IF ... THEN)
Universal quantifier (FOR ALL )

< | >

For example, a rule could be represented as:
Vs —stench(s) A glitter(s) — grab(s).

This notation should be interpreted as: “For all fields
(s), if the stench is not perceived in (s) and the glitter is
perceived, then the agent performs the grab action”

Each path from the root node to a leaf node consti-
tutes a single decision rule, as above.




3.2. Comparison of Rule Sets

To compare the extracted trees and their encoded de-
cision rules, several structural metrics are calculated:

» Number of Rules: Each decision rule corresponds to
a path from the tree root to a leaf. The total number
of such paths indicates the complexity of the policy
representation.

» Maximum Rule complexity: The longest path from
root to any leaf, reflecting the deepest decision condi-
tion.

» Average Rule complexity: The mean length of all
root-to-leaf paths, providing insight into the typical
complexity of individual rules.

In addition to these structural metrics, decision rules
are semantically compared by evaluating their similarity
in the following way. For each pair of rules — one from
the first agent and one from the second - the Jaccard sim-
ilarity coefficient [39], a measure used for comparison be-
tween sets, is computed:

|ANB|
J(A,B) = , 1
where A and B denote the sets of conditions in the two
compared rules.

Rules were considered to match, if their Jaccard
similarity was at least 0.6. This threshold means that at
least 60% of conditions overlapped, allowing us to iden-
tify logically similar, though not syntactically identical,
decision strategies. Note that a single rule from one tree
may be similar to multiple rules in the other tree due to
this matching criterion. This approach enables detection
of partially convergent policies between agents.

4. Showcase:
Agents

Wumpus World

4.1. The Environment

The environment consists of an N X N (4 x 4 in a clas-
sic version of the problem) grid containing several pits
(three in the classic version), a Wumpus (the deadly mon-
ster), a gold bar, and an agent. Gold emits glitter, the
Wumpus produces stench in adjacent cells, and pits cre-
ate breeze in adjacent cells. The agent starts in the top-
left corner of the grid, which is also the exit point after
collecting the gold. The agent’s goal is to collect gold and
successfully escape without dying. Entering a cell with a
pit or the Wumpus, or exceeding the maximum number
of steps, results in the agent’s death and failure.

The agent perceives the following basic sensory in-
puts under the following conditions:

» Stench - a Wumpus is in an adjacent cell,

» Breeze — a pit is in an adjacent cell,

» Glitter - gold is present in the current cell,

» Bump - the agent has hit a wall,

» Scream - the Wumpus was killed as a result of the
previous action.

Additionally, the agent maintains internal knowl-
edge of whether it is holding the gold (has_gold), whether
it is at the entrance (on_entrance), and its current position
(x.y).

The agent can perform the following actions:

» Move Forward — move one cell forward in the direc-
tion it is facing,

» Turn Left / Turn Right - rotate 90° in the corre-
sponding direction,

» Grab - pick up the gold (only successful in the same
cell as gold),

» Climb - exit the grid (only successful in the entrance
cell),

» Shoot - fire an arrow (only successful once per game).

The agent always starts in the top-left corner of the
grid. Other entities (pits, Wumpus, gold) are randomly
placed, with the restriction that no hazards may be placed
within the initial 2 x 2 area in the top-left corner, in order
to reduce the number of unsolvable maps (when there is
no path between the agent and gold). Each map is tested
for the existence of a path to the gold, and if no such path
exists, it is marked as unsolvable. The environment is ren-
dered using the pygame library. The agent is represented
by an arrow indicating its orientation; G denotes gold, P
denotes a pit, and W represents the Wumpus. An example
of a generated world is presented in Figure 1.
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P

Figure 1: An example of a generated Wumpus World map. The ex-
planation is in the main text.




» Exactly one Wumpus is placed on the map,

» Exactly one gold tile is present,

» All border tiles are surrounded by walls (the agent can
not leave the map),

» The starting tile contains only the agent,

» There is a path from the starting tile to the gold (the
gold is not blocked completely by pits).

P W

P P

Figure 2: An example of an unsolvable Wumpus World map. The
explanation is in the main text.

The example shown in Figure 2 illustrates an unsolv-
able map, where the gold is surrounded by pits, making
it impossible for the agent to complete the game success-
fully.

4.2. The Agents

To showecase the rule-based comparison method, four
agents operating in Wumpus World have been developed,
including a symbolic agent based on first-order logic and
reinforcement learning agents trained using a DQN algo-
rithm. Each agent operates under the same perceptual
constraints. The input state for the agent includes:

» Perceptual indicators (stench, breeze, glitter, bump,
scream),

» Agent’s position (x,y),

» Indicator whether the agent holds the gold,

» Indicator whether the agent is in the starting cell.

The action space is also identical for all the agents and
consists of the actions: Move forward, Turn left, Turn right,
Grab, Climb, and Shoot.

Although all agents have the same sensory input and
the same action space, they rely on fundamentally differ-
ent decision-making mechanisms.

4.2.1 FOL Agent

The First-Order Logic (FOL) agent utilizes symbolic
reasoning and a dynamic knowledge base. It ensures safe,
deterministic exploration and goal-oriented behavior in
the Wumpus World. The logic-based reasoning is imple-
mented using Prolog and then integrated into Python via
the pyswip library.

Besides the perceptual input, the agent is also aware
of its current relative position and orientation, as well as
the step number S of the current state in the episode.

To facilitate decision-making, the agent stores the
history of visited cells using the predicate agent(X, Y, S),
where (X, Y) denotes the position and S refers to the state
number. Executed actions are memorized as result(A, S),
where A is an action taken in the state S.

The knowledge base is dynamically updated through-
out the agent’s exploration and is encoded using facts of
the form kb(X, Y, F, V), where:

» Fisacell property: stench, breeze, glitter, visited, wum-
pus, pit, wall, or start;

» V is the property’s state: unknown, false, possible, or
true.

Several auxiliary predicates are derived from the
knowledge base to support the agent’s inference and
decision-making processes:

» holding(gold, S) - true if the agent holds the gold in
state S;

» has_shot(S) - true if the agent has used its arrow;

» cell__ahead(X, Y, Dir, NX, NY) - identifies the cell
(NX, NY) ahead of the agent, given the orientation
Dir;

» wumpus_targeted(X, Y, Dir) — true if it is certain
that the Wumpus is located in front of the agent;

» valid_ cell(X, Y) - true if the cell (X, Y) is not a wall;

» adjacent(X, Y, AX, AY) - returns set of fields
(AX, AY) adjacent to field (X, Y)

» field classification predicates: visited_cell(X, Y),
safe_ cell(X, Y), good_cell(X, Y),
medium_ cell(X, Y), risky_cell(X, Y),
deadly_ cell(X, Y).

and

The agent applies the following inference rules to up-
date its knowledge base:

» Detection of stench/breeze at (X, Y) implies the possi-
ble value of the Wumpus/pit in adjacent cells; its ab-
sence implies the false value;

» If stench/breeze is detected and only one neighbor has
possible value for the Wumpus/pit, the other fields are
set to false, and the remaining one is promoted to true
(elimination method);

» If the agent occupies field (X, Y), then
kb(X, Y, wall, false);




» A bump implies that the cell in front is a wall;
» A scream implies that all cells are updated with false
value for the Wumpus.

To structure decision-making, the agent evaluates
candidate actions within a five-level utility hierarchy:

» great: exiting the cave, grabbing gold, or shooting
with certainty about Wumpus location;

» good: returning to a visited cell if the agent has
grabbed the gold or moving to a safe unvisited cell
otherwise;

» medium: revisiting a previously visited cell;

» risky: moving to a cell with possible state for the
Wumpus or the pit;

» deadly: moving to a cell marked true for the Wum-
pus/pit.

For each state S, the agent retrieves relevant
information from predicates like agent(X, Y, S), orien-
tation(Dir, S), cell__ahead(X, Y, Dir, NX, NY) and
adjacent(X, Y, AX, AY). It then applies an if-else rule
chain, where each condition is evaluated in order until a
matching action is selected:

holding(gold, S) Akb(X, Y, start, true) = climb,
kb(X, Y, glitter, true) = grab,
wumpus_targeted(X, Y, Dir) = shoot,

—wvalid__cell(NX, NY) = turn,
good__cell(NX, NY) = move,

Jax, ay good _cell(AX, AY) = turn,
medium _ cell(NX, NY) = move,

Jax, avy medium _cell(AX, AY) = turn,
risky _cell(NX, NY) = move,

Jdax, av risky _cell(AX, AY) = turn,
deadly _cell(NX, NY) = move,

else = turn.

Expressions such as Jax, ay []_cell(AX, AY) are
true if there exists at least one cell (AX, AY) adjacent to
the agent that satisfies the given classification predicate.
The agent then turns toward the nearest such cell; if the
cell lies behind its current orientation, the agent rotates
left to gradually reorient.

The agent is designed to be more general than strictly
required by the environment’s constraints. In our specific
environment, the rule sequence typically terminates at the
conditions corresponding to finding a medium cell. The
remaining predicates are only relevant in situations where
the knowledge base contains no safe cells—such as when
the agent perceives a breeze or stench on the starting field.
Nonetheless, our environment is deliberately configured
to prevent pits and Wumpuses from being placed adjacent

to the starting location.

4.2.2 Deep Q-Network Agents

For the purpose of this study, three variants of
agents using the Deep Q-Network (DQN) method have
been trained. These agents differ mainly in their reward
allocation mechanisms and use of memory components.
Each of them was obtained with the use of DQN adapted
to the Wumpus World environment as presented in [36]
- including their two-stage epsilon-greedy strategy for
action selection (two independent sets of exploration
parameters: the first set for states until the gold is
picked up - it allows the agent to intensively explore the
environment and learn to improve in finding the gold;
and the second set for states from the moment the gold
is acquired until the end of the episode — encouraging
learning an effective return strategy).

A Deep Q-Network (DQN) is a reinforcement learn-
ing algorithm that combines classical Q-learning with
neural networks to approximate the Q-value function.
The Q-Network works as a function Q(s,a), which
estimates the expected cumulative reward for performing
action a in state s and thereafter following an optimal
policy. The network input is a state vector of size
input_dim containing the agent’s perception, position,
and state. The output is a vector of Q-values for each
possible action.

The implemented DQN model consists of three fully
connected layers with ReLU activation functions [40] be-
tween them. The network architecture is summarized in
Table 1.

Table 1: Neural network architecture of the DQN model.

Layer Type Input Size | Output Size

fe1 Linear input_dim 256
ReLU | Activation 256 256

fc2 Linear 256 256
ReLU | Activation 256 256

fc3 Linear 256 output_dim

The complete set of training hyperparameters used
in the experiments is presented in Table 2.




Table 2: Training parameters for the DQN model.

Parameter Value

Loss function SmoothL1Loss [41]
Optimizer Adam [42]
Learning rate 103

Discount factor (y) 0.9

Replay memory size 100,000

Batch size 64

Exploration strategy
Target network update frequency

Two-stage e-greedy [36]
every 25 episodes
Estart1 1

Edecayl 2x 107
€min1 0.1

Estart2 1

Edecay? 2x107*
€min2 0.1

These parameters were selected to balance training
stability, convergence speed, and exploratory behavior
across episodes.

Baseline DQN Agent The baseline DQN model follows
a standard approach for training an agent in the Wumpus
environment, where the agent receives rewards for basic
events and actions during an episode.

The reward function for the baseline model is as fol-
lows:

» Movement penalty: Each agent step incurs a penalty
of —1, encouraging the agent to minimize the number
of actions and reach the goal efficiently.

» Wall collision: An attempt to move into a wall re-
sults in a —5 penalty, with no change in the agent’s
position.

» Gold acquisition: Picking up gold yields a large re-
ward of 4500, strongly motivating the agent to find
and retrieve the gold.

» Invalid actions: Actions such as attempting to pick
up gold when not on its tile, shooting without an ar-
row, or climbing without meeting the conditions incur
a penalty of —20.

» Exploring new tiles: Visiting a previously unvisited
tile grants a reward of +50, encouraging exploration.

» Revisiting tiles: Re-visiting a tile results in a small
penalty of —0.001 to prioritize exploration.

» Killing the Wumpus: Successfully hitting the Wum-
pus with an arrow yields a reward of +300.

» Escaping the cave: Leaving the cave with gold grants
the highest reward of +1000 and ends the episode.

» Agent death: Entering a tile with a live Wumpus or
a pit leads to immediate death and a —1000 penalty,
ending the episode.

» Step limit exceeded: Surpassing the limit of 100
steps ends the episode with a —1000 penalty.

The reward function is designed to reflect the task’s
essence: finding and retrieving the gold and safely exiting

the cave, while penalizing redundant and incorrect behav-
iors.

Explorative DQN Agent The second agent shares
the same DQN architecture as the baseline model, but
employs significantly altered reward functions. The
proposed reward modifications aim to encourage ex-
ploration and safe return with the gold while reducing
unproductive behaviors.
system includes:

The changes to the reward

» Penalty for revisiting tiles: Increased to —20 to dis-
courage aimless movement.

» Reward for visiting new tiles: Increased to +120
to promote exploration of unknown areas.

» Reward for revisiting tiles after collecting gold:
+20 to encourage returning via safe, known routes.

» Wall collision penalty: Increased to —50 to reduce
behavior near walls when facing threats.

» Death penalty: Reduced to —100 to encourage risk-
taking in exploration.

» Winning reward: Increased to +10,000 to clearly
prioritize success over mere survival.

Such altering of the reward signals significantly
changed agent behavior - rather than choosing safe but
ineffective actions (like bumping into walls), the agent
makes riskier yet task-relevant decisions. The increased
reward for exploration and decreased penalty for death
leads to more dynamic behavior and more efficient
strategies for finding gold and exiting the cave.

DON Agent with Memory The third agent builds
upon the explorative model, maintaining its modified re-
ward function, but adds an internal memory mechanism
based on sensory maps to enhance its cognitive abilities.

Following [36], the agent’s cognitive capabilities
were extended with three separate sensation maps,
enabling the agent to store and update knowledge based
on past observations:

» Stench map: A M x M grid tracking stench, which
indicate proximity to the Wumpus.

» Breeze map: A M x M grid tracking breeze, which
indicate proximity to pits.

» Wall map: A larger (M +2) x (M +2) grid cover-
ing possible movement areas and the cave’s boundary,
storing wall collisions (bumps) and the agent’s own
position.

Here, M =2 grid_size — 1, with the wall map includ-
ing the cave perimeter. The agent always starts in the cen-
ter of the map, reflecting no prior knowledge of its actual
location within the cave.




Map update rules are as follows:

» After each move, if a stench or breeze is detected,
the corresponding map entry is set to +1; absence is
marked as —1.

» In the wall map, a bump results in a 41 on the tile
the agent faces, while the agent’s current position is
marked with —1 (updated each turn).

The agent’s memory is enriched over time, and the
current state of these maps is appended to its observa-
tions. For example, with a grid size of 4 (i.e., M = 7), the
final input vector to the neural network includes the orig-
inal observations plus:

TXT+TXxT4+9IXx9=49+49+81 =179

additional input features.

All other model hyperparameters remained un-
changed.

This memory system allows the agent to better un-
derstand the environment’s structure and make informed
decisions based on prior experiences, enabling more
strategic planning and efficient exploration.

5. Experimental Results

This section presents the analysis of how the ex-
tracted decision trees reflect the underlying strategies and
to what extent the learned rules align with the symbolic
logic encoded in the FOL agent. Before this comparison,
each agent’s direct test results are briefly presented.

5.1. Performance Evaluation

All of the agents - FOL, Baseline DQN, Explorative
DQN and Memory DQN - were tested across 10,000 ran-
domly generated games. The map set was the same for
each agent. For each model, the following metrics were
recorded:

» Win ratio — percentage of games where the agent
successfully retrieved the gold and escaped,

» Survival rate — percentage of games where the agent
survived (was not killed by the Wumpus or fell into a
pit),

» Average steps - average amount of steps that the
agent needed to win,

» Max steps - the number of steps taken in the longest
game won,

» Unwinnable games - percentage of games with con-
figurations that made winning impossible (e.g., gold
surrounded by pits).

Table 3: Comparison of agent performance in the Wumpus world
(10,000 test episodes).

Unsolvable games: 1.87%
Model Win ratio | Survival | Avg steps | Max steps
Baseline 31.54% 71.74% 12.85 31
Explorative 38.03% 78.98% 13.99 34
Memory 45.22% 85.15% 15.39 38
FOL 50.75% 100.0% 22.85 88

As shown in Table 3, each successive modification of
the agent led to a significant improvement in performance
and to a progressively closer alignment with the results
of the FOL agent. The memory-based agent achieved the
best results among the DQN models, demonstrating supe-
rior perception and internal environment representation,
which enabled more effective decision-making in an en-
vironment with limited observability.

Out of all simulations, 1.87% of the worlds were
found to be unsolvable - that is, they contained no path
to the gold and back at all.

The FOL agent achieved a survival rate of 100% and
a win rate of 50.75%. On average, it required 22.85 steps
to complete a winning game, with a maximum of 88 steps
observed. Although simulations were conducted with
higher step limits, it was found that a cap of 100 steps
was sufficient, as no agent had ever succeeded beyond
that threshold.

In roughly half of the games, the agent failed to win
due to insufficient knowledge - no adjacent cell could be
classified as safe with certainty anymore. In such cases,
it would loop between previously visited cells. For every
agent, games that ended with loop, were terminated after
reaching the 100-step limit.

5.2. Rule Sets Extraction

Using the proposed method presented in Sec. 3, for
each of the presented agents, a decision tree mimicking its
behavior was trained. Each tree achieved approximately
70% classification accuracy on their respective test sets,
demonstrating a reasonable fit of the surrogate models to
the agents’ decision policies.

5.2.1 FOL Agent Rule Set

It is important to note that only the agent’s direct ob-
servations were passed to the tree and not the knowledge
base. The rules obtained from the decision tree for the
FOL agent are presented in Listing 1.

Transforming the decision tree into this set of logi-
cal rules allows for straightforward comparison with the
principles that emerged in the DQN models during train-
ing.

The most frequent action appearing in the tree is




Turn. The clearest example is at the top of the tree -
whenever a bump is detected, the agent immediately
turns. In second place, despite Grab appearing in more
leaf nodes, is Move Forward. Although it appears in
only one leaf, it represents almost the largest group of
cases. This indicates the agent’s caution in making risky
decisions - it moves forward mainly when it senses no
threat (in the tree, when stench and breeze are both low).
Move Forward also appeared in other situations but was
not the dominant action, which shows that when the
agent sensed risk, it tended to turn toward a safer square
rather than moving forward immediately.

It is also worth noting the correctness of the Grab and
Climb actions. When the agent detected glitter, it immedi-
ately picked up the gold, and when it was on the entrance
tile while holding the gold, it immediately performed the
Climb action. The agent was decisive in this regard - there
are no other actions mixed in the Grab leaves, and the
same applies to the Climb leaves. These actions also do
not appear elsewhere in the tree.

One can also notice the absence of a leaf with the
Shoot class, as well as the lack of a node with the scream
criterion. This is because the Shoot action occurred too
rarely compared to other actions under the given condi-

Listing 1: The rule set obtained for the FOL agent.

Vs —bump(s) A breeze(s) A glitter(s) — grab(s)

Vs —bump(s) \ —breeze(s

(s)
(s)

N—on_entrance(s) A stench(s) A glitter(s) — grab(s)
Vs mbump(s) \ —breeze(s)

(s)

N—on_entrance(s) A\ —~stench(s) A glitter(s) — grab(s)

Vs —bump(s) A
Non_entrance(s) A\ has_gold(s) — climb(s)

—breeze(s)

Vs bump(s) — turn(s)
Vs mbump(s) A breeze(s) A —glitter(s) — turn(s)

Vs —bump(s) A

Non_entrance(s) N

—breeze(s

—has_gold

Vs mbump(s) A
N—on_entrance(s) A stench(s) \ —glitter(s) — turn(s)

—breeze(s

(s)
(s)
(s)
(s) — turn(s)
(s)
(s)

Vs —bump(s) A

N—on_entrance(s) A\ —stench(s) A

—breeze(s)

—glitter(s) — move(s)

tions to become dominant. The conditions for executing a
Shoot were quite specific and required the agent’s experi-
ence and confidence about the Wumpus’s location. The
absence of the scream condition suggests that this per-
cept had negligible direct impact on the agent’s behavior.
Instead, it influenced the strategy indirectly: the agent
would only shoot when confident of hitting the target,
which always produced a scream. After shooting, the tiles
where stench was previously perceived would lose that
percept, and this change in stench was the decisive factor
that guided the agent’s future actions.

5.2.2 Baseline DON Agent Decision Tree

The rules extracted from the decision tree for the
baseline DQN agent are presented in Listing 2.

Listing 2: The rule set obtained for the basic DQN agent.

Vs —stench(s) A glitter(s) — grab(s)

Vs stench(s) A —bump(s) A glitter(s) — grab(s)

Vs stench(s) A
N—breeze(s) AN has_gold(s) N\ on_entrance(s) — climb(s)

—glitter(s)

Vs mstench(s) A —glitter(s) A breeze(s) — turn(s)

Vs stench(s) A —bump(s

N—glitter(s) A\ breeze(s) — turn(s)

N—breeze(s) A —has_gold(s) — turn(s)

Vs stench(s) A
A —has_gold(s) — turn(s)

(s)

(s)

(s)

Vs stench(s) A bump(s)
(s)

—bump(s)

(s)

N—glitter(s) A —breeze(s) A

Vs stench(s) A bump(s) A\ breeze(s) — move(s)

Vs stench(s) A bump(s
N—breeze(s) ANhas_gold(s) — move(s)

Vs —stench(s) A
N—breeze(s)

—glitter(s

Vs stench(s) A
—breeze(s) A\ has_gold(s) — move(s)

—bump(s

N—glitter(s) A

Vs stench(s) A

Nhas_gold(s) \ —on_entrance(s) — move(s)

—glitter(s) \ —breeze(s

(s)
(s)
(s)
(s)
A —has_gold(s) — move(s)
(s)
(s)
(s)
(s)




The rules show that the agent uses straightforward
perceptual conditions to decide its next action. The dom-
inant actions in the extracted tree are Move Forward and
Turn - this suggests that the agent focuses on exploring
the cave, as expected. When perceiving observations such
as stench or breeze, the agent chooses to turn rather than
risk stepping onto a dangerous tile. In safer states, when
no risk factors are detected, moving forward becomes the
preferred action.

The actions Grab and Climb appear in clearly defined
situations: the agent grabs the gold when glitter is present
and climbs out of the cave when it has the gold and is
on the entrance tile. That shows that the decision tree
correctly reflects expected behaviors for collecting gold
and exiting the environment.

The Shoot action does not appear in the decision tree
at all. This may suggest that the agent has learned to play
without using its arrow, possibly due to the penalty for
missing, or that it reliably finds a path to the gold with-
out the need of eliminating the Wumpus. The presence
of the scream percept in the data implies that Shoot must
have occurred during gameplay, but the low frequency or
dispersed context likely prevented it from forming a dom-
inant branch in the tree.

Despite the generally correct strategies, the tree also
reveals some suboptimal behaviors. For example, when a
bump occurs, in only 83 out of 2030 cases does the agent
choose to turn; in the remaining cases, it moves forward,
hitting a wall. This may suggest that the agent prefers a
minor penalty for bumping into a wall rather than risking
a turn into an unknown direction, which could lead into
a pit and receiving a higher penalty.

5.2.3 DON Explorative Agent Decision Tree

The rules extracted from the decision tree mimicking
the explorative DQN agent are presented in Listing 3.

The decision tree created for the DON Explorative
agent reveals a very similar structure to that for the
previous DON model, despite slight differences in the
order of branches. The dominant actions remain Move
Forward and Turn. When the agent perceives potential
threats (i.e., when stench or breeze is noticed), it still
tends to turn rather than move forward, avoiding risky
tiles. Notably, the bump perception does not appear in
the extracted rules, which may indicate that the agent
learned to avoid collisions due to the higher penalty for
hitting a wall.

The Grab and Climb actions again appear in expected
contexts. Unlike the previous trees, this one also includes
the Shoot action, triggered when both stench and breeze
are perceived without gold being carried. Furthermore,
the presence of the scream percept shows that the agent
occasionally succeeds in hitting the Wumpus.

Listing 3: The rule set obtained for the Explorative DQN
agent.

Vs breeze(s) A stench(s) A glitter(s) — grab(s)
Vs breeze(s) A —stench(s) A glitter(s) — grab(s)

Vs mbreeze(s) A\ —on_entrance(s

(5)

(5)

(5)
Astench(s) A glitter(s) — grab(s)

(5)

(5)

Vs mbreeze(s) A\ —on_entrance(s

N—stench(s) A glitter(s) — grab(s)
Vs —breeze(s) N\ on_entrance(s) A has_gold(s) — climb(s)

Vs breeze(s) A stench(s)
N—glitter(s) A —has_gold(s) — shoot(s)

Vs breeze(s) A —stench(s
N—glitter(s) A —scream(s) — turn(s)

(5)
(5)
Vs —breeze(s) A\ —on_entrance(s)
(5)

Nstench(s) \ —glitter(s) — turn(s)

Vs mbreeze(s) N\on_entrance(s) A —has_gold(s

Vs breeze(s) A stench(s

N—glitter(s) A has_gold(s) — move(s)

N—glitter(s) A scream(s) — move(s)

Vs —breeze(s) N\ —on_entrance(s

(s)
(s)
(5)
Vs breeze(s) A —stench(s)
(5)
(5)
(5)

N—stench(s) A\ —glitter(s) — move(s)

5.2.4 Decision Tree of the DQN Agent with Memory

The rules extracted from the decision tree that de-
scribes the DQN agent with memory are shown in List-
ing 4.

The decision tree of the DQN agent with memory
reveals that the action Turn remains dominant, while the
basic rules (picking up gold when glitter is perceived,
climbing when on_entrance and has_gold are true) remain
unchanged compared to previous models. The Shoot
action does not appear explicitly, but the presence of the
scream percept suggests that shooting occurred at least
occasionally. Unlike the previous Explorative DON tree,
the bump perception is present here, and the reaction to it
is Move Forward, meaning the agent sometimes attempts
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to move into a wall. This likely reflects a rare edge case -
it occurred in only about 900 out of all 200,000 cases — and
might result from the increased complexity of learned
conditions rather than a change in reward shaping.

Listing 4: The rule set obtained for the DQN agent with
memory.

Vs breeze(s) A glitter(s) — grab(s)

Vs mbreeze(s) A stench(s) A glitter(s) — grab(s)

(5)
(5)
Vs —breeze(s) N\ —stench(s)
N—has_gold(s) A glitter(s) — grab(s)

Vs mbreeze(s) N\ —stench(s)
Nhas_gold(s) N on_entrance(s) — climb(s)

V, breeze(s) \ —glitter(s) A has_gold(s) — turn(s)

Vs breeze(s) A\ —glitter(s

A—has_gold(s) A —bump(s) — turn(s)

Vs —breeze(s) N\ —stench(s

Vs —breeze(s) N\ —stench(s) A
N—glitter(s) A

A—has_gold(s

—bump(s) N\ on_entrance(s) — turn(s)

(5)

(5)

(s)

(s)
A—has_gold(s) \ —glitter(s) — turn(s)

(s)

(5)

Vs —breeze(s)
A—stench(s) A has_gold(s) N\ —glitter(s)
A=bump(s) N\ —on_entrance(s) A —scream(s) — turn(s)

Vs breeze(s) N\ —glitter(s
N—has_gold(s) N bump(s) — move(s)

Vs mbreeze(s) N\ —stench(s

Nhas_gold(s) N —on_entrance(s) — move(s)

N—has_gold(s) N —glitter(s) A bump(s) — move(s)

Vs —breeze(s
N—stench(s) A

A—bump(s) N —on_entrance(s) A scream(s) — move(s)

(5)
(5)
(5)
(5)
Vs mbreeze(s) N\ —stench(s)
(5)
(5)
A —has_gold(s) \—glitter(s)

(5)

5.3. Rule Sets Comparison

Table 4: Comparison of logical rules for the DQN agents with those
for the FOL agent. The row # matched with FOL shows the number
of rules that are matched with FOL agent using the Jaccard similarity
method.

Feature FOL l:;gg EXPII)‘E;“V" M]e)‘;;ry
Number of rules 9 12 12 13

# matched with FOL - 4 5 7
Avg rule complexity | 3.89 3.92 3.67 4.31
Max rule complexity 5 5 4 7

Table 4 presents a comparison of the logical rules ex-
tracted for the FOL agent and all three DQN agents.

The basic agent generated more rules (12) than the
FOL agent (9). Notably, four of the rules formed by the
basic agent overlap with those of the FOL agent, indicat-
ing a partial similarity in decision-making. The average
and maximum rule complexities for both agents are com-
parable, suggesting that the logical complexity of the rules
(in terms of the number of conditions required to reach a
decision) is similar. The maximum depth (five levels) is
identical for both agents, indicating a comparable level of
detail in their extracted strategies.

The explorative agent produced 12 rules - the same
as the basic agent and more than the FOL-based agent,
which produced 9. Notably, five of the explorative agent’s
rules overlap with those of the FOL agent, which indicates
slightly greater similarity in decision-making compared
to the basic agent, which shared four. The average rule
complexity of the explorative agent’s tree (3.67) is slightly
lower than that of the FOL agent (3.89), suggesting that
its rule structures are somewhat simpler. The maximum
complexity is also lower (4 compared to 5), which may
point to a less detailed representation of the decision logic.
However, the higher number of shared rules indicates that
the explorative agent more effectively reproduced some of
the behavior of the symbolic agent.

The memory-based agent generated the highest num-
ber of rules among all analyzed models — 13 - 7 of which
overlap with the rules of the FOL agent. This indicates the
highest level of similarity and suggests strong alignment
with the symbolic decision strategy. In terms of structural
complexity, the memory-based agent has both the high-
est average (4.31) and maximum (7) complexity of rules,
pointing to more nuanced logical rules and a higher level
of detail in decision making compared to other agents and
especially the FOL agent. This suggests that incorporating
history and internal memory may contribute to learning
richer and more precise rule sets.
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5.4. Results Across Different Grid Sizes

To evaluate the scalability and generalization capa-
bilities of the agents, additional experiments on maps of
increasing size (4 X 4 to 7 x 7) were conducted. Compar-
ison between the rules for the FOL-based agent and the
best DQN agent (with memory maps) was made, as well
as between their overall win rates, survival rates, and av-
erage steps to win.

As shown in Table 5, with increasing map sizes, a
consistent growth in the number of extracted decision
rules is observed, particularly for the memory-based
model. The number of similar rules to those used by
the FOL agent also increased with grid size, suggesting
that the agent’s behavior becomes more structured and
rule-aligned in more complex environments.

Table 5: Comparison of agent rules similarity on different sized grids.

Grid Size | FOL rules | Mem.-based rules | Matched rules
4 7 15 7
5 11 16 12
6 13 17 15
7 13 17 16

As shown in Table 6, the FOL agent consistently
achieved higher win rates and maintained 100% survival
across all grid sizes. In contrast, the DQN agent showed
decreasing win rates as grid size increased, but main-
tained relatively stable survival rates due to cautious
behavior learned through negative reinforcement.

Table 6: Performance metrics for both agents across different grid
sizes.

Metric Size 4 ‘ Size 5 ‘ Size 6 Size 7
Memory Agent
‘Win Rate 43.66% 27.60% 19.36% 15.21%
Survival Rate 85.20% 86.25% 86.39% 87.69%
Avg Steps to Win 15.27 15.60 15.61 16.60
FOL Agent
‘Win Rate 49.99% 55.58% 60.53% 64.43%
Survival Rate 100.00% | 100.00% | 100.00% | 100.00%
Avg Steps to Win 22.76 31.34 41.46 52.65
Unsolvable Maps 2.28% 0.34% 0.11% 0.03%

The achieved results demonstrate that while the
logic-based FOL agent maintains superior and more
consistent performance across all map sizes, the memory-
based DQN agent exhibits increasingly structured
behavior that better approximates symbolic rules as the
environment becomes more complex. However, the DQN
agent’s win rate declines with larger maps, indicating
that additional enhancements — such as better reward
system or hybrid symbolic integration — may be needed
for generalization to more challenging tasks.

5.5. Summary

The rules extracted for the FOL agent are clear and
logically consistent. This agent behaves cautiously - it
performs turn when it encounters a bump or any percept
indicating danger, and the move_forward action is exe-
cuted only when no warning signals (breeze or stench) are
detected. It correctly interprets glitter as a signal to grab,
and performs climb only when it is in the entrance field
and carrying gold.

The basic agent generated 12 rules, of which 4 over-
lap with the FOL agent’s rules. Although its rules are
slightly more complex than those of the FOL agent, they
are sometimes less intuitive - riskier actions appear, such
as move_forward despite the presence of stench or breeze.
The maximum tree depth (5) is identical to that of the FOL
agent, indicating a comparable level of decision detail.

The explorative agent also produced 12 rules, but 5
overlap with the FOL agent’s rules, suggesting greater
alignment in decision making. Its average tree depth
(3.67) and maximum depth (4) are both lower than the
FOL agent’s, implying simpler structures. However, the
higher rule overlap may indicate more balanced train-
ing - better exploration helped the agent more closely
approximate the logical decisions of the symbolic agent.

The most advanced is the memory-based agent,
which generated 13 rules - the highest among all models
- with as many as 7 overlapping with the FOL agent’s
rules. Its average tree depth is 4.31 and maximum depth
is 7, indicating high structural complexity and context
dependence. The memory component allows the agent
to consider the history of percepts, resulting in more
detailed and semantically aligned rules that are closer to
the FOL strategy.

Importantly, as model complexity increases (from ba-
sic to explorative to memory-based), not only is higher rule
overlap with the FOL agent observed, but also key perfor-
mance indicators, win ratio and survival rate, get progres-
sively better. The basic agent achieved a 31.26% win ratio
and 71.78% survival rate; the explorative agent improved
these to 37.32% and 78.57%, respectively; and the memory-
based agent reached 42.33% and 87.67%.

This trend in rule alignment is also reflected in the
overall performance evaluation conducted over 10,000
test games with identical randomly generated maps for
all agents. The memory-based DQN model outperformed
other learned agents in terms of win ratio (45.22%)
and survival rate (85.15%), demonstrating improved
perception and environment representation. The FOL
agent maintained the highest performance, achieving a
50.75% win ratio and perfect survival (100%), although
with more average steps to successful game completion.
Approximately 1.87% of all games were unwinnable due
to map configurations, affecting all agents equally.
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These results highlight that increasing model com-
plexity and memory capacity in learned agents not only
brings their decision-making rules closer to the logically
grounded FOL strategy but also leads to better practical
performance in the Wumpus environment, suggesting
that interpretability and effectiveness can be jointly
improved.

In summary:

» The FOL agent serves as a benchmark for logical, safe,
and consistent decision making.

» The basic agent optimizes the reward but its rules can
be harder to interpret.

» The explorative agent demonstrates clearer rules and
better alignment with the FOL agent.

» The memory-based agent generates the richest set of
rules - deep and highly consistent with the FOL rules
- highlighting the potential of memory to enhance in-
terpretability in learning agents.

» Greater rule alignment goes hand in hand with
improved performance metrics, suggesting that
interpretability and efficiency can coexist.

6. Discussion

To this end, three variants of DQN agents were im-
plemented: a baseline model, an explorative model with
reward shaping, and a memory-based model utilizing in-
ternal sensory maps. While each version showed incre-
mental improvements in performance, the primary goal of
this work was not to maximize reward, but rather to ana-
lyze and interpret the decision-making strategies learned
by neural agents. Particular attention was given to ex-
tracting the decision logic of DQN agents and comparing
it with the rules used by a First-Order Logic (FOL) agent.

The proposed rule extraction method for DQN mod-
els, based on generating a large dataset of observations
and decisions followed by decision tree training, enables
an interpretable approximation of their behavior in a
symbolic form. Although the extracted rules are not
identical to the hand-coded rules used by the FOL agent,
they show multiple similarities, especially in areas such
as threat avoidance and reaching the exit after collecting
gold.

At the same time, differences between the agents
emerge due to the chosen reward functions and the
limitations of the learning process itself. Additional
experiments showed that reward shaping and adding
memory influence the structure of the learned strategies
and the complexity of the extracted rules. These modi-
fications led to more consistent behaviors and increased
similarity between DQN and FOL agent rules.

From the perspective of building general cognitive

systems (e.g., robots navigating unknown environments),
the ability to incrementally build knowledge and mem-
ory appears particularly important. The FOL agent relies
on a successively updated knowledge base (KB) that ex-
plicitly and verifiably represents the state of the environ-
ment. This enables not only the explanation of decisions
but also their formal verification and identification of sit-
uations where the agent gets "stuck" (e.g., when no safe
fields are available).

In contrast, DQN agents acquire knowledge in a dis-
tributed and implicit manner, encoded within the neu-
ral network weights. Although this allows for adapta-
tion and generalization, it lacks formal correctness guar-
antees and direct reasoning capabilities. Rule extraction
therefore serves as a bridge between these two paradigms,
making machine learning-based systems more transpar-
ent and understandable.

The conducted analysis also has limitations. The ex-
tracted rules are only an approximation of the DQN pol-
icy, resulting from both imperfections in the extraction
process (e.g., limited classification accuracy of surrogate
decision trees, around 70% on held-out data) and the fact
that the agent’s policy is not deterministic and may de-
pend on complex, multidimensional input patterns.

This leads to a notable misalignment between the ex-
tracted rules and the true underlying DON policies. Some
of the rules visible in the surrogate may never be executed
by the original agent, and conversely, some frequently
used neural decision patterns may not appear in the ex-
tracted rule set at all. Consequently, the symbolic rules
should be viewed as a partial and potentially biased snap-
shot of the learned policy rather than a faithful recon-
struction, and apparent inconsistencies or oversimplifica-
tions in the rules may reflect limitations of the surrogate
model rather than deficiencies of the agent itself.

Moreover, the analysis method relies on a static
dataset and does not account for changes occurring
during the agent’s learning process. Apart from that, the
applied rule similarity metric (Jaccard similarity) focuses
only on condition overlap and does not consider the
relative importance of individual features.

Future work could address these issues by employing
ensembles of interpretable surrogates, probabilistic rule
extraction, or online extraction during training, as well
as by systematically evaluating surrogate fidelity to as-
sess how much interpretability is being traded off against
faithfulness to the agent’s true decision process.

It is also worth noting that while the Wumpus World
provides a convenient testbed due to its well-defined rules
and symbolic structure, it remains a highly simplified and
artificial environment. Scaling the proposed rule extrac-
tion approach to larger and more realistic domains would
introduce challenges such as continuous state and action

e—o 13




spaces, high-dimensional sensory inputs, stochastic dy-
namics, and temporal abstraction.

In these settings, the extracted rules may need
to incorporate probabilistic conditions or abstractions
rather than purely symbolic propositions, and more
expressive surrogate models than plain decision trees -
for example, hierarchical trees, probabilistic rule lists, or
hybrid symbolic-subsymbolic architectures - would be
necessary to capture richer feature interactions without
sacrificing interpretability. = Another difficulty lies in
long-term dependencies and delayed consequences,
which require extracting not only single-step decision
rules but also higher-level policies.

Addressing these issues could transform the pro-
posed method into a general tool for explaining deep
reinforcement learning policies far beyond grid-based
settings, while still providing human-readable insights
into how policies evolve in increasingly complex envi-
ronments such as robotics or autonomous navigation.

7. Conclusion and Future Work

This study investigated the use of Deep Q-Networks
(DQN) in the Wumpus World environment, with a focus
on making agent behavior more interpretable to humans.
The goal was to develop agents whose decisions could be
better understood and potentially translated into symbolic
or logic-based rules.

The memory-based agent, despite its complexity,
proved especially useful for interpretability: it produced
the largest set of decision rules, many of which closely
matched the logical patterns observed in the FOL agent.
This suggests that memory mechanisms can support not
only more effective decision-making, but also greater
alignment with interpretable, rule-based reasoning,.

A key insight from this work is that the introduction
of structured internal memory not only improved per-
formance but also enhanced interpretability. The agent’s
sensory maps offered insight into how environmental
features were perceived and stored over time, helping to
analyze decision-making processes.

This paves the way toward more interpretable
reinforcement learning (RL) systems, where agents are
not treated as black boxes but rather as cognitive entities
whose behavior can be reasoned about and debugged
through their internal representations.

Future research could expand this approach to more
complex or dynamic environments and incorporate prob-
abilistic reasoning based on the agent’s internal memory
maps. Integrating symbolic reasoning or logic-based
modules may further improve both interpretability and
robustness.

Another promising direction involves exploring
meta-learning techniques that enable agents to adapt
their memory architecture or reward functions over
time, allowing for more flexible and intelligent behavior.
Looking ahead, hybrid systems that integrate symbolic
reasoning with reinforcement learning hold significant
potential. The goal would be to develop agents that
not only learn effectively through interaction but also
autonomously build and update an internal knowledge
base and use it for planning actions. Such solutions have
the potential to become the foundation of more general
artificial intelligence systems.

Lastly, applying this method to environments with
continuous action spaces or richer forms of partial observ-
ability would offer a valuable benchmark for assessing its
generalization potential beyond grid-based domains.
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