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1. Introduction
Studies of the hydrogen atom in noncommutative

space have received much attention (see [1–11]). In the
paper [1], energy levels of hydrogen atom were obtained
up to the first order in the parameter of noncommutativ-
ity. In the paper, the Lamb shift in noncommutative space
was studied. In the paper [2], the case when particles of
opposite charges feel opposite noncommutativity was
examined. In the frame of such an algebra, the hydrogen
atom as a two-particle system was considered. In [4],
the quadratic Stark effect was studied. In [5], shifts in
the spectrum of the hydrogen atom caused by space
quantization were presented. In [6], the noncommutative
Klein-Gordon equation was studied and the hydrogen
atom energy levels were calculated. The influence of
noncommutativity on the Dirac equation with a Coulomb
field was studied in [7, 8].

The effect of the noncommutativity of coordinates
and noncommutativity of momenta on the energy levels
of the hydrogen atom was examined in [9–11]. The hy-
drogen atom problem in the frame of space-time noncom-
mutativity was considered in [12–16].

In the present chapter, we examine the hydrogen
atom and hydrogen-like exotic atoms in the frame of
rotationally-invariant noncommutative algebra of the
canonical type. The energy levels of the hydrogen atom
are found up to the second order in the parameters of
coordinate and momentum noncommutativity. Based on
the obtained results, the upper bounds for the parameters
are estimated. Also, a two-particle system with Coulomb
interaction is studied in the frame of rotationally-
invariant noncommutative algebra. We examine the
influence of space quantization on the energy levels of
the system. Based on the obtained results, the energy
levels of muonic hydrogen and antiprotonic helium are
examined.

The paper is organized as follows. In Section 2,
rotationally-invariant noncommutative algebra is in-
troduced. In Section 3, the Hamiltonian of a hydrogen
atom is examined in the frame of rotationally-invariant
noncommutative algebra. In Section 4, corrections to the
energy levels of the hydrogen atom are found up to the
second order in the perturbation theory. Section 5 is de-
voted to studies of the corrections to the ns energy levels
of the hydrogen atom. The effect of noncommutativity
on the energy levels of hydrogen-like atoms is examined
in Section 6. Upper bounds for the parameters of coordi-
nate and momentum noncommutativity are obtained in
section 7. Section 8 is devoted to conclusions. The results
presented in this paper are published in [17–20].

2. Rotationally-invariant noncom-
mutative space of the canonical
type
The noncommutative algebra

[Xi,X j] = iεi jkl0ak, (1)

[Xi,Pj] = ih̄
(

δi j +
l0 p0

4h̄2 (a ·p
b)δi j −

l0 p0

4h̄2 a j pb
i

)
, (2)

[Pi,Pj] = εi jk p0 pb
k , (3)

is rotationally-invariant and equivalent to a noncommu-
tative algebra of the canonical type [20]. To construct the
algebra, the parameters of noncommutativity θi j, ηi j are
considered to be the tensors

θi j =
l0
h̄

εi jkak, (4)

ηi j =
p0

h̄
εi jk pb

k . (5)

Here, l0, p0 are constants and ai, pb
k are additional coor-

dinates and momenta satisfying the ordinary commuta-
tion relations. They are governed by spherically symmet-
ric systems, for instance, the harmonic oscillators

Ha
osc =

(pa)2

2mosc
+

moscω2a2

2
, (6)

Hb
osc =

(pb)2

2mosc
+

moscω2b2

2
, (7)

with
√

h̄/
√

moscω being equal to the Planck’s length lP.
The frequency ω is assumed to be very large.

The algebra (1)-(3) is equivalent to a noncommuta-
tive algebra of the canonical type

[Xi,X j] = ih̄θi j, (8)

[Xi,Pj] = ih̄(δi j + γi j), (9)

[Pi,Pj] = ih̄ηi j, (10)

in the sense that the following relations are satisfied

[θi j,ηi j] = [θi j,γi j] = [γi j,ηi j] = 0. (11)
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3. The Hamiltonian of the hydro-
gen atom in noncommutative
phase space with preserved
rotational symmetry
Let us consider the hydrogen atom and find correc-

tions to the energy levels of the atom in rotationally in-
variant noncommutative phase space (1)-(3). So, we con-
sider the total Hamiltonian

H = Hh +Ha
osc +Hb

osc, (12)

where

Hh =
P2

2M
− e2

R
, (13)

is the Hamiltonian of the hydrogen atom. Here
R =

√
∑i X2

i , coordinates Xi and momenta Pi satisfy
the relations of the noncommutative algebra (1)-(3).
The Hamiltonians Ha

osc, Hb
osc correspond to harmonic

oscillators and are given by (6), (7).
Using representation for coordinates and momenta

that satisfy the relations of the noncommutative algebra
by coordinates and momenta satisfying the ordinary rela-
tions, we can write

Hh =
p2

2M
+

(ηηη ·L)
2M

+
[ηηη × r]2

8M
−

+
e2√

r2 − (θθθ ·L)+ 1
4 [θθθ ×p]2

. (14)

To find the effect of the noncommutativity of the en-
ergy levels of the hydrogen atom, we expand the Hamil-
tonian of the hydrogen atom in the series over θθθ . For 1/R
we obtain

1
R

=
1√

r2 − (θθθ ·L)+ 1
4 [θθθ ×p]2

=

=
1
r
+

1
2r3 (θθθ ·L)+ 3

8r5 (θθθ ·L)2 −

+
1
16

(
1
r2 [θθθ ×p]2

1
r
+

1
r
[θθθ ×p]2

1
r2 +

h̄2

r7 [θθθ × r]2
)
.

(15)

To find the expansion for 1/R, firstly we solve the
problem of finding the expansion of R up to the second

order in θθθ . The expression for the distance reads

R =

√
(r+

1
2
[θθθ ×p])2 =

√
r2 − (θθθ ·L)+ 1

4
[θθθ ×p]2. (16)

It is important to stress that the operators under the
square root do not commute. Therefore, we introduce
the unknown function f (r) and find the expansion in the
following form

R = r− 1
2r

(θθθ ·L)− 1
8r3 (θθθ ·L)2 +

+
1
16

(
1
r
[θθθ ×p]2 +[θθθ ×p]2

1
r
+θ

2 f (r)
)
. (17)

Then to obtain f (r), we square the left- and right-hand
sides of equation (17). Up to the second order in θθθ we can
write

r2 − (θθθ ·L)+ 1
4
[θθθ ×p]2 = r2 − (θθθ ·L)+

+
1
16

(
2[θθθ ×p]2 + r[θθθ ×p]2

1
r
+

+

(
1
r
[θθθ ×p]2r+2rθ

2 f (r)
)
. (18)

From (18) we have

h̄2

r4 [θθθ × r]2 − rθ
2 f (r) = 0. (19)

And finally, function f (r) reads

θ
2 f (r) =

h̄2

r5 [θθθ × r]2. (20)

So, the expansion for the distance is as follows

R = r− 1
2r

(θθθ ·L)− 1
8r3 (θθθ ·L)2 +

+
1
16

(
1
r
[θθθ ×p]2 +[θθθ ×p]2

1
r
+

h̄2

r5 [θθθ × r]2
)
.

(21)

Then, on the basis of this result we can easily write (15).
As a result, the total Hamiltonian reads

H = H0 +V. (22)
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Here, V is the perturbation operator

V =
(ηηη ·L)

2M
+

[ηηη × r]2

8M
− e2

2r3 (θθθ ·L)− 3e2

8r5 (θθθ ·L)2 +

+
e2

16

(
1
r2 [θθθ ×p]2

1
r
+

1
r
[θθθ ×p]2

1
r2 +

h̄2

r7 [θθθ × r]2
)
,

(23)

and H0 contains the Hamiltonian of the hydrogen atom in
the ordinary space and terms corresponding to the har-
monic oscillators

H0 =
p2

2M
− e2

r
+Ha

osc +Hb
osc. (24)

4. The effect of the noncommuta-
tivity of the energy levels of the
hydrogen atom
Let us calculate corrections to the energy levels of

the hydrogen atom caused by the noncommutativity of
coordinates and noncommutativity of momenta. It is im-
portant that[

p2

2M
− e2

r
,Ha

osc

]
=

[
p2

2M
− e2

r
,Hb

osc

]
=

=
[
Ha

osc,H
b
osc

]
= 0. (25)

So, the eigenvalues and eigenstates of the Hamiltonian H0
can be written as follows

E(0)
n,{na},{nb} = − e2

2aBn2 + h̄ω(na
1 +na

2 +na
3 +

+ nb
1 +nb

2 +nb
3 +3), (26)

ψ
(0)
n,l,m,{na},{nb} = ψn,l,mψ

a
na

1,n
a
2,n

a
3
ψ

b
nb

1,n
b
2,n

b
3
. (27)

Here, aB is the Bohr radius, ψn,l,m are well-known eigen-
functions of the hydrogen atom in the ordinary space
(θi j = ηi j = 0) and ψa

na
1,n

a
2,n

a
3
, ψb

nb
1,n

b
2,n

b
3
are eigenfunctions

of the three-dimensional harmonic oscillators Ha
osc, Hb

osc.
Using perturbation theory and taking into account the
fact that the frequency of the oscillators is large and they
are in the ground states, we can write

∆E(1)
n,l = ⟨ψ(0)

n,l,m,{0},{0}|V |ψ(0)
n,l,m,{0},{0}⟩. (28)

Note, that

⟨ψa
0,0,0|θi|ψa

0,0,0⟩ = 0, (29)

⟨ψb
0,0,0|ηi|ψb

0,0,0⟩ = 0. (30)

So, we can write〈
ψ

(0)
n,l,m,{0},{0}

∣∣∣∣(ηηη ·L)
2M

∣∣∣∣ψ(0)
n,l,m,{0},{0}

〉
= 0, (31)

〈
ψ

(0)
n,l,m,{0},{0}

∣∣∣∣ e2

2r3 (θθθ ·L)
∣∣∣∣ψ(0)

n,l,m,{0},{0}

〉
= 0. (32)

The effect of momentum noncommutativity is repre-
sented by the terms [ηηη × r]2/8M. The correction caused
by the term reads〈

ψ
(0)
n,l,m,{0},{0}

∣∣∣∣ [ηηη × r]2

8M

∣∣∣∣ψ(0)
n,l,m,{0},{0}

〉
=

=

〈
ψ

(0)
n,l,m,{0},{0}

∣∣∣∣η2r2

8M
− (ηηη · r)2

8M

∣∣∣∣ψ(0)
n,l,m,{0},{0}

〉
=

=
a2

Bn2

24M
(5n2 +1−3l(l +1))⟨η2⟩. (33)

To write the expression, we use

⟨ψb
0,0,0|ηiη j|ψb

0,0,0⟩=
moscω p2

o

2h̄
δi j =

1
3
⟨η2⟩δi j, (34)

where ⟨η2⟩ is given by

⟨η2⟩= p2
o

h̄2 ⟨ψ
b
0,0,0|(pb)2|ψb

0,0,0⟩=
3moscω p2

o

2h̄
=

3p2
o

2l2
P
. (35)

We also take into account the following result for the
mean value (see, for example, [21])

〈
ψn,l,m

∣∣r2∣∣ψn,l,m
〉
= a2

B
n2

2
(5n2 +1−3l(l +1)). (36)

To find the correction caused by the term
3e2(θθθ · L)2/8r5, we take into account the following
result for the mean value (see for instance [21])〈

ψn,l,m

∣∣∣∣ 1
r5

∣∣∣∣ψn,l,m

〉
=

=
4(5n2 −3l(l +1)+1)

a5
Bn5l(l +1)(l +2)(2l +1)(2l +3)(l −1)(2l −1)

.

(37)
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We also calculate

⟨ψa
0,0,0ψ

b
0,0,0|θiθ j|ψa

0,0,0ψ
b
0,0,0⟩=

=
1
2

(
α

mω

)2
δi j =

1
3
⟨θ 2⟩δi j. (38)

As a result, on the basis of (37), (38), we find〈
ψ

(0)
n,l,m,{0},{0}

∣∣∣∣3e2

8r5 (θθθ ·L)2
∣∣∣∣ψ(0)

n,l,m,{0},{0}

〉
=

=
h̄2e2(5n2 −3l(l +1)+1)⟨θ 2⟩

2a5
Bn5(l +2)(2l +1)(2l +3)(l −1)(2l −1)

.

(39)

Then, let us rewrite last terms in the perturbation as fol-
lows

1
r2 [θθθ ×p]2

1
r
+

1
r
[θθθ ×p]2

1
r2 +

h̄2

r7 [θθθ × r]2 =

= θ
2 1

r2 p2 1
r
+θ

2 1
r

p2 1
r2 +θ

2 h̄2

r5 − 1
r2 (θθθ ·p)2 1

r
−

+
1
r
(θθθ ·p)2 1

r2 −
h̄2

r7 (θθθ · r)2. (40)

So, after averaging over the eigenfunctions of the har-
monic oscillators we find〈

ψ
a
0,0,0ψ

b
0,0,0

∣∣∣∣ 1
r2 (θθθ ·p)2 1

r
+

1
r
(θθθ ·p)2 1

r2+

+
h̄2

r7 (θθθ · r)2
∣∣∣∣ψa

0,0,0ψ
b
0,0,0

〉
=

=
1
3

(
1
r2 p2 1

r
+

1
r

p2 1
r2 +

h̄2

r5

)
⟨θ 2⟩. (41)

So, we can write〈
ψ

(0)
n,l,m,{0},{0}

∣∣∣∣ 1
r2 [θθθ ×p]2

1
r
+

+
1
r
[θθθ ×p]2

1
r2

∣∣∣∣ψ(0)
n,l,m,{0},{0}

〉
+

+

〈
ψ

(0)
n,l,m,{0},{0}

∣∣∣∣ h̄2

r7 [θθθ × r]2
∣∣∣∣ψ(0)

n,l,m,{0},{0}

〉
=

=
2
3

〈
ψn,l,m

∣∣∣∣ 1
r2 p2 1

r
+

1
r

p2 1
r2+

h̄2

r5

∣∣∣∣ψn,l,m

〉
⟨θ 2⟩.

(42)

We represent 1
r2 p2 1

r +
1
r p2 1

r2 +
h̄2

r5 as follows

1
r2 p2 1

r
+

1
r

p2 1
r2 +

h̄2

r5 =
1
r3 p2 + p2 1

r3 +
5h̄2

r5 . (43)

So, the correction reads

〈
ψn,l,m

∣∣∣∣ 1
r2 p2 1

r
+

1
r

p2 1
r2 +

h̄2

r5

∣∣∣∣ψn,l,m

〉
=

=− 2h̄2

a2
Bn2

〈
ψn,l,m

∣∣∣∣ 1
r3

∣∣∣∣ψn,l,m

〉
+

+
4h̄2

aB

〈
ψn,l,m

∣∣∣∣ 1
r4

∣∣∣∣ψn,l,m

〉
+5h̄2

〈
ψn,l,m

∣∣∣∣ 1
r5

∣∣∣∣ψn,l,m

〉
.

(44)

Taking into account well-known results for the mean
values (see for instance [21])〈

ψn,l,m

∣∣∣∣ 1
r3

∣∣∣∣ψn,l,m

〉
=

=
2

a3
Bn3l(l +1)(2l +1)

, (45)

〈
ψn,l,m

∣∣∣∣ 1
r4

∣∣∣∣ψn,l,m

〉
=

=
4(3n2 − l(l +1))

a4
Bn5l(l +1)(2l +1)(2l +3)(2l −1)

, (46)

and all the obtained results, we can write an explicit ex-
pression for the corrections to the energy levels caused by
the coordinates noncommutativity. It reads〈

ψ
(0)
n,l,m,{0},{0}

∣∣∣∣−3e2

8r5 (θθθ ·L)2+

+
e2

16r2 [θθθ ×p]2
1
r

∣∣∣∣ψ(0)
n,l,m,{0},{0}

〉
+

〈
ψ

(0)
n,l,m,{0},{0}

∣∣∣∣ e2

16
1
r
[θθθ ×p]2

1
r2+

+
e2

16
h̄2

r7 [θθθ × r]2
∣∣∣∣ψ(0)

n,l,m,{0},{0}

〉
=

− h̄2e2⟨θ 2⟩
a5

Bn5

(
1

6l(l +1)(2l +1)
−

− 6n2 −2l(l +1)
3l(l +1)(2l +1)(2l +3)(2l −1)

+

5n2 −3l(l +1)+1
2(l +2)(2l +1)(2l +3)(l −1)(2l −1)

−

5
6

5n2 −3l(l +1)+1
l(l +1)(l +2)(2l +1)(2l +3)(l −1)(2l −1)

)
,

(47)
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where ⟨θ 2⟩ is given by

⟨θ 2⟩=
l2
0

h̄2 ⟨ψ
a
0,0,0|a2|ψa

0,0,0⟩=
3l2

0
2h̄

(
1

moscω

)
=

3l2
0 l2

P

2h̄2 . (48)

So, using (31), (32), (33) and (47) in the first order
of perturbation theory, the effect of noncommutativity on
the energy levels of the hydrogen atom is as follows

∆E(1)
n,l = ∆E(η)

n,l +∆E(θ)
n,l , (49)

where

∆E(η)
n,l =

a2
Bn2⟨η2⟩
24M

(5n2 +1−3l(l +1)), (50)

are corrections to the spectrum caused by the noncommu-
tativity of momenta and

∆E(θ)
n,l =− h̄2e2⟨θ 2⟩

a5
Bn5

×

×
(
− 6n2 −2l(l +1)

3l(l +1)(2l +1)(2l +3)(2l −1)
+

+
1

6l(l +1)(2l +1)
+

+
5n2 −3l(l +1)+1

2(l +2)(2l +1)(2l +3)(l −1)(2l −1)
−

+
5
6

5n2 −3l(l +1)+1
l(l +1)(l +2)(2l +1)(2l +3)(l −1)(2l −1)

)
,

(51)

being corrections caused by the coordinates noncommu-
tativity.

Note that in the second order of the perturbation the-
ory we have

∆E(2)
n,l,m,{0} = ∑

n′,l′,m′,{na},{nb}
×

×
∣∣∣〈ψ

(0)
n′,l′,m′,{na},{nb} |V |ψ(0)

n,l,m,{0},{0}

〉∣∣∣2 ×
×(E(0)

n −E(0)
n′ − h̄ω(na

1 +na
2 +na

3 +nb
1 +nb

2 +nb
3))

−1,

(52)

E(0)
n =− e2

2aBn2 .

(53)

In the limit ω → ∞, this correction vanishes

lim
ω→∞

∆E(2)
n,l,m,{0} = 0. (54)

So, up to the second order in the parameters of the coor-

dinates noncommutativity and parameters of momentum
noncommutativity, the corrections to the energy levels of
the hydrogen atom are as follows

∆En,l = ∆E(1)
n,l . (55)

It is important to stress that the obtained corrections
to the energy levels of the hydrogen atom (55) are diver-
gent for l = 0 and l = 1. From this, it follows that we
cannot use expansion of the Hamiltonian into the series
over the parameter of coordinate noncommutativity. In
the next section, we find finite result for corrections to
the ns energy levels of the hydrogen atom. We are inter-
ested in the corrections because on the basis of the results,
a stringent upper bound for the minimal length can be
found.

5. Corrections to the ns energy lev-
els of the hydrogen atom in non-
commutative phase space
To calculate corrections to the ns energy levels, we

rewrite perturbation V caused by noncommutativity of
coordinates and noncommutativity ofmomenta as follows

V =
(ηηη ·L)

2M
+

[ηηη × r]2

2M
− e2

R
+

e2

r
=

= − e2√
r2 − (θθθ ·L)+ 1

4 [θθθ ×p]2
+

e2

r
. (56)

So, the corrections read

∆Ens =

〈
ψ

(0)
n,0,0,{0},{0}

∣∣∣∣(ηηη ·L)
2M

+

+
[ηηη × r]2

8M

∣∣∣∣ψ(0)
n,0,0,{0},{0}

〉
+

〈
ψ

(0)
n,0,0,{0},{0}

∣∣∣∣−e2

r
−

+
e2√

r2 − (θθθ ·L)+ 1
4 [θθθ ×p]2

∣∣∣∣∣∣ψ(0)
n,0,0,{0},{0}

〉
.

(57)

It is important to note that

[(θθθ ·L), [θθθ ×p]2] = [(θθθ ·L),r2] = 0. (58)

Also, we have

(θθθ ·L)ψ(0)
n,0,0,{0},{0}(r,a,b) = 0. (59)
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So, we can write

∆Ens =
a2

Bn2⟨η2⟩
24M

(5n2 +1)+

+

〈
ψ

(0)
n,0,0,{0},{0}(r,a,b)

∣∣∣∣e2

r
−

+
e2√

r2 + 1
4 [θθθ ×p]2

∣∣∣∣∣∣ψ(0)
n,0,0,{0},{0}(r,a,b)

〉
.

(60)

We introduce a′ = a/lp, b′ = b/lp,

r′ =
√

2
α

r
lp
, (61)

with lp being the Planck length. So, we can rewrite θθθ as

θθθ =
αl2

p

h̄
θθθ
′, (62)

θθθ
′ = [a′×b′]. (63)

So, the correction caused by noncommutativity of coordi-
nates ∆E(θ)

ns reads

∆E(θ)
ns =

χ2e2

aB
Ins(χ), (64)

where

Ins(χ) =

=
∫

da′ψ̃a
0,0,0(a

′)
∫

db′
ψ̃

b
0,0,0(b

′)
∫

dr′ψ̃n,0,0(χr′)×

×

(
1
r′
− 1√

(r′)2 +[θθθ ′×p′]2

)
×

×ψ̃n,0,0(χr′)ψ̃a
0,0,0(a

′)ψ̃b
0,0,0(b

′), (65)

and

χ =

√
α

2
lp

aB
. (66)

The Eigenfunctions of the harmonic oscillators and hy-
drogen atom read

ψ̃
a
0,0,0(a

′) = π
− 3

4 e−
(a′)2

2 , (67)

ψ̃
b
0,0,0(b

′) = π
− 3

4 e−
(b′)2

2 , (68)

ψ̃n,0,0(χr′) =

√
1

πn5 e−
χr′
n L1

n−1

(
2χr′

n

)
, (69)

L1
n−1

(
2χr′

n

)
are the generalized Laguerre polynomials.

Integral (65) is finite for χ = 0. So, the asymptotic of
∆E(θ)

ns for χ → 0 reads

∆E(θ)
ns =

χ2e2

aB
Ins(0). (70)

So, to obtain the asymptotic of ∆E(θ)
ns , we have to calculate

integral Ins(0). As the first step we consider the integral
over r′. We have

Ins(χ,θθθ
′) =

∫
dr′ψ̃n,0,0(χr′)×

×

(
1
r′
− 1√

(r′)2 +[θθθ ′×p′]2

)
ψ̃n,0,0(χr′). (71)

In the momentum representation, the integral reads

Ins(χ,θθθ
′) =

1
χ6

∫
dp′

ψ̃n,0,0

(
p′

χ

)
×

×

 1√
−∇2

p′

− 1√
−∇2

p′ +[θθθ ′×p′]2

 ψ̃n,0,0

(
p′

χ

)
,

(72)

where

∇
2
p′ = ∑

i

∂ 2

(∂ p′i)2 . (73)

Integral Ins(χ,θθθ
′) does not depend on the direction of the

vector θθθ
′. So, we can rewrite the integral as

Ins(χ,θθθ
′) = Ins(χ,θ

′) =

=
1

4πχ6

∫
dΩ

∫
dp′

ψ̃n,0,0

(
p′

χ

) 1√
−∇2

p′

−

+
1√

−∇2
p′ +[θθθ ′×p′]2

 ψ̃n,0,0

(
p′

χ

)
=

=
1

4πχ6

∫
dΩ

∫
dp′

ψ̃n,0,0

(
p′

χ

) 1√
−∇2

p′

−

+
1√

−∇2
p′ +(θ ′)2(p′)2 sin2

Θ

 ψ̃n,0,0

(
p′

χ

)
,

(74)

where Θ is the angle between vectors θθθ
′ and p′, θ ′ = |θθθ ′|,

and dΩ = sinΘdΘdΦ.
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Let us use the substitution

p̃ = κp′, (75)

κ =
√

θ ′ sinΘ, (76)

and return to the coordinate representation. So, we have

Ins(χ,θ
′) =

θ ′

2

∫
π

0
dΘsin2

Θ

∫
dr̃ψ̃n,0,0(κχ r̃)×

×

(
1
r̃
− 1√

r̃2 + p̃2

)
ψ̃n,0,0(κχ r̃) =

=
θ ′

2

∫
π

0
dΘsin2

Θ

∫
∞

0
dr̃×

×r̃2R̃n,0(κχ r̃)

1
r̃
− 1√

r̃2 + p2
r̃

 R̃n,0(κχ r̃), (77)

with R̃n,0(κχ r̃) being the radial wave function of the hy-
drogen atom

R̃n,0(κχ r̃) =

√
4
n5 e−

κχ r̃
n L1

n−1

(
2κχ r̃

n

)
, (78)

and

pr̃ =−i
1
r̃

∂

∂ r̃
r̃. (79)

Then for convenience, we use the notation

Sns(κχ) = 4
∫

∞

0
dr̃r̃2e−

κχ r̃
n L1

n−1

(
2κχ r̃

n

)
×

×

1
r̃
− 1√

r̃2 + p2
r̃

e−
κχ r̃

n L1
n−1

(
2κχ r̃

n

)
. (80)

So, for Ins(χ,θ
′) we obtain

Ins(χ,θ
′) =

θ ′

2n5

∫
π

0
dΘsin2

ΘSns(κχ). (81)

Taking into account

Ins(0) = ⟨Ins(0,θ ′)⟩a′,b′ , (82)

Ins(0,θ ′) =
θ ′

2n5

∫
π

0
dΘsin2

ΘSns(0) =

=
πθ ′

4n5 Sns(0), (83)

we have

∆E(θ)
ns =

π⟨θ ′⟩χ2e2

4aBn5 Sns(0), (84)

⟨θ ′⟩ = ⟨ψ̃a
0,0,0(a

′)ψ̃b
0,0,0(b

′)|√
∑

i
(θ ′

i )
2|ψ̃a

0,0,0(a
′)ψ̃b

0,0,0(b
′)⟩= 1. (85)

Note, that

Sns(0) = S1s(0)n2. (86)

On the basis of (85), (86), we find the expression for the
leading term in the asymptotic expansion of the correc-
tions to the ns energy levels

∆Ens =
πχ2e2

4aBn3 S1s(0). (87)

So, we have to calculate the integral

S1s(0) = 4
∫

∞

0
dr̃r̃2

1
r̃
− 1√

r̃2 + p2
r̃

 . (88)

We expand 1 over the eigenfunctions of operator r̃2 + p2
r̃ .

They read

φk =

√
2k!

Γ(k+ 3
2)

e−
r̃2
2 L

1
2
k (r̃

2). (89)

We have

1 =
∞

∑
k=0

Ckφk, (90)

Ck are the expansion coefficients, which are as follows

Ck =

√
2k!

Γ(k+ 3
2)

∫
∞

0
dr̃r̃2e−

r̃2
2 L

1
2
k

(
r̃2)=

= (−1)k

√
4Γ(k+ 3

2)

k!
. (91)

So, for the second term in (88) we obtain∫
∞

0
dr̃r̃2 1√

r̃2 + p2
r̃

=
∞

∑
k=0

C2
k√
λk

, (92)

where

λk = 2
(

2k+
3
2

)
, (93)

are the eigenvalues of operator r̃2 + p2
r̃ .
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Let us represent the first term in (88) as follows∫
∞

0
dr̃r̃ =

∞

∑
k=0

CkIk, (94)

Ik =

√
2k!

Γ(k+ 3
2)

∫
∞

0
dr̃r̃e−

r̃2
2 L

1
2
k

(
r̃2)=

= (−1)k

√
8k!

πΓ(k+ 3
2)

2F1

(
−k,

1
2

;
3
2

;2
)
,

(95)

where 2F1
(
−k, 1

2 ; 3
2 ;2
)
is the hypergeometric function.

Using (92), (94), we obtain

S1s(0) = 4
∞

∑
k=0

(
CkIk −

C2
k√
λk

)
=

= 16

√
2
π

∞

∑
k=0

Γ(k+ 3
2)

k!
×

×
(

2F1

(
−k,

1
2

;
3
2

;2
)
−
√

π

8k+6

)
. (96)

It is important to mention that the two sums in S1s(0)

16

√
2
π

∞

∑
k=0

Γ(k+ 3
2)

k! 2F1

(
−k,

1
2

;
3
2

;2
)
, (97)

16

√
2
π

∞

∑
k=0

Γ(k+ 3
2)

k!

√
π

8k+6
, (98)

are divergent. But the value of S1s(0) is finite. To study
the sums (97), (98) separately we consider the additional
multiplier ηk (η < 1)

16

√
2
π

∞

∑
k=0

Γ(k+ 3
2)

k! 2F1

(
−k,

1
2

;
3
2

;2
)

η
k, (99)

16

√
2
π

∞

∑
k=0

Γ(k+ 3
2)

k!

√
π

8k+6
η

k. (100)

In the case of η = 1, we find (97), (98).
First let us calculate (100). It is easy to show that√

π

k+ 3
4

= 2
∫

∞

0
dze−(k+ 3

4 )z
2
. (101)

Also, we can write

∞

∑
k=0

Γ(k+ 3
2)

k!
tk =

√
π

2(1− t)
3
2
. (102)

As a result, using (101), (102), we find

16
√

2
∞

∑
k=0

Γ(k+ 3
2)

k!
√

8k+6
η

k =

= 16
∞

∑
k=0

Γ(k+ 3
2)

k!
√

π
η

k
∫

∞

0
dze−(k+ 3

4 )z
2
=

= 8
∫

∞

0
dz

e−
3
4 z2

(1−ηe−z2
)

3
2
. (103)

To calculate (99) we represent the hypergeometric
function as

2F1

(
−k,

1
2

;
3
2

;2
)
=

k

∑
q=0

(−1)qCq
k 2q

2q+1
, (104)

where Cq
k are the binomial coefficients. We can write

1
2q+1

=
∫ 1

0
dzz2q. (105)

So, taking into account (104), (105), we find

2F1

(
−k,

1
2
,
3
2
,2
)

=
k

∑
q=0

∫ 1

0
dzCq

k (−2)qz2q =

=
∫ 1

0
dz(1−2z2)k. (106)

Then, using (102) and (106), we rewrite (99) as

16

√
2
π

∞

∑
k=0

Γ(k+ 3
2)

k! 2F1

(
−k,

1
2
,
3
2
,2
)

η
k =

= 16

√
2
π

∞

∑
k=0

Γ(k+ 3
2)

k!
η

k
∫ 1

0
dz(1−2z2)k =

= 8
√

2
∫ 1

0

dz

(1−η(1−2z2))
3
2
. (107)

We split the integral (107) into two integrals as∫ 1

0

dz

(1−η(1−2z2))
3
2
= I1(η)+ I2(η), (108)

I1(η) =
∫ 1√

2

0

dz

(1−η(1−2z2))
3
2
, (109)

I2(η) =
∫ 1

1√
2

dz

(1−η(1−2z2))
3
2
. (110)

The integral I2(η) has a finite value even for η = 1, we
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find

I2(1) =

√
2

8
. (111)

Let us represent (109) in the form close to (103). We
use substitution e−t2

= 1−2z2, and obtain

I1(η) =

√
2

2

∫
∞

0
dt

te−t2

(1− e−t2
)

1
2 (1−ηe−t2

)
3
2
. (112)

Using (103), (107), (111), (112), we can write

16

√
2
π

∞

∑
k=0

Γ(k+ 3
2)

k! 2F1

(
−k,

1
2

;
3
2

;2
)

η
k −

+16

√
2
π

∞

∑
k=0

Γ(k+ 3
2)

k!

√
π

8k+6
η

k =

= 8
√

2I2(η)+8
∫

∞

0
dt

te−t2 − e−
3
4 t2
(1− e−t2

)
1
2

(1− e−t2
)

1
2 (1−ηe−t2

)
3
2
.

(113)

The integral (113) is finite forη = 1. So, substitutingη = 1
into (113), and using (96), (111), we obtain

S1s(0) = 2+8
∫

∞

0
dt

te−t2 − e−
3
4 t2
√

1− e−t2

(1− e−t2
)2

=

= 1.72006 . . . (114)

Taking into account (87), we find

∆E(θ)
ns ≃ 1.72

πχ2e2

4aBn3 . (115)

So, on the basis of (62) and (66), we can write

∆E(θ)
ns ≃ 1.72

h̄⟨θ⟩πe2

8a3
Bn3

, (116)

⟨θ⟩=

= ⟨ψa
0,0,0(a)ψ

b
0,0,0(b)|

√
∑

i
θ 2

i |ψ
a
0,0,0(a)ψ

b
0,0,0(b)⟩=

=
αl2

p

h̄
. (117)

Finally, corrections to the ns energy levels of the hy-
drogen atom caused by noncommutativity of coordinates
and noncommutativity of momenta read

∆Ens =
a2

Bn2⟨η2⟩
24M

(5n2 +1)+1.72
h̄⟨θ⟩πe2

8a3
Bn3

.

(118)

Let us analyze the corrections (55), (118). There is an
important difference between the influences of the coor-
dinates noncommutativity and momentum noncommuta-
tivity on the spectrum of the hydrogen atom. In the case
of large quantum numbers n , corrections caused by non-
commutativity of momenta ∆E(η)

n,l (176) are proportional
to n4, and corrections caused by noncommutativity of co-
ordinates ∆E(θ)

n,l (175) are proportional to 1/n3. So, we can
conclude that the energy levels with large quantum num-
bers n are more sensitive to the momentum noncommu-
tativity than to noncommutativity of coordinates. Energy
levels with small quantum numbers n are more sensitive
to the coordinates noncommutativity

Note also that ns energy levels are more sensitive to
the noncommutativity of coordinates (1) Namely correc-
tions to the ns energy levels (118) contain terms with ⟨θ⟩
and ⟨η2⟩. Corrections to other energy levels (l > 1) in-
clude terms proportional to ⟨θ 2⟩ and ⟨η2⟩.

6. Energy levels of hydrogen-like
exotic atoms in quantum space
We examine two particles with masses m1, m2 with

Coulomb interaction in the frame of a rotationally-
invariant noncommutative algebra of the canonical type
(1)-(3). In this case, the total Hamiltonian reads

H =
(P(1))2

2m1
+

(P(2))2

2m2
− κ

|X(1)−X(2)|
+Ha

osc +Hb
osc.(119)

Here, κ is a constant.
In the general case, coordinates of different particles

may satisfy commutation relations of noncommutative
algebra with different tensors of noncommutativity θ

(n)
i j ,

η
(n)
i j (n labels the particles, n = (1,2)). So, in this case the

relations of the algebra read

[X (n)
i ,X (m)

j ] = ih̄δmnθ
(n)
i j , (120)

[X (n)
i ,P(m)

j ] = ih̄δmn

δi j +∑
k

θ
(n)
ik η

(m)
jk

4

 , (121)

[P(n)
i ,P(m)

j ] = ih̄δmnη
(n)
i j , (122)

n,m = (1,2). Note that we also suppose that commuta-
tors for coordinates and themomenta of different particles
equal zero.

Let us introduce coordinates and momenta of the
center-of-mass and coordinates and momenta of the
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relative motion as in ordinary space

Xc = µ1X(1)+µ2X(2), (123)

Pc = P(1)+P(2), (124)

Xr = ∆X(1)−∆X(2) = X(1)−X(2), (125)

Pr =
1
2
(∆P(1)−∆P(2)) = µ2P(1)−µ1P(2). (126)

So, we can rewrite the Hamiltonian of the system as

Hs =
(Pc)2

2M
+

(Pr)2

2µ
− κ

|Xr|
, (127)

where M = m1 +m2, µ = m1m2/M are the total and the
reduced masses respectively, µi = mi/M.

Coordinates and momenta of the center-of mass Xc
i ,

Pc
i satisfy the following relations

[Xc
i ,X

c
j ] = ih̄

2

∑
n=1

µ
2
n θ

(n)
i j = ih̄θ

c
i j, (128)

[Pc
i ,P

c
j ] = ih̄

2

∑
n=1

η
(n)
i j = ih̄η

c
i j, (129)

[Xc
i ,P

c
j ] = ih̄(δi j +

2

∑
n=1

2

∑
k=1

µn
θ
(n)
ik η

(n)
jk

4
). (130)

where

θ
c
i j = µ

2
1 θ

(1)
i j +µ

2
2 θ

(2)
i j , (131)

η
c
i j = η

(1)
i j +η

(2)
i j . (132)

It is important to stress that

ih̄(δi j +∑
n

∑
k

µn
θ
(n)
ik η

(n)
jk

4
) ̸= ih̄(δi j +∑

k

θ c
ikηc

jk

4
). (133)

So, commutators (128)-(130) do not correspond to non-
commutative algebra (1)-(3).

It is worth mentioning that in the case when param-
eters of noncommutativity depend on mass as

c(n)
θ

=
γ̃

mn
, (134)

c(n)η = α̃mn, (135)

the tensors of noncommutativity can be rewritten as

θ
(n)
i j =

γ̃l2
P

h̄mn
∑
k

εi jkãk, (136)

η
(n)
i j =

α̃ h̄mn

l2
P

∑
k

εi jk p̃b
k , (137)

and the effective tensors of noncommutativity do not de-
pend on the masses of particles in the system. They read

θ
c
i j =

γ̃l2
P

h̄M ∑
k

εi jkãk, (138)

η
c
i j =

α̃ h̄M
l2
P

∑
k

εi jk p̃b
k . (139)

Also, due to conditions (134), (135) we can write

[Xc
i ,P

c
j ] = ih̄(δi j + γ̃ α̃ ∑

k,l,m

εiklε jkmãl p̃b
m

4
) =

= ih̄(δi j +∑
k

θ c
ikηc

jk

4
). (140)

In the case when conditions (134), (135) hold, coordi-
nates and momenta of the relative motion satisfy the fol-
lowing relations

[X r
i ,X

r
j ] = ih̄θ

r
i j, (141)

[Pr
i ,P

r
j ] = ih̄η

r
i j, (142)

[X r
i ,P

r
j ] = ih̄(δi j +

1
4 ∑

k
θ

r
ikη

r
jk), (143)

where

θ
r
i j = θ

(1)
i j +θ

(2)
i j , (144)

η
r
i j = µ

2
2 η

(1)
i j +µ

2
1 η

(2)
i j . (145)

It is also important to stress that coordinates andmomenta
of the center-of-mass commute with coordinates and mo-
menta of the relative motion due to conditions (134), (135)

[Xc
i ,X

r
j ] = [Pc

i ,P
r
j ] = 0. (146)

Taking into account (136), (137), (144), (145) we can
write

θ
r
i j =

cr
θ

l2
P

h̄
εi jkãk =

γ̃l2
P

µ h̄
εi jkãk, (147)

η
r
i j =

cr
η h̄

l2
P

εi jk p̃b
k =

α̃µ h̄
l2
P

εi jk p̃b
k , (148)
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where

cr
θ = c(1)

θ
+ c(2)

θ
,cr

η = µ
2
2 c(1)η +µ

2
1 c(2)η . (149)

We also have

θ
c
i j =

cc
θ

l2
P

h̄
εi jkãk =

γ̃l2
P

Mh̄
εi jkãk, (150)

η
c
i j =

cc
η h̄

l2
P

εi jk p̃b
k =

α̃Mh̄
l2
P

εi jk p̃b
k , (151)

with

cc
θ = µ

2
1 c(1)

θ
+µ

2
2 c(2)

θ
, (152)

cc
η = c(1)η + c(2)η . (153)

So, from (147)-(151) we can conclude that in the case when
conditions (134), (135) are satisfied, the tensors of non-
commutativity describing the center-of-mass θ c

i j, ηc
i j and

relative motion θ r
i j, ηr

i j depend on the total and reduced
masses, respectively.

Note also that conditions (134), (135) are also satisfied
for constants cc

θ
, cc

η , cr
θ
, cr

η . Namely, we can write

cc
θ M = cr

θ µ = c(1)
θ

m1 = c(2)
θ

m2 = γ̃ = const, (154)

cc
η

M
=

cr
η

µ
=

c(1)η

m1
=

c(2)η

m2
= α̃ = const. (155)

The noncommutative coordinates and noncommuta-
tive momenta of the center-of-mass and the noncommu-
tative coordinates and noncommutative momenta of the
relative motion can be represented as

Xc
i = xc

i −
1
2

θi j pc
j = xc

i +
1
2
[θθθ c ×pc]i, (156)

Pc
i = pc

i +
1
2

η
c
i jx

c
j = pc

i −
1
2
[ηηηc ×xc]i, (157)

X r
i = xr

i −
1
2

θ
r
i j p

r
j = xr

i +
1
2
[θθθ r ×pr]i, (158)

Pr
i = pr

i +
1
2

η
r
i jx

r
j = pr

i −
1
2
[ηηηr ×xr]i. (159)

For coordinates xr
i , xc

i and momenta pr
i , pc

i we have the
ordinary commutation relations

[xc
i ,x

c
j] = [pc

i , pc
j] = [xr

i ,x
r
j] = [pr

i , pr
j] = 0, (160)

[xc
i ,x

r
j] = [pc

i , pr
j] = [xr

i , pc
j] = [pr

i ,x
c
j] = 0, (161)

[xc
i , pc

j] = [xr
i , pr

j] = ih̄δi j. (162)

So, the Hamiltonian in the representation (156)-(159)

reads

Hs =
(pc)2

2M
+

(pr)2

2µ
+

(ηηηc ·Lc)

2M
+

[ηηηc ×xc]2

8M
+

+
(ηηηr ·Lr)

2µ
+

[ηηηr ×xr]2

8µ
−

+
κ√

(xr)2 − (θθθ r ·Lr)+ 1
4 [θθθ

r ×pr]2
. (163)

Here, we consider the notation

Lc = [xc ×pc], (164)

Lr = [xr ×pr]. (165)

Up to the second order in the parameters of noncommu-
tativity, the Hamiltonian of the system reads

Hs =
(pc)2

2M
+

(pr)2

2µ
− κ

xr +
(ηηηc ·Lc)

2M
+

+
[ηηηc ×xc]2

8M
+

(ηηηr ·Lr)

2µ
+

[ηηηr ×xr]2

8µ
−

+
κ

2(xr)3 (θθθ
r ·Lr)− 3κ

8(xr)5 (θθθ
r ·Lr)2 +

+
κ

16

(
1

(xr)2 [θθθ
r ×pr]2

1
xr +

1
xr [θθθ

r ×pr]2
1

(xr)2+

+
h̄2

(xr)7 [θθθ
r ×xr]2

)
. (166)

After averaging over the eigenfunctions of the har-
monic oscillators ψa

0,0,0, ψb
0,0,0 we find

⟨Hs⟩ab =
(pc)2

2M
+

(xc)2⟨(ηc)2⟩
12M

+
(pr)2

2µ
−

+
κ

xr +
(xr)2⟨(ηr)2⟩

12µ
− κ(Lr)2⟨(θ r)2⟩

8(xr)5 +

+
κ

24

(
1

(xr)2 (pr)2 1
xr +

1
xr (pr)2 1

(xr)2+

+
h̄2

(xr)5

)
⟨(θ r)2⟩. (167)

Up to the second order in the parameters of noncommu-
tativity, we can examine H0
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H0 = ⟨Hc⟩ab + ⟨Hr⟩ab +Ha
osc +Hb

osc, (168)

⟨Hc⟩ab =
(pc)2

2M
+

(xc)2⟨(ηc)2⟩
12M

, (169)

⟨Hr⟩ab =
(pr)2

2µ
− κ

xr +
(xr)2⟨(ηr)2⟩

12µ
−

+
κ(Lr)2⟨(θ r)2⟩

8(xr)5 +
κ

24

(
1

(xr)2 (pr)2 1
xr +

+
1
xr (pr)2 1

(xr)2 +
h̄2

(xr)5

)
⟨(θ r)2⟩. (170)

Operators ⟨Hc⟩ab, ⟨Hr⟩ab describe the motion of the
center-of-mass and the relative motion.

It is important that

[⟨Hc⟩ab,⟨Hr⟩ab] = [⟨Hc⟩ab,Ha
osc +Hb

osc] = 0. (171)

So, we can study ⟨Hc⟩ab independently. Operator ⟨Hc⟩ab
corresponds to the Hamiltonian of the three-dimensional
harmonic oscillator of mass M and frequency

ω =

√
2⟨(ηc)2⟩√

3M
(172)

The spectrum of the oscillator is well known

Enc
1,n

c
2,n

c
3
=

h̄
√

2⟨(ηc)2⟩√
3M

(
nc

1 +nc
2 +nc

3 +
3
2

)
, (173)

where nc
1, nc

2, nc
3 are quantum numbers.

According to the perturbation theory, we have the
following corrections to the energy levels caused by non-
commutativity of coordinates and noncommutativity of
momenta

∆E(θη)
n,l = ⟨ψ(0)

n,l,m|V |ψ(0)
n,l,m⟩=

∆E(η)
n,l +∆E(θ)

n,l , (174)

∆E(η)
n,l = ⟨ψ(0)

n,l,m|V
η |ψ(0)

n,l,m⟩=

=
κa3n2⟨(ηr)2⟩

24h̄2 (5n2 +1−3l(l +1)), (175)

∆E(θ)
n,l = ⟨ψ(0)

n,l,m|V
θ |ψ(0)

n,l,m⟩=− h̄2
κ⟨(θ r)2⟩
a5n5 ×

×
(
− 6n2 −2l(l +1)

3l(l +1)(2l +1)(2l +3)(2l −1)
+

1
6l(l +1)(2l +1)

+

+
5n2 −3l(l +1)+1

2(l +2)(2l +1)(2l +3)(l −1)(2l −1)
−

+
5
6

5n2 −3l(l +1)+1
l(l +1)(l +2)(2l +1)(2l +3)(l −1)(2l −1)

)
,

(176)

where

a =
h̄2

µκ
. (177)

The correction to the energy levels with l = 0 reads

∆E(θη)
n,0 =

a3κ⟨(ηr)2⟩
24h̄2 n2(5n2 +1)+1.72

h̄⟨θ r⟩πκ

8a3n3 .

(178)

Let us examine the effect of noncommutativity on
hydrogen-like atoms. Corrections caused by noncommu-
tativity of momenta (175) are proportional to ⟨(ηr)2⟩a3.
From (148) it follows that

⟨(ηr)2⟩a3 ∼ 1
µ
. (179)

In corrections to the energy levels caused by noncom-
mutativity of coordinates we have proportionality to
⟨θ r⟩/a3 in the case of ns energy levels, or proportionality
to ⟨(θ r)2⟩/a5 for energy levels with l > 1, (176). From
(147), we can write

⟨θ r⟩
a3 ∼ µ

2, (180)

⟨θ r⟩
a5 ∼ µ

3. (181)

So, the effect of the coordinates noncommutativity can be
better examined in the spectrum of atoms with large re-
duced masses, especially for energy levels with l = 0 and
small quantum numbers n. The effect of momentum non-
commutativity better appears in energy levels with large
quantum numbers of atoms with small reduced masses.
Also, it is worth mentioning that in the case of atoms
with large reduced masses, the differences in the effects
of momentum and the coordinates noncommutativity ap-
pear better.

Let us examine muonic hydrogen, which is a system
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of a proton and muon. We have that

µµ p

µH
≃

mµ

me
= 206.8 (182)

where µµ p, µH are the reduced mass of muonic hydrogen
and hydrogen atoms, me, mµ are the mass of the electron
and the mass of the muon. Because of this ratio, the cor-
rections to the energy levels of muonic hydrogen in the
case of l > 1 (176) are (mµ/me)

3 = 8.8 · 106 times larger
than that for the hydrogen atom. So, noncommutativity of
coordinates can be better examined in the case of muonic
hydrogen. Corrections (175) are 206.8 times smaller in the
case of muonic hydrogen than in the case of the hydrogen
atom.

7. Upper bounds on the parameters
of coordinates and momen-
tum noncommutativity obtained
based on studies of the hydrogen
atom and antiprotonic helium
To find upper bounds for the parameters of coordi-

nate and momentum noncommutativity, we assume that
corrections to the hydrogen atom transition energies in
quantum space do not exceed the accuracy of the transi-
tion measurements. In paper [22], the authors presented
experimental results for the 1s− 2s transition frequency
f1s−2s = 2466061413187018(11)Hz with a relative uncer-
tainty of 4.5× 10−15. So, we can write the following in-
equality ∣∣∣∣∣∆θ

1,2 +∆
η

1,2

E(0)
2 −E(0)

1

∣∣∣∣∣≤ 4.5×10−15, (183)

where E(0)
n are well-known energy levels of the hydro-

gen atom in the ordinary space. To estimate the order of
the upper bounds for the parameters of noncommutativ-
ity, we consider∣∣∣∣∣ ∆θ

1,2

E(0)
2 −E(0)

1

∣∣∣∣∣ ≤ 2.25×10−15, (184)∣∣∣∣∣ ∆
η

1,2

E(0)
2 −E(0)

1

∣∣∣∣∣ ≤ 2.25×10−15. (185)

Using (118) we have

∆
θ
1,2 = −3h̄⟨θ⟩πe2

16a3
B

, (186)

∆
η

1,2 =
13a2

B⟨η2⟩
4M

. (187)

So, the upper bounds read

h̄⟨θ⟩ ≤ 10−36m2, (188)

h̄
√
⟨η2⟩ ≤ 10−61 kg2m2/s2. (189)

The obtained results are in agreement with those obtained
on the basis of studies of the spectrum of a gravitation
quantum well [23]. The are also in agreement with the
results obtained from the spectrum of the hydrogen atom
considered in noncommutative space of the canonical
type [24], and examining the Lamb shift [1]. Note that
the ratio mp/me = 1836, therefore µ ≃ me. Therefore the
orders of the upper bounds do not change if we take into
account the effect of the reduced mass of the hydrogen
atom.

Let us examine the exotic atom known as antipro-
tonic helium p̄4He+. It is composed of an antiproton, an
electron and a helium nucleus. In papers [25, 26], it was
shown that the transition frequency of the atom can be ap-
proximately written as transitions of the hydrogen atom
effective nuclear charge Ze f f < 2. The charge describes
the shielding of the nuclear charge by the electron. Of
course the difference of masses of hydrogen and antipro-
tonic helium atoms has to be taken into consideration. So,
the obtained results for the effect of noncommutativity of
coordinate and noncommutativity ofmomenta (175), (176)
can be used for estimation of the upper bounds. Atom
p̄4He+ has a large reduced mass. So, the effect of coor-
dinate noncommutativity on the spectrum of the exotic
atom is larger than on the hydrogen atom. So, the an-
tiprotonic helium is an attractive candidate for studies of
noncommutativity of coordinates

The experimental result for transition frequency
(n, l) = (36,34) → (34,32) of antiprotonic helium reads
f = 1522107062 MHz. The result is obtained with the
total experimental error 3.5 MHz [27]. Assuming that
the effect of noncommutativity on the energy levels is
smaller than the accuracy of measurements, we have

|∆(θ)+∆
(η)| ≤ 3.5MHz, (190)

∆
θ = ∆E(θ)

36,34 −∆E(θ)
34,32, (191)

∆
η = ∆E(η)

36,34 −∆E(η)
34,32, (192)

and ∆E(θ)
n,l , ∆E(η)

n,l read (175), (176). To estimate the upper
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bounds, we write

|∆θ | ≤ 1.75MHz, (193)

|∆η | ≤ 1.75MHz. (194)

We also consider Z = 2, a = meaB/mp̄, where mp̄ is the
mass of the antiproton, aB is the Bohr radius of the hy-
drogen atom in (175), (176). As a result, we find

h̄⟨θ r⟩ ≤ 10−27m2, (195)

h̄
√

⟨(ηr)2⟩ ≤ 10−50 kg2m2/s2. (196)

Because of not high precision of the measurements of
the spectrum of p̄4He+, the obtained upper bounds do
not lead to strong restriction on the values of parameters
of noncommutativity. But, it is worth stressing that the
effect of the coordinates noncommutativity on p̄4He+
is three orders larger than that on the hydrogen atom.
So, improvement of precision of measurements of the
spectrum of the exotic atom opens the possibility to
find stringent upper bounds for the parameter of the
coordinates noncomutativity.

8. Conclusions
The hydrogen atom spectrum has been examined in

noncommutative phase space with preserved rotational
symmetry (1)-(3). The effect of noncommutativity of coor-
dinates and noncommutativity of momenta on the energy
levels of the atom has been obtained (55). We conclude
that the effect of momentum noncommutativity is larger
in the case of energy levels with large principal quantum
numbers.

The effect of the coordinates noncommutativity can
be better studied on the basis of energy levels of the hy-
drogen atom with small quantum numbers n. We have
also found that corrections to the ns-energy levels (118)
are proportional to ⟨θ⟩. For energy levels with l > 1 (55),
we have proportionality to ⟨θ 2⟩. So, ns energy levels of
the hydrogen atom are more sensitive to the coordinates
noncommutativity.

We have also studied effect of noncommutativity of
coordinates and noncommutativity of momenta on the
spectrum of hydrogen-like atoms.

We have examined a general case when different par-
ticles feel the effects of space quantization with different
tensors of noncommutativity. The problem of description
of a system of particles in rotationally-invariant noncom-
mutative phase space has been considered.

It has been shown that in the case when tensors of
noncommutativity corresponding to different particles

are determined by their masses for coordinates and
momenta of the center-of-mass of a system, we have a
noncommutative algebra with the effective tensors of
noncommutativity. Also, in the case when the conditions
hold, the effective tensors of noncommutativity do not
depend on the composition of the system and are instead
determined by their total mass (138), (139).

It is important to stress that idea of the relation of pa-
rameters of noncommutativity with mass opens the pos-
sibility to solve fundamental principles in noncommuta-
tive space of the canonical type [28, 29], noncommuta-
tive phase phase of the canonical type [30, 31], deformed
space with minimal length [32–34]. The proposed condi-
tions on the tensors of noncommutativity (134), (135) are
similar to those θm = γ = const, η/m = α = const pro-
posed in the noncommutative phase space of the canon-
ical type [30, 31]. They lead to solving of the problem of
violation of the properties of kinetic energy, and violation
of the weak equivalence principle in space.

We have obtained corrections to the spectrum of a
two-particle system with Colomb interaction caused by
noncommutativity of coordinates and noncommutativity
of momenta. It has been determined that the corrections
caused by noncommutativity of coordinates and correc-
tions caused by noncommutativity of momenta have dif-
ferent dependencies on the reduced mass µ and param-
eter of interaction κ . So, one can choose a system with
good sensitivity to the particular type of noncommutativ-
ity. We have found that the effect of momentum noncom-
mutativity can be better examined for the ns energy levels
with large quantum numbers of atoms with small reduced
masses. Studies of ns energy levels with small quantum
numbers of atoms with large reduced masses are impor-
tant for finding the effect of coordinate noncommutativ-
ity. We have also shown that antiprotonic helium is an
attractive candidate for studies of the effect of coordinate
noncommutativity.

Upper bounds for parameters of noncommutativity
have been found on the basis of studies of the hydro-
gen atom and antiprotonic helium. The upper bounds
obtained based on studies of the hydrogen atom are in
agreement with those presented in the literature.
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