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1. Introduction
To find new effects of the noncommutativity of coor-

dinates and noncommutativity of momenta in the prop-
erties of a wide class of physical systems, it is important
to examine many-particle systems. Studies of harmonic
oscillator in noncommutative space have received much
attention (see, for instance, [1–15]). Two coupled har-
monic oscillators were studied in a noncommutative space
[16, 17] and a noncommutative phase space [18, 19]. A
system of free particles was examined in [20,21] in a non-
commutative phase space of the canonical type. Classical
problems of many particles were examined in [22] in the
case of space-time noncommutativity.

It is worth noting that systems of harmonic oscilla-
tors have various applications. Such studies have impor-
tance in nuclear physics [23–25], in quantum chemistry,
and molecular spectroscopy [26–29]. Additionally, net-
works of harmonic oscillators are used in quantum infor-
mation [30–32].

In this paper, we study a system of interacting oscil-
lators in a uniform field in the framework of rotationally-
invariant noncommutative algebra

[Xi,X j] = ih̄θi j, (1)

[Xi,Pj] = ih̄

(
δi j +∑

k

θikη jk

4

)
, (2)

[Pi,Pj] = ih̄i j, (3)

θi j =
cθ l2

P

h̄ ∑
k

εi jkãk, (4)

ηi j =
cη h̄
l2
P

∑
k

εi jk p̃b
k . (5)

Here cθ , cη are constants and ãk, p̃b
k are additional co-

ordinates and additional momenta that are governed by
spherically symmetric systems, which can be harmonic
oscillators; lP is the Planck length [33]. The algebra (1)-(3)
is equivalent to a noncommutative algebra of the canoni-
cal type in the sense that the noncommutative coordinates
and noncommutative momenta, as well as tensors of non-
commutativity, satisfy the same commutation relations as
in the case of noncommutative algebra of the canonical
type (the tensors of noncommutativity commute with co-
ordinates and momenta) [33].

In order to solve the problem of description of com-
posite system in a noncommutative phase space as well
as the problem of violation of the weak equivalence prin-
ciple, it was proposed to consider parameters of noncom-

mutativity to be related with mass

c(n)
θ

=
γ̃

mn
, (6)

c(n)η = α̃mn, (7)

see [34].
In present paper, we consider systems of harmonic

oscillators in a rotationally-invariant noncommutative
phase space. The effect of noncommutativity of coordi-
nates and noncommutativity of momenta on the energy
levels of the system is analyzed.

The paper is organized as follows. A system of two
interacting oscillators and three interacting oscillators are
examined in Section 2 and Section 3 respectively. The ef-
fect of noncommutativity of coordinates and noncommu-
tativity of momenta on the harmonic oscillator chain is
studied in Section 4. Conclusions are presented in Section
5. Results presented in this paper are published in [35–37].

2. Energy levels of two interacting
oscillators
We consider a system of two oscillators with masses

m1, m2 and frequencies ω1, ω2. The Hamiltonian of the
system reads

Hs =
(P(1))2

2m1
+

(P(2))2

2m2
+

m1ω2
1 (X(1))2

2
+

m2ω2
2 (X(2))2

2
+

+ k(X(1)−X(2))2. (8)

Coordinates and momenta X(n), P(n) satisfy relations of
noncommutative algebra.

Coordinates and momenta of harmonic oscillators
satisfy relations of rotationally-invariant noncommuta-
tive algebra

[X (n)
i ,X (m)

j ] = ih̄δmnθ
(n)
i j , (9)

[X (n)
i ,P(m)

j ] = ih̄δmn

δi j +∑
k

θ
(n)
ik η

(m)
jk

4

 , (10)

[P(n)
i ,P(m)

j ] = ih̄δmnη
(n)
i j , (11)

θ
(n)
i j =

c(n)
θ

l2
P

h̄ ∑
k

εi jkãk, (12)

η
(n)
i j =

c(n)η h̄
l2
P

∑
k

εi jk p̃b
k . (13)
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Here indexes m,n = (1, ...,N) label the oscillators.
It is worth noting that system of two coupled har-

monic oscillators is considered as a model in molecular
physics [26, 27]. It is also used for description of states
of light in the framework of two-photon quantum optics
[38, 39].

In the case of two interacting oscillators, we can
write

H0 =
(p(1))2

2m(1)
e f f

+
(p(2))2

2m(2)
e f f

+

+
m(1)

e f f (ω
(1)
e f f )

2(x(1))2

2
+

m(2)
e f f (ω

(2)
e f f )

2(x(2))2

2
+

+ k(x(1)−x(2))2 +
k
6

(
⟨(θ (1))2⟩(p(1))2+

+ ⟨(θ (2))2⟩(p(2))2 −2⟨θ (1)
θ
(2)⟩(p(1) ·p(2))

)
+

+ Ha
osc +Hb

osc. (14)

Here

m(n)
e f f = mn

(
1+

m2
nω2

n ⟨(θ (n))2⟩
6

)−1

, (15)

ω
(n)
e f f =

(
ω

2
n +

⟨(ηn)2⟩
6m2

n

) 1
2

×

×

(
1+

m2
nω2

n ⟨(θ (n))2⟩
6

) 1
2

, (16)

⟨θ (n)
θ
(m)⟩ =

c(n)
θ

c(m)
θ

l4
P

h̄2 ⟨ψa
0,0,0|ã2|ψa

0,0,0⟩=

=
3c(n)

θ
c(m)

θ
l4
P

2h̄2 , (17)

⟨(η(n))2⟩ =
h̄2(c(n)η )2

l4
P

⟨ψb
0,0,0|(p̃b)2|ψb

0,0,0⟩=

=
3h̄2(c(n)η )2

2l4
P

. (18)

For coordinates and momenta x(n)i , p(n)i , we have the ordi-
nary commutation relations. Therefore, the energy levels
of H0 are

E{n1},{n2},{n3} = h̄ω+

(
n(1)1 +n(1)2 +n(1)3 +

3
2

)
+

+ h̄ω−

(
n(2)1 +n(2)2 +n(2)3 +

3
2

)
+3h̄ωosc,

(19)

with

ω
2
± =

1
2 ∑

n

(ω
(n)
e f f )

2 +
2k

m(n)
e f f

+
km(n)

e f f (ω
(n)
e f f )

2⟨(θ (n))2⟩
3

+

+
2k2

3

(
⟨(θ (n))2⟩+ ⟨θ (1)

θ
(2)⟩
))

± 1
2

√
D, (20)

D =

∑
n
(ω

(n)
e f f )

2 +∑
n

2k

m(n)
e f f

+∑
n

km(n)
e f f (ω

(n)
e f f )

2⟨(θ (n))2⟩
3

+

+ ∑
n

2k2

3

(
⟨(θ (n))2⟩+ ⟨θ (1)

θ
(2)⟩
))2

−

+ 4∏
n

(ω
(n)
e f f )

2 +
2k

m(n)
e f f

+
km(n)

e f f (ω
(n)
e f f )

2⟨(θ (n))2⟩
3

+

+
2k2

3

(
⟨(θ (n))2⟩+ ⟨θ (1)

θ
(2)⟩
))

+

+ 4

 2k

m(2)
e f f

+
km(1)

e f f (ω
(1)
e f f )

2⟨θ (1)θ (2)⟩
3

+

+
2k2

3

(
⟨(θ (2))2⟩+ ⟨θ (1)

θ
(2)⟩
))

×

×

 2k

m(1)
e f f

+
km(2)

e f f (ω
(2)
e f f )

2⟨θ (1)θ (2)⟩
3

+

+
2k2

3

(
⟨(θ (1))2⟩+ ⟨θ (1)

θ
(2)⟩
))

. (21)

If the mass of the oscillators are the same m1 = m2, we
obtain

m(n)
e f f = me f f , (22)

ω
(n)
e f f = ωe f f , (23)

and

ω− = ωe f f , (24)

ω+ =

(
ω

2
e f f +

4k
me f f

+
2k⟨θ 2⟩me f f ω

2
e f f

3
+

+
8k2⟨θ 2⟩

3

) 1
2

. (25)
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3. Effect of noncommutativity on
the energy levels of a system of
three interacting oscillators
We study three interacting oscillators with masses

m1, m2 = m3 = m, and frequencies ω1, ω2 = ω3 = ω de-
scribed with the following Hamiltonian

Hs =
(P(1))2

2m1
+

(P(2))2

2m
+

(P(3))2

2m
+

+
m1ω2

1 (X(1))2

2
+

mω2(X(2))2

2
+

mω2(X(3))2

2
+

+ k(X(1)−X(2))2 + k(X(2)−X(3))2 + k(X(3)−X(3))2.

(26)

If ωn = 0 , the model (26) is used for the description of
confining forces between quarks [23–25]. Up to the sec-
ond order in the parameters of noncommutativity, we can
study the Hamiltonian

H0 = ∑
n

(p(n))2

2m(n)
e f f

+∑
n

m(n)
e f f (ω

(n)
e f f )

2(x(n))2

2
+

+
k
2 ∑

m,n
m ̸=n

(x(n)−x(m))2 +

+
k

12 ∑
m,n

m̸=n

(
⟨(θ (n))2⟩(p(n))2 + ⟨(θ (m))2⟩(p(m))2−

+ 2⟨θ (n)
θ
(m)⟩(p(n) ·p(m))

)
+Ha

osc +Hb
osc,

(27)

with m(n)
e f f , ω

(n)
e f f , ⟨θ (n)θ (m)⟩ given by (15)-(17).

The energy levels of the Hamiltonian (27) are the fol-
lowing

E{n1},{n2},{n3} =
3

∑
a=1

h̄ω̃a

(
n(a)1 +n(a)2 +n(a)3 +

3
2

)
+

+ 3h̄ωosc, (28)

ω̃1 =
1√
2

ω
2
e f f +(ω

(1)
e f f )

2 +
2k

me f f
+

4k

m(1)
e f f

+

+ A1 −
√

D
) 1

2
, (29)

ω̃2 =
1√
2

ω
2
e f f +(ω

(1)
e f f )

2 +
2k

me f f
+

4k

m(1)
e f f

+

+ A1 +
√

D
) 1

2
, (30)

ω̃3 =

(
ω

2
e f f +

6k
me f f

) 1
2 (

1+ kme f f ⟨θ 2⟩
) 1

2 , (31)

where

D =

ω
2
e f f − (ω

(1)
e f f )

2 +
4k

me f f
− 4k

m(1)
e f f

+A2

2

+

+

(
2k
m

+A3

)2(ω(1)
e f f )

2 −2ω
2
e f f −

6k
m

+
8k

m(1)
e f f

+

+ 8
(

2k
m

+A4

)(
2k
m1

+A5

)(
2k
m

+A3

)−1

+A6

)
,

(32)

A1 =

(
kme f f ω

2
e f f

3
+

2k2

3

)
⟨θ 2⟩+

+

2km(1)
e f f (ω

(1)
e f f )

2

3
+

8k2

3

⟨(θ (1))2⟩+ 8k2

3
⟨θθ

(1)⟩,

(33)

A2 =

(
2kme f f ω

2
e f f

3
+

10k2

3

)
⟨θ 2⟩−

+

2km(1)
e f f (ω

(1)
e f f )

2

3
+

8k2

3

⟨(θ (1))2⟩− 2k2

3
⟨θθ

(1)⟩,

(34)

A3 =

(
8k2

3
+

kme f f ω
2
e f f

3

)
⟨θ 2⟩− 2k2

3
⟨θθ

(1)⟩,

(35)

A4 =

km(1)
e f f (ω

(1)
e f f )

2

3
+

4k2

3

⟨θθ
(1)⟩+ 2k2

3
⟨,θ 2⟩,

(36)
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A5 =

(
kme f f (ω

2
e f f )

3
+

2k2

3

)
⟨θθ

(1)⟩+ 4k2

3
⟨(θ (1))2⟩,

(37)

A6 = −
(
kme f f ω

2
e f f +4k2)⟨θ 2⟩+

+

4km(1)
e f f (ω

(1)
e f f )

2

3
+

16k2

3

⟨(θ (1))2⟩+ 2k2

3
⟨θθ

(1)⟩.

(38)

For convenience, we introduce the notations

me f f = m(2)
e f f = m(3)

e f f ,ωe f f = ω
(2)
e f f = ω

(3)
e f f , (39)

θ = θ
(2) = θ

(3). (40)

Considering m1 = m, ω1 = ω we can write

ω̃1 = ωe f f , (41)

ω̃2 = ω̃3 =

=

(
ω

2
e f f +

6k
me f f

+ k⟨θ 2⟩me f f ω
2
e f f +6k2⟨θ 2⟩

) 1
2

.

(42)

If ωn = 0 in the Hamiltonian (26) , the spectrum is
given by (28) with (29), (30), (31) and m(1)

e f f =m1, me f f =m,

ω
(1)
e f f =

√
⟨(η1)2⟩√

6m2
1

, (43)

ωe f f =

√
⟨(η)2⟩√
6m2

. (44)

It is worth mentioning that the spectrum of the center-
of-mass of the system is discrete. It has the form of the
spectrum of a harmonic oscillator with the frequency ω̃1
(29).

If we consider algebra with commutation relations
(9), (10) and commutative momenta [P(n)

i ,P(m)
j ] = 0) , the

spectrum of a system (26) with ωn = 0 reads (28), where
ω̃i are given by

ω̃1 = 0, (45)

ω̃2 =
1√
2

(
2k
m

+
4k

m(1) +
2k2

3
⟨θ 2⟩+

+
8k2

3
⟨(θ (1))2⟩+ 8k2

3
⟨θθ

(1)⟩+
√

D
) 1

2

, (46)

ω̃3 =

(
6k
m

+6k2⟨θ 2⟩
) 1

2

. (47)

Here we have

D =

(
4k
m

− 4k
m(1)+

+
10k2

3
⟨θ 2⟩− 8k2

3
⟨(θ (1))2⟩− 2k2

3
⟨θθ

(1)⟩
)2

+

+

(
2k
m

+
8k2

3
⟨θ 2⟩− 2k2

3
⟨θθ

(1)⟩
)
×

×
(
−6k

m
+

8k
m(1) +8

(
2k
m

+
4k2

3
⟨θθ

(1)⟩+ 2k2

3
⟨θ 2⟩

)
×

×
(

2k
m1

+
2k2

3
⟨θθ

(1)⟩+ 4k2

3
⟨(θ (1))2⟩

)
×

×
(

2k
m

+
8k2

3
⟨θ 2⟩− 2k2

3
⟨θθ

(1)⟩
)−1

−

+ 4k2⟨θ 2⟩+ 16k2

3
⟨(θ (1))2⟩+ 2k2

3
⟨θθ

(1)⟩
)
.

(48)

It is worth mentioning that noncommutativity of coordi-
nates does not affect the spectrum of the center-of-mass
of the system (45). Space quantization affects the frequen-
cies of the relative motion (46), (47).

4. Harmonic oscillator chain in a
noncommutative phase space
with preserved rotational sym-
metry
Let us study the Hamiltonian as follows

Hs =
N

∑
n=1

(P(n))2

2m
+

N

∑
n=1

mω2(X(n))2

2
+

+ k
N

∑
n=1

(X(n+1)−X(n))2 (49)

with periodic boundary conditions X(N+1) = X(1), k is a
constant. The Hamiltonian corresponds to the N interact-
ing harmonic oscillator chain, m are the masses of oscilla-
tors and ω are frequencies.
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The Hamiltonian Hs can be represented as

Hs =
N

∑
n=1

(
(p(n))2

2m
+

mω2(x(n))2

2
+

+ k(x(n+1)−x(n))2 − (ηηη · [x(n)×p(n)])

2m
−

+
mω2(θθθ · [x(n)×p(n)])

2
−

+ k(θθθ · [(x(n+1)−x(n))× (p(n+1)−p(n))])+

+
[ηηη ×x(n)]2

8m
+

mω2

8
[θθθ ×p(n)]2+

+
k
4
[θθθ × (p(n+1)−p(n))]2

)
. (50)

Also, for the harmonic oscillator chain we can write

∆H =
N

∑
n=1

(
[ηηη ×x(n)]2

8m
+

mω2

8
[θθθ ×p(n)]2−

+
mω2(θθθ · [x(n)×p(n)])

2
− (ηηη · [x(n)×p(n)])

2m
−

+ kθθθ · [(x(n+1)−x(n))× (p(n+1)−p(n+1))]+

+
k
4
[θθθ × (p(n+1)−p(n))]2 − ⟨η2⟩(x(n))2

12m
−

+
⟨θ 2⟩mω2(p(n))2

12
− k

6
⟨θ 2⟩(p(n+1)−p(n))2

)
.

(51)

So, up to the second order in the parameters of non-
commutativity one can study the Hamiltonian H0 as fol-
lows

H0 =
N

∑
n=1

(
(p(n))2

2me f f
+

me f f ω
2
e f f (x

(n))2

2
+

+ k(x(n+1)−x(n))2+

+
k
6
⟨θ 2⟩(p(n+1)−p(n))2 +Ha

osc +Hb
osc

)
, (52)

where

me f f = m
(

1+
m2ω2⟨θ 2⟩

6

)−1

, (53)

ωe f f =

(
ω

2 +
⟨η2⟩
6m2

) 1
2
(

1+
m2ω2⟨θ 2⟩

6

) 1
2

. (54)

Note that [Ha
osc+Hb

osc,H0] = 0. Coordinates and momenta
x(n), p(n) satisfy the ordinary commutation relations. It is
convenient to rewrite the Hamiltonian as follows

H0 =
h̄ωe f f

2 ∑
n

(
1+

4kme f f ⟨θ 2⟩
3

sin2 πn
N

)
p̃(n)(p̃(n))† +

+
h̄ω2

e f f

2 ∑
n

(
1+

8k
me f f ω

2
e f f

sin2 πn
N

)
x̃(n)(x̃(n))†,

(55)

where

x(n) =

√
h̄

Nme f f ωe f f

N

∑
l=1

exp
(

2πinl
N

)
x̃(l), (56)

p(n) =

√
h̄me f f ωe f f

N

N

∑
l=1

exp
(
−2πinl

N

)
p̃(l), (57)

(see, for example, [32]). Introducing

a(n)j =
1√
2wn

(
wnx̃(n)j + ip̃(n)j

)
, (58)

wn =

(
1+

8k
me f f ω

2
e f f

sin2 πn
N

) 1
2

×

×
(

1+
4kme f f ⟨θ 2⟩

3
sin2 πn

N

)− 1
2

, (59)

we obtain

H0 = h̄ωe f f

N

∑
n=1

3

∑
j=1

(
1+

4kme f f ⟨θ 2⟩
3

sin2 πn
N

) 1
2

×

×

(
1+

8k
me f f ω

2
e f f

sin2 πn
N

) 1
2 (

(a(n)j )†a(n)j +
1
2

)
.

(60)

So, the energy levels of H0 are given by

E{n1},{n2},{n3} = h̄
N

∑
a=1

(
ω

2
e f f +

8k
me f f

sin2 πa
N

) 1
2

×

×
(

1+
4kme f f ⟨θ 2⟩

3
sin2 πa

N

) 1
2

×

×
(

n(a)1 +n(a)2 +n(a)3 +
3
2

)
=

=
N

∑
a=1

h̄ωa

(
n(a)1 +n(a)2 +n(a)3 +

3
2

)
.

(61)

Here n(a)i are quantum numbers (n(a)i = 0,1,2...). Using
(53), (54), we have the following expressions for the fre-
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quencies

ω
2
a =

(
ω

2 +
⟨η2⟩
6m2

)(
1+

m2ω2⟨θ 2⟩
6

+

+
4k2m⟨θ 2⟩

3
sin2 πa

N

)
+

8k
m

sin2 πa
N

+

+
32k2⟨θ 2⟩

3
sin4 πa

N
. (62)

Let us also study a particular case of ω = 0. So, up to
the second order in the parameters of noncommutativity
for a system of particles with harmonic oscillator interac-
tion we have

E{n1},{n2},{n3} =

=
N

∑
a=1

h̄ωa

(
n(a)1 +n(a)2 +n(a)3 +

3
2

)
,

(63)

where

ω
2
a =

8k
m

sin2 πa
N

+
⟨η2⟩
6m2 +

32k2⟨θ 2⟩
3

sin4 πa
N

. (64)

If momenta commutes ηi j = 0 the spectrum of a
chain of particles with harmonic oscillator interaction in
a space with noncommutativity of coordinates has the
form (63) with frequencies

ω
2
a =

8k
m

sin2 πa
N

+
32k2⟨θ 2⟩

3
sin4 πa

N
. (65)

From (63), (64) we have that the spectrum of the center-
of-mass of the system is the spectrum of the harmonic os-
cillator with the frequency

ω
2
N =

⟨η2⟩
6m2 . (66)

Note that in the limit ⟨θ 2⟩→ 0, ⟨η2⟩→ 0 on the basis
of (62) we have

ω
2
a = ω

2 +
8k
m

sin2 πa
N

. (67)

which is a well-known result in ordinary space.

5. Conclusions
We have analyzed the energy levels of a system con-

sisting of N harmonic oscillators interacting through har-
monic oscillator potentials in a uniform field, within a
rotationally-invariant noncommutative phase space of the
canonical type.

In the second-order approximation in the parame-

ters of noncommutativity, we determined the influence
of noncommutativity on the system’s energy levels. Our
findings indicate that the space quantization affects the
frequencies of the system. The particular case of a sys-
tem of two interacting oscillators and a system of three in-
teracting oscillators have been examined. We have found
the energy levels of the systems in a rotationally-invariant
noncommutative phase space (19), (28).

Additionally, a harmonic oscillator chain has been
studied. We have determined that noncommutativity
of coordinates and noncommutativity of momenta do
not change the form of the spectrum of the system (61).
The frequencies of the system are affected by space
quantization as (62). In the particular case of a system
of particles with harmonic oscillator interaction which
corresponds to ω = 0, we have analyzed the effect of
noncommutativity on the energy levels of the system.

We have found that because of momentum noncom-
mutativity the spectrum of the center-of-mass of the sys-
tem corresponds to the the spectrum of a harmonic os-
cillator. The frequency of the oscillator depends on the
parameter of momentum noncommutativity as it is given
by (66).

References
[1] A. Hatzinikitas and I. Smyrnakis, “The noncommutative har-

monic oscillator in more than one dimension,” J. Math. Phys.,
vol. 43, no. 1, pp. 113–125, 2002.

[2] A. Kijanka and P. Kosiński, “Noncommutative isotropic harmonic
oscillator,” Phys. Rev. D, vol. 70, no. 12, p. 127702, 2004.

[3] J. Jing and J.-F. Chen, “Non-commutative harmonic oscillator in
magnetic field and continuous limit,” Eur. Phys. J. C., vol. 60, no. 4,
pp. 669–674, 2009.

[4] A. Smailagic and E. Spallucci, “Feynman path integral on the
non-commutative plane,” J. Phys. A: Math. Gen., vol. 36, no. 33,
pp. L467–L471, 2003.

[5] A. Smailagic and E. Spallucci, “Noncommutative 3D harmonic
oscillator,” J. Phys. A: Math. Gen., vol. 35, pp. L363–L368, 2002.

[6] B. Muthukumar and P. Mitra, “Noncommutative oscillators and
the commutative limit,” Phys. Rev. D, vol. 66, no. 2, p. 027701, 2002.

[7] P. D. Alvarez, J. Gomis, K. Kamimura, and M. S. Plyushchay,
“Anisotropic harmonic oscillator, non-commutative landau prob-
lem and exotic newtonhooke symmetry,” Phys. Lett. B, vol. 659,
no. 5, pp. 906 – 912, 2008.

[8] A. E. F. Djemai and H. Smail, “On quantum mechanics on
noncommutative quantum phase space,” Commun. Theor. Phys.,
vol. 41, no. 6, pp. 837–844, 2004.

[9] I. Dadic, L. Jonke, and S. Meljanac, “Harmonic oscillator on non-
commutative spaces,” Acta Phys.Slov., vol. 55, pp. 149–164, 2005.

[10] P. R. Giri and P. Roy, “The non-commutative oscillator, symmetry
and the Landau problem,” Eur. Phys. J. C, vol. 57, no. 4, pp. 835–
839, 2008.

[11] J. B. Geloun, S. Gangopadhyay, and F. G. Scholtz, “Harmonic
oscillator in a background magnetic field in noncommutative
quantum phase-space,” EPL (Europhysics Letters), vol. 86, no. 5,
p. 51001, 2009.

7



[12] E. M. C. Abreu, M. V. Marcial, A. C. R. Mendes, and
W. Oliveira, “Harmonic oscillator on noncommutative spaces,”
JHEP., vol. 2013:138, 2013.

[13] A. Saha, S. Gangopadhyay, and S. Saha, “Noncommutative quan-
tum mechanics of a harmonic oscillator under linearized gravi-
tational waves,” Phys. Rev. D, vol. 83, no. 2, p. 025004, 2011.

[14] D. Nath and P. Roy, “Noncommutative anisotropic oscillator in a
homogeneous magnetic field,” Ann. Phys., vol. 377, pp. 115 – 124,
2017.

[15] Kh. P. Gnatenko and O. V. Shyiko, “Effect of noncommutativity
on the spectrum of free particle and harmonic oscillator in rota-
tionally invariant noncommutative phase space,”Mod. Phys. Lett.
A, vol. 33, no. 16, p. 1850091, 2018.

[16] A. Jellal, E. H. E. Kinani, and M. Schreiber, “Two coupled har-
monic oscillators on noncommutative plane,” Int. J. Mod. Phys.
A, vol. 20, no. 7, pp. 1515–1529, 2005.

[17] I. Jabbari, A. Jahan, and Z. Riazi, “Partition function of the har-
monic oscillator on a noncommutative plane,” Turk. J. Phys.,
vol. 33, pp. 149–154, 2009.

[18] B.-S. Lin, S.-C. Jing, and T.-H. Heng, “Deformation quantization
for coupled harmonic oscillators on a general noncommutative
space,” Mod. Phys. Lett. A, vol. 23, no. 06, pp. 445–456, 2008.

[19] Kh. P. Gnatenko and V. M. Tkachuk, “Two-particle system with
harmonic oscillator interaction in noncommutative phase space,”
J. Phys. Stud., vol. 21, no. 3, p. 3001, 2017.

[20] J. F. Santos, A. E. Bernardini, and C. Bastos, “Probing phase-space
noncommutativity through quantum mechanics and thermody-
namics of free particles and quantum rotors,” Physica A: Statisti-
cal Mechanics and its Applications, vol. 438, pp. 340 – 354, 2015.

[21] Kh. P. Gnatenko, H. P. Laba, and V. M. Tkachuk, “Features of
free particles systemmotion in noncommutative phase space and
conservation of the total momentum,”Mod. Phys. Lett. A, vol. 33,
no. 23, p. 1850131, 2018.

[22] M. C. Daszkiewicz and J. Walczyk, “Classical mechanics of many
particles defined on canonically deformed nonrelativistic space-
time,” Mod. Phys. Lett. A., vol. 26, no. 11, pp. 819–832, 2011.

[23] N. Isgur and G. Karl, “p-wave baryons in the quark model,” Phys.
Rev. D, vol. 18, no. 11, pp. 4187–4205.

[24] L. Glozman and D. Riska, “The spectrum of the nucleons and the
strange hyperons and chiral dynamics,” Phys. Rep., vol. 268, no. 4,
pp. 263 – 303, 1996.

[25] S. Capstick andW. Roberts, “Quark models of baryon masses and
decays,” Prog. Part. Nucl. Phys., vol. 45, pp. S241 – S331, 2000.

[26] S. Ikeda and F. Fillaux, “Incoherent elastic-neutron-scattering
study of the vibrational dynamics and spin-related symmetry of
protons in the khco3 crystal,” Phys. Rev. B, vol. 59, no. 6, pp. 4134–
4145, 1999.

[27] F. Fillaux, “Quantum entanglement and nonlocal proton transfer
dynamics in dimers of formic acid and analogues,” Chem. Phys.
Lett., vol. 408, no. 4, pp. 302 – 306, 2005.

[28] F. Hong-Yi, “Unitary transformation for four harmonically cou-
pled identical oscillators,” Phys. Rev. A, vol. 42, no. 7, pp. 4377–
4380, 1990.

[29] F. Michelot, “Solution for an arbitrary number of coupled identi-
cal oscillators,” Phys. Rev. A, vol. 45, no. 7, pp. 4271–4276, 1992.

[30] M. A. Ponte, M. C. Oliveira, and M. H. Y. Moussa, “Decoherence
in a system of strongly coupled quantum oscillators. i. symmetric
network,” Phys. Rev. A, vol. 70, no. 2. Art. 022324. 16 p., 2004.

[31] M. A. Ponte, S. S. Mizrahi, and M. H. Y. Moussa, “Networks of
dissipative quantum harmonic oscillators: A general treatment,”
Phys. Rev. A, vol. 76, no. 3. Art. 032101. 10 p., 2007.

[32] M. B. Plenio, J. Hartley, and J. Eisert, “Dynamics and manipula-
tion of entanglement in coupled harmonic systems with many
degrees of freedom,” New Journal of Physics, vol. 6. Art. 36. 39 p.,
2004.

[33] Kh. P. Gnatenko and V. M. Tkachuk, “Noncommutative phase
space with rotational symmetry and hydrogen atom,” Int. J. Mod.
Phys. A., vol. 32, no. 26, p. 1750161, 2017.

[34] Kh. P. Gnatenko and V. M. Tkachuk, “Composite system in ro-
tationally invariant noncommutative phase space,” Int. J. Mod.
Phys. A., vol. 33, no. 7, p. 1850037, 2018.

[35] Kh. P. Gnatenko and V. M. Tkachuk, “Hydrogen atom in rota-
tionally invariant noncommutative space,” Phys. Lett. A, vol. 378,
no. 47, pp. 3509–3515, 2014.

[36] Kh. P. Gnatenko, “System of interacting harmonic oscillators in
rotationally invariant noncommutative phase space,” Phys. Lett.
A, vol. 382, no. 46, pp. 3317 – 3324, 2018.

[37] Kh. P. Gnatenko, “Harmonic oscillator chain in noncommutative
phase spacewith rotational symmetry,”Ukr. J. Phys., vol. 64, no. 2,
pp. 131–136, 2019.

[38] C. M. Caves and B. L. Schumaker, “New formalism for two-
photon quantum optics. I. Quadrature phases and squeezed
states,” Phys. Rev. A, vol. 31, no. 5, pp. 3068–3092, 1985.

[39] B. L. Schumaker and C. M. Caves, “New formalism for two-
photon quantum optics. II. Mathematical foundation and com-
pact notation,” Phys. Rev. A, vol. 31, no. 5, pp. 3093–3111, 1985.

8


	Introduction
	Energy levels of two interacting oscillators
	Effect of noncommutativity on the energy levels of a system of three interacting oscillators
	Harmonic oscillator chain in a noncommutative phase space with preserved rotational symmetry
	Conclusions

