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Abstract
The propagator of a one-dimensional double square barrier is obtained analytically in terms of the relevant eigenfunc-
tions. With the aid of the propagator the wavefunction evolution for a particle, initially in a state of wave packet,
located on the left-hand side of the barrier, with ignorable overlap with the barrier, is obtained. There follows study
of the probability and current densities stemming from the particle initial state. In particular, the space distributions
at given times of the above densities are given. Furthermore, their evolution in time at the entrance and exit of the
barrier is obtained. The numerical results show repeated reversal in the current density at the barrier entrance, while
being unidirectional at the exit. However, the probability of entering the barrier over an extremely long time tends to
equal the corresponding probability of exiting the barrier. Owing to the fact that the wave packet expands on both of
its sides, as time goes by, it is possible to have transmission even if the particle’s initial momentum points away from
the barrier. The effect, in question, becomes evident in diagrams for the transmitted probability beyond the barrier exit
in terms of the particle initial momentum, over a region.
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1. Introduction
In this work, we consider a set up involving a one-

dimensional (1D) double square barrier together with a
particle on the left approaching, or moving away, initially
in a state of a Gaussian wave packet. The wave packet’s
location and width are such that its overlap with the bar-
rier region is extremely negligible. There follows obtain-
ing the evolving wave function employing the relevant
propagator. From the wave function, in question, we pro-
ceed obtaining probability and current densities space -
and time-wise. Actually, the present work constitutes an
extension of recent work, which involves a single square
barrier [1].

Treatment of time dependent scattering of Gaussian
wave packets appears in the literature via numerical ap-
proach [2], also decay of wave function initially located
in the well between the barriers of a double barrier is also
treated numerically [3], and, also, analytically [4]. How-
ever, with employment of propagators one can handle
more general cases of tunneling problems with regard to
temporal as well as spatial development. Furthermore,
the procedure. followed, enables estimating the time
taken by a portion of the evolving wave function for
complete evacuation of the barrier region to be extremely
long.

In section 2 we deal with expression for the trans-
mitted probability beyond the barrier exit making use of
the time evolution of current densities at the barrier en-
trance or exit over extremely long times, more accurately
tending to infinity. Furthermore, the spatial distribution at
such long times can be employed for obtaining the trans-
mitted probability. Section 3 deals with obtaining the re-
quired propagator, utilizing a complete set of real eigen-
functions. Section 4 provides numerical results relating to
spatial distributions of probability and current densities
at given times, as well as their time evolution at the bar-
rier entrance and exit. Also, graphs for the transmitted
probability in terms of the impinging particle mean ini-
tial momentum is provided for given widths of the wave
packet and potential barrier parameters. Section 5 deals
with conclusions.

2. Probability and current densities
In this section, we consider a one-dimensional double

square barrier with potential energy

U(x) = u0[θ(x+a+b)−θ(x+a)

+θ(x−a)−θ(x−a−b)] (1)

where θ stands for the step function and u0 for the bar-
rier height, a and b are> 0 and a+b indicates the barrier
exit, while the barrier entrance is located at−(a+b) and,
furthermore,−a,a determine correspondingly the bound-
aries of the region within the left hand and right hand side
barriers.

Our study involves a particle approaching the double
square barrier from some distance, with ignorable overlap,
initially in a wave packet state

Φ(x) =
1

(2πs2)1/4 exp [− 1
4s2 (x− x0)

2 +
i
h̄

p0(x− x0)] (2)

where x0, p0, and s are the wave packet center, mean mo-
mentum and mean spread.

Under the circumstances, in the course of time the
wave function, stemming from the wave packet, above,
initially expands on either side, but faster in the direction
of the mean momentum, p0. At some later time, the right-
hand side edge of the evolving wave function reaches the
barrier at the barrier entrance, −(a + b), and proceeds
crossing the barrier.

For obtaining the wave function, Ψ(x, t), stemming
from the initial wave packet, Φ(x), we have to solve the
Schrödinger equation, relating to the potential energy
given in Equation 1

ıh̄
∂

∂ t
Ψ(x, t) =

[
− h̄2

2m
∂ 2

∂x2 +U (x)
]

Ψ(x, t) (3)

under the condition

Ψ(x,0) = Φ(x) (4)

Details for the procedure followed for obtaining the re-
quiredΨ(x, t) are provided in Section 3, based on the prop-
agator, K(xt|x′0), of the Schrödinger Equation 3.

Having at hand the wave function Ψ(x, t) the prob-
ability and current densities ρ , and J, are obtained, both
time– and space–wise, through the expressions:

ρ (x, t) = |Ψ(x, t)|2 , J (x, t) =
h̄
m
Im
[

Ψ(x, t)∗
∂

∂x
Ψ(x, t)

]
(5)

The time taken for the evolving wave function,
Ψ(x, t), to stabilize completely is essentially infinite.
However, after an extremely long time the wave function
changes insignificantly. On account of the wave function
evolution the probability and current densities vary after
extremely long time also insignificantly. The picture one
gets for the current density time evolution at the barrier
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entrance, J(−a − b, t), is that it starts flowing into and
out of the barrier repeatedly with decreasing amplitude
as time goes by. On the other hand at the exit the current
density, J(a + b, t), gets out continuously and tends to
zero after quite a long time.

In the case of time-dependent tunneling the trans-
mitted probability, Tp, is provided by the fraction of the
probability of finding the particle beyond the barrier exit
after an extremely long time, essentially infinite, when the
wave function gets stabilized. After such a long time the
barrier region gets empty of probability. Thus, the trans-
mitted probability can be expressed through the time evo-
lution of the current density either at the barrier entrance
or exit as

Tp =
∫

∞

0
J (a+b,τ) dτ =

∫
∞

0
J (−a−b,τ) dτ (6)

For examples after a long time see section 4. Another
way for obtaining the transmitted probability is based on
the probability density established in the region beyond
the barrier exit after essentially infinite time. Thus, we
have:

Tp =
∫

∞

a+b
ρ (x, t) dx (7)

as t → ∞.
It is evident, that∫ −a−b

−∞

ρ (x, t) dx = 1−Tp (8)

as t → ∞.
In practice one can obtain essentially accurate results for
the Equations 6, 7 and 8 for extremely long times replacing
the infinite limits by extremely large ones.

We close the present section with remarks concern-
ing the plane wave structure of the initial wave packet
state, which takes the form

Φ(x) =
∫

∞

0
G(k) [ f (k,x)+ f (−k,x)] dk (9)

where f (k,x) and G(k) stand correspondingly for plane
wave and associated amplitude, given by

f (k,x) = exp
[

i
(

k+
1
h̄

po

)
(x− xo)

]
(10)

G(k) =
( s

π

)1/4 1
(2π)1/4 exp

(
−s2k2) (11)

The above structure enables one to conclude the
possibility of having transmission even in case whereby
the wave packet’s mean momentum points away from
the barrier (p0 < 0). Details for such an effect appear in
Figures 5a and 5b. Furthermore, one can through (Equa-
tions 10 and 11) conclude an increase in transmission
with a smaller wave packet width.

3. Double barrier propagator
In order to proceed for obtaining the propagator, in

question, we shall presently make use of a particular com-
plete set of eigenfunctions, namely, symmetric and anti-
symmetric. As we shall see, later on, these eigenfunctions
are real, a fact that facilitates our evaluations. We begin
with a set of non-normalized eigenfunctions described in
the regions x ≤−(a+b) , −(a+b)≤ x ≤−a, −a ≤
x ≤ a, and denoted, correspondingly by l2, l1,o,r1,r2.

The symmetric ones associated with the above re-
gions take the form

Ysl2 =

[
cos(ka)cosh(Kb)− k

K
sin(ka)sinh(Kb)

]
cos [k (x+a+b)]+[

sin(ka)cosh(Kb)− K
k

cos(ka)sinh(Kb)
]

sin [k (x+a+b)]

Ysl1 = cos(ka)cosh [K (x+a)]+
k
K

sin(ka)sinh [K (x+a)]

Yso = coskx

Ysr1 = cos(ka)cosh [K (x−a)]−
k
K

sin(ka)sinh [K (x−a)]

Ysr2 =

[
cos(ka)cosh(Kb)− k

K
sin(ka)sinh(Kb)

]
cos [k (x−a−b)]+[
−sin(ka)cosh(Kb)+

k
K

cos(ka)sinh(Kb)
]

sin [k(x−a−b)]

(12)

The above expressions constitute symmetric eigensolu-
tions of the Schrödinger equations associated with the
continuous quantum variable k(k > 0) and eigenvalue
Ek = h̄2k2/2m. For each k there corresponds to an
antisymmetric eigensolution given for the above regions
as follows:
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Yal2 = −
[

sin(ka)cosh(Kb)+
k
K

cos(ka)sinh(Kb)
]

cos [k (x+a+b)]+[
cos(ka)cosh(Kb)+

K
k

sin(ka)sinh(Kb)
]

sin [k (x+a+b)]

Yal1 = −sin(ka)cosh [K (x+a)]+
k
K

cos(ka)sinh [K (x+a)]

Yao = sin(kx)

Yar1 = sin(ka)cosh [K (x−a)]+
k
K

cos(ka)sinh [K (x−a)]

Yar2 =

[
sin(ka)cosh(Kb)+

k
K

cos(ka)sinh(Kb)
]

cos [k (x−a−b)]+[
cos(ka)cosh(Kb)+

K
k

sin(ka)sinh(Kb)
]

sin [k (x−a−b)]

(13)

For both symmetric and antisymmetric eigensolutions K
is given by

K =

√
2muo

h̄2 − k2 (14)

It should be noted that (Equations 13 and 14) satisfy the
continuity conditions for the wave function as well as its
derivative at the barrier boundaries, −(a+b), −a, a, (a+
b). Furthermore, on account of the fact that the above
wave functions (Equations 12 and 13) are associated with
same eigenvalue, Ek, the eigenvalues are doubly degener-
ate.

As pointed out, earlier, the eigensolutions (Equations
12 and 13) are not normalized. In order to proceed obtain-
ing their corresponding normalizing factors we consider,
initially, a finite range, −L ≤ x ≤ L. We then have for the
symmetric and antisymmetric case the following normal-
ization factors

As =

(
2
∫ −(a+b)

−L
Y 2
sl2 dx+2

∫ −a

−(a+b)
Y 2
sl1 dx

+
∫ a

−a
Y 2
so dx

)− 1
2

(15)

Aa =

(
2
∫ −(a+b)

−L
Y 2
al2 dx+2

∫ −a

−(a+b)
Y 2
al1 dx

+
∫ a

−a
Y 2
ao dx

)− 1
2

(16)

The duplication of the first two integrals on the left-hand
side of the barrier is based on the symmetry of the
squares of the corresponding wave functions. For obtain-
ing the required propagator L has to be extremely large,
more accurately has to tend to ∞. Since the propagator
K(xt|x′0) takes different forms in the various regions
i = l2, l1, o, r1, r2 for x and x′, it can be expressed,
when x belongs to region i and x′ to region j, as

Ki j(x, t | x′0) = lim
L→∞

L
π

∫
∞

0
[As(k,L)2Ysii(x)Ys j j

(x′)

+Asi(k,L)2Yaii(x)Ya j j
(x′)]exp

[
−i

h̄k2

2m
t
]

dk

(17)

Let us introduce notations for the following limits

Qs(k) = lim
L→∞

L
π

Aa(k,L) =

1
π

{[
sin(ka)cosh(Kb)− K

k
cos(ka)sinh(Kb)

]2

+

[
cos(ka)cosh(Kb)− k

K
sin(ka)sinh(Kb)

]2
}−1

(18)

Qa(k) = lim
L→∞

L
π

Aa(k,L) =

1
π

{[
sin(ka)sinh(Kb)+

k
K

cos(ka)sinh(Kb)
]2

+

[
cos(ka)cosh(Kb)+

K
k

sin(ka)sinh(Kb)
]2
}−1

(19)

In view of the above, the propagator in the region (−∞,∞)
acquires the form
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Ki j
(
xt | x′0

)
=

∫
∞

0

[
Qs(k)Ysi(x)Ys j(x′)

+Qa(k)Yai(x)Ya j(x′)

]
exp
(
−i

h̄k2

2m
t
)

dk

(20)

It should be noted that the various eigenfunctions in the
propagator expression are real, as earlier pointed out.

Once the propagator is made available the evolution
of an initial wave function becomes attainable. Presently,
we are interested in obtaining the evolution of a wave
packet, Φ(x), initially located on the left-hand side of the
barrier at a distance so that it overlaps with the barrier
insignificantly. Its value in the barrier region being essen-
tially zero. Under the circumstances the evolving wave
function in region i can be expressed as

Ψi(x, t) =
∫ −(a+b)

−∞

Kil2

(
xt | x′0

)
Φ(x′)dx′ (21)

Since, Φ(x) for x>−(a+b) is practically zero the integral
in Equation 21 can be extended in the region from −∞ to
∞. Thus, denoting by Φsl2 and Φal2

Φsl2(k) =
∫

∞

−∞

Ysl2(k,x
′)Φ
(
x′
)

dx′ (22)

Φal2(k) =
∫

∞

−∞

Yal2(k,x
′)Φ
(
x′
)

dx′ (23)

we can obtain the required wave function,

Ψi(x, t) =
∫

∞

0

[
Qs(k)Φsl2(k)Ysi(x)+Qa(k)Φal2(k)Yai(x)

]

exp
(
−i

h̄k2

2m
t
)

dk (24)

for the regions (i = l2, l1,o,r1,r2). Explicit expressions for
Φsl2 and Φal2 are given in appendix (Section 6) through
Equations 26 and 27, correspondingly.

Having at hand the evolving wave function stem-
ming from the initial wave packet we can employing (3)
obtain the probability and current densities both time- and
space-wise, as well as the transmitted probability. Rele-
vant numerical results follow in Section 4.

Prior to proceeding, further, it is worth noting
that the normalizing factors, Qs and Qa, exhibit signif-
icant narrow peaks centered at values of k, which for

k <
√

2muo/h̄, provide the usual resonances (transmission
coefficient equal to unity) appearing in the case whereby
tunneling is studied with incoming and outgoing plane
waves. In particular, the Qs peaks occur at values of k
associated with the symmetric eigenstates resonances,
while those of Qa with the antisymmetric ones. As is well
known the peaks of the normalizing tunneling curves
occur at values of k corresponding to eigenfunctions
concentrated essentially within the barrier region and
particularly within the well. However, such resonances
do not appear in the case of a wave packet, on account of
the superposition of incoming and outgoing plane waves.

4. Numerical results
In this section, we present results on the basis of

which one can form a picture of the spatial distribution
for the probability and current densities at given times, as
well as their corresponding time evolution at the barrier
entrance and exit. Furthermore, we obtain the transmit-
ted probability as a function of the mean momentum
carried by the wave packet with barrier parameters
(u0,a,b), given in data in common, which follow.

In order to proceed numerically it would be helpful
to introduce as unit of energy, Eu = 0.1eV (= 1.601917×
10−13 erg). The particular choice, in question, is based on
the fact that the usual height of barriers is on the order of
a few 0.1eV . On the basis of this unit together with the
carrier particle mass, m, we form the units of time, length,
velocity, and momentum correspondingly as:

Tu =
h̄

Eu
, Lu =

h̄√
mEu

, Vu =
Lu

Tu
, Pu = m

Lu

Tu
=
√

mEu

(25)

Using for m the electron mass, m = 9.109558× 10−28g,
and h̄ = 1.054559 × 10−27 erg · s for Planck’s con-
stant, the units in Equations 25 take the following
values: Tu = 6.58198× 10−15s, Lu = 8.72901× 10−8 cm,
Vu = 1.32262×107 cm/s, Pu = 1.20811×10−20 g · cm/s.

The above system of units enables dealing with di-
mensionless quantities, just by setting in Schrödinger’s
Equation 3 h̄ = 1, m = 1. The various dimensional results
are obtained from the resulting dimensionless quantities
times their associated units, given in Equations 25. Utiliz-
ing the procedure, in question, we can obtain via Equation
24 the required wave function Ψi(x, t) from which we de-
rive probability and current densities, ρ and J, through
Equation 5, as well as transmitted probability, Tp, using
either Equation 6 or Equation 7.

In the ensuing results, we make use of data in com-
mon with regard to the barrier potential being u0 = 5Eu,
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a = 2Lu, b = 1Lu . The parameters x0 and p0 and s for
the wave packet can be varied and are given in the corre-
sponding figure captions.

The figures below refer to the probability and current
densities. In particular, Figure 1a depicts initial probabil-
ity density space distribution (solid curve) as well as the
form it takes after a short time, 1Tu, (dashed curve). Figure
1b provides the corresponding spatial distributions of the
current densities. Subsequently, Figures 2a, 2b show cor-
respondingly probability and current densities at t = 8Tu.

Figure 1: (a) Probability density spatial distributions emanating from
an initial wave packet with width s = 0.4Lu. centred at x0 = −25Lu
and currying mean momentum p0 = 2Pu at time t = 0 (solid curve)
and at t = 1Tu (dashed curve). The rest of the data as in common. (b)
Corresponding current spatial density at time t = 0 (solid curve) and
at t = 1Tu (dashed curve).

Results concerning time evolution of probability and
current densities at the barrier entrance are presented in
Figures 3a, 3b, while corresponding results are shown in
Figures 4a, 4b at the exit. In what concerns the current
density at the entrance there appears successive change
in the current direction, while at the exit current gets out
continuously. Evidently, the more away from barrier the
location of the initial wave packet the longer it takes for
the probability and current densities to start and get es-
tablished.

The figures, which follow, depict the transmitted
probability as a function of the mean momentum curried
by the initial wave packet. Clearly, one notices trans-
mission in case the mean momentum points away from
the barrier. It should be noted that through pertinent
calculations it is verified that the transmitted probability
does not depend on the initial wave packet location.

Figure 2: Probability density spatial distribution at t = 8Tu emanat-
ing from an initial wave packet located at x0 =−25Lu and carrying a
meanmomentum p0 = 1.5Pu, and width s= 0.4Lu. The rest of the data
as per Figure 1a, (b) Corresponding current density spatial distribution

Figure 3: (a) Probability density time evolution at the barrier en-
trance, x =−(a+b) = −3Lu, resulting from initial wave packet with
mean momentum p0 = 1.5Pu, centred at x0 = −25Lu with width
s = 0.4Lu(solid curve), and at x0 = −40Lu (dashed curve). The rest
of the data those in common. (b) Depicts the corresponding current
densities.
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Figure 4: (a) Probability density evolutions at the barrier exit, x+
a+b = 3Lu, associated with data as per Figure 3a. (b) Corresponding
current density time evolutions.

5. Conclusion

Figure 5: (a) Transmitted probability versus mean momentum car-
ried by the initial wave packet located at x0 = −30Lu, s = 0.4Lu, (b)
Corresponding result associated with width s = 0.2Lu. The rest of the
data those as in common.

In conclusion we may accentuate the following re-
marks from the above study, particularly: i) Independence
of the transmitted probability, from a given wave packet,
on the initial location, provided its overlap with the bar-
rier region is negligible. The further away the initial loca-
tion from the barrier it takes longer for the transmission
to get started. However, for smaller wave packet width
the transmitted probability becomes larger. ii) The cur-
rent density at the barrier entrance starts by getting into
and out of the barrier repeatedly over a long time until it
essentially nullifies, while it exits the barrier unidirection-
ally. Over extremely long time the probability entering
the barrier, equals the one exiting the barrier. Further-
more, the transmitted probability can be obtained either
from the probability entering the barrier, which tends to
equal the one exiting the barrier over an extremely long
time. At such a long time the transmitted probability can
be, also, obtained from the transmitted spatial distribu-
tion. iii) There appears probability transmission through
the barrier even if the initial wave packet mean momen-
tum points away from the barrier.

6. Appendix
There follow corresponding analytical expressions

for the integrals in Equation 22 and Equation 23

Φsl2(k) =
(

π

2

) 1
4 √

s{[
cosh(Kb)e−ıka +

(
ı
K
k

cos(ka)− k
K

sin(ka)
)

sinh(Kb)
]

exp
[
−s2

(
k+

po

h̄

)2
+ ik(xo +a+b)

]
+
[
cosh(Kb)eıka −

(
ı
K
k

cos(ka)+
k
K

sin(ka)
)

sinh(Kb)
]

exp
[
−s2

(
k− po

h̄

)2
− ik(xo +a+b)

]}
(26)
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Φal2(k) =
(

π

2

) 1
4 √

s{[
−ıcosh(Kb)eıka −

(
k
K

cos(ka)+ ı
K
k

sin(ka)
)

sinh(Kb)
]

exp
[
−s2

(
k+

po

h̄

)2
+ ik(xo +a+b)

]
+
[
ıcosh(Kb)eıka −

(
k
K

cos(ka)− ı
K
k

sin(ka)
)

sinh(Kb)
]

exp
[
−s2

(
k− po

h̄

)2
− ik(xo +a+b)

]}
(27)
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