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Abstract
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1. Introduction
One of the important predictions of the String The-

ory and the Quantum Gravity is the existence of the mini-
mal length which is of the order of the Planck length (see,
for instance, [1, 2, 3, 4, 5, 6, 7]). This feature of space struc-
ture can be described with modifications of the ordinary
commutation relations for operators of coordinates and
operators of momenta.

The first article in which the idea that coordinates
may not commute was published by Snyder [8]. Before
Snyder the idea was suggested by Heisenberg. The scien-
tist proposed such a modification to solve the problem of
ultraviolet divergences in quantum field theory.

Many different modifications of the commutation
relations were proposed to describe features of space
structure on the Planck scale. The most simple and well-
known is algebra with noncommutativity of coordinates
of canonical type. The algebra is characterized by the
modification of commutation relation for operators of
coordinates. It reads

[Xi,X j] = ih̄θi j, (1)
[Xi,Pj] = ih̄δi j, (2)
[Pi,Pj] = 0, (3)

where θi j are parameters of coordinates noncommutativ-
ity which are elements of the constant antisymmetric ma-
trix. The algebra describes a space with minimal length.
Note, that the noncommutativity of coordinates can be
used to describe motion of a particle in a strong magnetic
field (see, for instance, [9, 10, 11, 12, 13]). Various physical
problems have been examined in the frame of noncommu-
tative algebra of canonical type. Among the first papers
on the subject it is worth mention [14, 15, 16, 17, 18].

It is important to note that in 2D case the noncommu-
tative algebra of canonical type is rotationally invariant

[X1,X2] = −[X2,X1] = ih̄θ , (4)
[Xi,Pj] = ih̄δi j, (5)
[Pi,Pj] = 0, (6)

where i, j = (1,2), θ is a parameter of noncommutativ-
ity. But in 3D case of noncommutative algebra (1)-(3) one
faces a problem of rotational symmetry breaking [19, 20].

It is evident that the same problem appears in more
general case when the noncommutativity of momenta
is also considered. The noncommutative phase space
of canonical type is characterized by the following

commutation relations for coordinates and momenta

[Xi,X j] = ih̄θi j, (7)
[Xi,Pj] = ih̄(δi j + γi j), (8)
[Pi,Pj] = ih̄ηi j. (9)

Here θi j, ηi j, γi j are parameters of the algebra which in
the case of noncommutative algebra of canonical type are
considered to be elements of constant matrixes, θi j are pa-
rameters of coordinate noncommutativity, ηi j are param-
eters of momentum noncommutativity.

There are different ways of representation of the co-
ordinates Xi and momenta Pi which do not commute (7),
(9) Symmetrical representation is well known. It reads

Xi = xi −
1
2 ∑

j
θi j p j, (10)

Pi = pi +
1
2 ∑

j
ηi jx j, (11)

here xi, pi are coordinates and momenta that satisfy the
ordinary algebra. We have

[xi,x j] = 0, (12)
[xi, p j] = ih̄δi j, (13)
[pi, p j] = 0. (14)

On the basis of expressions (10), (11), one find [21]

[Xi,Pj] = ih̄δi j + ih̄∑
k

θikη jk

4
. (15)

So, from the symmetrical representation follows that pa-
rameters γi j read

γi j = ∑
k

θikη jk

4
. (16)

New classes of noncommutative algebras were
developed to preserve the rotational symmetry. In paper,
[22] the idea of foliating the space with concentric
fuzzy spheres was proposed to preserve the rotational
symmetry. Rotationally-invariant noncommutative space
was constructed as a sequence of fuzzy spheres in [23].
Author of paper [24] introduced the curved noncom-
mutative space. In [25] promotion of the parameter of
noncommutativity to an operator in Hilbert space was
implemented to construct rotationally-invariant noncom-
mutative algebra. Rotation invariance in N dimensional
case was studied in [26].

To find new effects of noncommutativity of coordi-
nates and noncommutativity of momenta in the proper-
ties of a wide class of physical systems it is important to
examine many-particle systems Studies of harmonic os-
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cillator in noncommutative space have received much at-
tention (see, for instance, [27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40]). Two coupled harmonic oscillators were
studied in noncommutative space [41, 42], noncommuta-
tive phase space [43, 44]. System of free particles was
examined in [45, 46] in noncommutative phase space of
canonical type. Classical problems of many particles were
examined in [47] in the case of space-time noncommuta-
tivity.

It is worth noting that system of harmonic oscillators
has various applications. Such studies have importance
in nuclei physics [48, 49, 50], in quantum chemistry and
molecular spectroscopy [51, 52, 53, 54]. Also networks of
harmonic oscillators are used in quantum information [55,
56, 57].

In the present paper, we present noncommutative
algebra which is rotationally-invariant and besides it is
equivalent to noncommutative algebra of canonical type.
The algebra is constructed with the help of generalization
of the parameters of noncommutativity to tensors. The
tensors are defined by introducing additional coordinates
and additional momenta governed by a system with
rotational symmetry. The basis problems are studied in
the frame of the algebra. They are free particle, harmonic
oscillator, systems of harmonic oscillators. The spectrum
of a system of harmonic oscillators is obtained up to
the second order in the parameters of coordinate and
momentum noncommutativity. Results presented in this
paper are published in [40, 58, 59, 60].

The paper is organized as follows. In section 2
rotationally-invariant algebra with noncommutativity of
coordinates and noncommutativity of momenta which
is equivalent to algebra of canonical type is introduced.
The spectrum of free particle in rotationally-invariant
noncommutative phase space is examined in section 3.
The harmonic oscillator in noncommutative phase space
with preserved rotational symmetry is studied in section
4. In section 5 Hamiltonian of a system of interacting
harmonic oscillators is analyzed in noncommutative
phase space. Section 6 is devoted to studies of the energy
levels of a system of interacting harmonic oscillators in
uniform field in the frame of noncommutative algebra.
Conclusions are presented in section 7.

2. Noncommutative phase space of
canonical type with preserved
rotational symmetry
To construct an algebra which is rotationally-

invariant and describes a noncommutative phase space
we propose to generalize parameters of noncommu-

tativity θi j, ηi j to tensors. The tensors are considered
to be constructed with the help of additional coordi-
nates and additional momenta. Tensors of coordinate
noncommutativity read

θi j =
l0
h̄

εi jkak. (17)

Hare l0 is a constant with the dimension of length and
ai are additional coordinates. For tensors of momentum
noncommutativity we have the following expression

ηi j =
p0

h̄
εi jk pb

k , (18)

here p0 is a constant, pb
k are additional momenta.

We consider the additional coordinates ai, bi and mo-
menta pa

i , pb
i to satisfy the ordinary commutation rela-

tions. Namely, we have

[ai,a j] = [bi,b j] = [ai,b j] = 0, (19)
[ai, pa

j ] = [bi, pb
j ] = ih̄δi j, (20)

[pa
i , pa

j ] = [pb
i , pb

j ] = [pa
i , pb

j ] = 0, (21)

[ai, pb
j ] = [bi, pa

j ] = 0. (22)

To preserve the rotational symmetry the additional
coordinates and additional momenta are assumed to be
governed by spherically-symmetric systems. For simplic-
ity they are considered to be harmonic oscillators

Ha
osc =

(pa)2

2mosc
+

moscω2a2

2
, (23)

Hb
osc =

(pb)2

2mosc
+

moscω2b2

2
. (24)

Parameters of the oscillators are assumed to be as follows√
h̄

moscω
= lP, (25)

where lP is the Planck’s length. We also consider the fre-
quency ω to be very large. In this case because of large
distance between energy levels h̄ω the oscillators are in
the ground state.

Taking into account (16), (17), (18), we can write

γi j =
l0 p0

4h̄2

(
(a ·pb)δi j −a j pb

i

)
. (26)

As a result, the noncommutative algebra is characterized
by the following relations

[Xi,X j] = iεi jkl0ak, (27)

[Xi,Pj] = ih̄
(

δi j +
l0 p0

4h̄2 (a ·p
b)δi j −

l0 p0

4h̄2 a j pb
i

)
, (28)

[Pi,Pj] = εi jk p0 pb
k . (29)
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Additional coordinates ai, bi can be treated as some
internal coordinates of a particle. Quantum fluctuations
of ai, bi lead effectively to a non-point-like particle. The
size of the particle is of the order of the Planck scale.

It is important to note that γi j, θi j, ηi j commute with
each other

[θi j,ηi j] = [θi j,γi j] = [γi j,ηi j] = 0. (30)

Also, we have that the following commutation relations
are satisfied

[θi j,Xk] = [θi j,Pk] = [ηi j,Xk] =

= [ηi j,Pk] = [γi j,Xk] = [γi j,Pk] = 0. (31)

So, similarly as in the case when θi j, ηi j, and γi j are con-
stants, tensors θi j, ηi j and γi j commute with coordinates
and momenta. In this sense we have that the constructed
algebra (27)-(29) is equivalent to noncommutative algebra
of canonical type (7)-(9).

Commutation relations of algebra (27)-(29) remain
the same after rotation

[X ′
i ,X

′
j] = iεi jkl0a′k, (32)

[X ′
i ,P

′
j] = ih̄

(
δi j +

l0 p0

4h̄2 (a
′ ·pb′)δi j −

l0 p0

4h̄2 a′j p
b′
i

)
, (33)

[P′
i ,P

′
j] = εi jk p0 pb′

k . (34)

Here we use the following notations

X ′
i = U(ϕ)XiU+(ϕ), (35)

P′
i = U(ϕ)PiU+(ϕ), (36)

a′i = U(ϕ)aiU+(ϕ), (37)
pb′

i = U(ϕ)pb
i U+(ϕ). (38)

The rotation operator reads

U(ϕ) = e
i
h̄ ϕ(n·L̃), (39)

where L̃ is the total angular momentum defined as

L̃ = [r×p]+ [a×pa]+ [b×pb], (40)

r = (x1,x2,x3). It is easy to show that L̃ satisfies the fol-
lowing relations

[L̃i,(a ·p)] = [L̃i,(b ·p)] =
= [L̃i,(a ·b)] = 0, (41)

[L̃i,(r ·a)] = [L̃i,(r ·b)] = 0, (42)
[L̃i,(a ·L)] = [L̃i,(b ·L)] =

= [L̃i,(pa ·L)] =
= [L̃i,(pb ·L)] = 0, (43)

[L̃i,r2] = [L̃i, p2] = [L̃i,a2] =

= [L̃i,b2] = 0, (44)
[L̃i,(pa)2] = [L̃i,(pb)2] = 0. (45)

Here for convenience we introduce notation L = [r×
p]. So, taking these relations into account we have that

[L̃i,R] = 0, (46)

where R is the operator of distance. This operator on the
basis of (10), (11), (17), (18) can be rewritten as

R =
√

∑
i

X2
i =

=

√
r2 +

l2
0

4h̄2 a2 p2 − l0
4h̄2 (a ·p)2 − l0

h̄
(a ·L). (47)

So, after rotation, we obtain the same distance

R′ =U(ϕ)RU+(ϕ) = R. (48)

Also, the operator of the total angular momentum com-
mutes with momentum P =

√
∑i P2

i . We have

[L̃i,P] = 0, (49)

P =

√
p2 +

p2
0

4h̄2 r2(pb)2 −
p2

0

4h̄2 (r ·pb)2 +
p0

h̄
(pb ·L). (50)

So, the absolute value of momentum does not change after
rotation

P′ =U(ϕ)PU+(ϕ) = P. (51)

Commutators for coordinates and total angular mo-
mentum are the same as in the ordinary space (space with
ordinary commutation relations for operators of coordi-
nates and momenta)

[Xi, L̃ j] = ih̄εi jkXk, (52)
[Pi, L̃ j] = ih̄εi jkPk, (53)
[ai, L̃ j] = ih̄εi jkak, (54)
[pa

i , L̃ j] = ih̄εi jk pa
k , (55)

[bi, L̃ j] = ih̄εi jkbk, (56)
[pb

i , L̃ j] = ih̄εi jk pb
k . (57)
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Using (10), (11), (17), (18), for noncommutative coor-
dinates and noncommutative momenta we have the fol-
lowing representation

Xi = xi +
l0
2h̄

[a×p]i, (58)

Pi = pi −
p0

2h̄
[r×pb]i. (59)

The existence of such a representation guarantees that the
Jacobi identity is satisfied for all possible triplets of op-
erators. Also, it is important to note that from (58), (59)
follows the following relations

[Xi, pa
j ] = iεi jk

l0
2

pk, (60)

[Pi,b j] = iεi jk
l0
2

xk, (61)

[Xi,a j] = [Xi,b j] = [Xi, pb
j ] = 0, (62)

[Pi,a j] = [Pi, pa
j ] = [Pi, pb

j ] = 0. (63)

3. Free particle in rotationally-
invariant quantum phase space
Let us consider a free particle of mass m

Hp = ∑
i

P2
i

2m
, (64)

and study its energy levels in the frame of rotationally-
invariant noncommutative algebra (27)-(29). So, momenta
in the Hamiltonian do not commute, we have (29).

To construct algebra (27)-(29) we involve additional
coordinates and additional momenta ãi, b̃i, p̃a

i , p̃b
i , So,

to find energy levels of free particle in noncommutative
phase space we have to consider the total Hamiltonian as
follows

H = ∑
i

P2
i

2m
+Ha

osc +Hb
osc. (65)

Here Ha
osc, Hb

osc are Hamiltonians of harmonic oscillators,
that are given by (23), (24). For convenience, we introduce
the following operator

∆H = Hp −⟨Hp⟩ab. (66)

Here ⟨...⟩ab denotes averaging over the eigenstates of
oscillators (23), (24) in the ground states ψa

0,0,0, ψb
0,0,0 .

⟨...⟩ab = ⟨ψa
0,0,0ψ

b
0,0,0|...|ψa

0,0,0ψ
b
0,0,0⟩. (67)

So, we can rewrite Hamiltonian (64) as follows

H = H0 +∆H, (68)
H0 = ⟨Hp⟩ab +Ha

osc +Hb
osc. (69)

Up to the second order in ∆H in the rotationally-
invariant noncommutative phase space we can study (69).
To show this we find corrections caused by the term ∆H
to the energy levels of the total Hamiltonian

H = Hs +Ha
osc +Hb

osc, (70)

here Hs is a Hamiltonian of a system. It is important that

[⟨Hs⟩ab,Ha
osc +Hb

osc] = 0. (71)

So, the eigenfunctions and the eigenvalues of Hamiltonian
H0 read

ψ
(0)
{ns},{0},{0} = ψ

s
{ns}ψ

a
0,0,0ψ

b
0,0,0, (72)

E(0)
{ns} = Es

{ns}+3h̄ωosc, (73)

Here for convenience we introduce the following nota-
tions ψs

{ns} are eigenfunctions and Es
{ns} and eigenvalues

of ⟨Hs⟩ab, {ns} are quantum numbers. In the first order of
the perturbation theory, the correction reads

∆E(1) = ⟨ψs
{ns}ψ

a
0,0,0ψ

b
0,0,0|∆H|ψs

{ns}ψ
a
0,0,0ψ

b
0,0,0⟩=

= ⟨ψs
{ns}|⟨Hs⟩ab −⟨Hs⟩ab|ψs

{ns}⟩= 0. (74)

Now, let us find corrections of the second order. We
can write

∆E(2) = ∑
{n′s},{na},{nb}∣∣∣〈ψ

(0)
{n′s},{na},{nb} |∆H|ψ(0)

{ns},{0},{0}

〉∣∣∣2
Es
{n′s}

−Es
{ns}− h̄ωosc(na

1 +na
2 +na

3 +nb
1 +nb

2 +nb
3)
.

(75)

It is important to mention that the set {n′s}, {na},
{nb} does not coincide with {ns},{0}, {0}. So, in the de-
nominator of all terms in the sum we have oscillator fre-
quency ωosc. Mean values〈

ψ
(0)
{n′s},{na},{nb} |∆H|ψ(0)

{ns},{0},{0}

〉
, (76)

do not depend on ωosc This follows from the relation (25).
In the limit ωosc → ∞ the second order corrections are
equal to zero

lim
ωosc→∞

∆E(2) = 0. (77)

This result will be used in our studies of energy levels of
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different physical systems in the monograph.
So, let us apply the result for finding energy levels

of free particle in rotationally-invariant noncommutative
phase space.

To find ⟨Hp⟩ab we use representation of noncommu-
tative coordinates and noncommutative momenta by xi,
pi satisfying the ordinary commutation relations

Xi = xi −∑
j

1
2

θi j p j = xi +
1
2
[θ ×p]i, (78)

Pi = pi +∑
j

1
2

ηi jx j = pi −
1
2
[η ×x]i, (79)

θi = ∑
jk

εi jk
θ jk

2
=

cθ l2
P

h̄
ãi, (80)

ηi = ∑
jk

εi jk
η jk

2
=

cη h̄
l2
P

p̃b
i , (81)

here x = (x1,x2,x3), p = (p1, p2, p3). For convenience we
introduce dimensionless constants cθ , cη and dimension-
less coordinates and momenta

ãi =
ai

lP
, b̃i =

bi

lP
, (82)

p̃a
i =

pa
i lP
h̄

, p̃b
i =

pa
i lP
h̄

. (83)

So, the Hamiltonian of a particle reads

Hp =
p2

2m
− (η · [x×p])

2m
+

[η ×x]2

8m
. (84)

Note that Hp does not depend on the ai, pa
i . So, we have

⟨Hp⟩ab = ⟨ψb
0,0,0|Hp|ψb

0,0,0⟩. (85)

It is easy to calculate

⟨ψb
0,0,0|p̃b

i |ψb
0,0,0⟩ = 0, (86)

⟨ψb
0,0,0|p̃b

i p̃b
j |ψb

0,0,0⟩ =
1
2

δi j. (87)

So, for ⟨ηi⟩ab, and ⟨η2⟩ab we obtain

⟨ηi⟩ab = 0, (88)

⟨η2⟩ = ⟨η2⟩ab =
3(h̄cη)

2

2l4
P

. (89)

Therefore after averaging Hp over the eigenfunctions of
the harmonic oscillators we obtain

⟨Hp⟩ab =
p2

2m
+

⟨η2⟩x2

12m
. (90)

On the basis of this result (90), we find

∆H =−(η · [x×p])
2m

+
[η ×x]2

8m
− ⟨η2⟩x2

12m
. (91)

Hamiltonian ⟨Hp⟩ab corresponds to the Hamiltonian of
harmonic oscillator with mass m and frequency

ω =

√
⟨η2⟩
6m2 , (92)

in the ordinary space (coordinates andmomenta xi, p j sat-
isfy the ordinary commutation relations).

Expression for∆H contains terms of the first and sec-
ond orders in the parameter of momentum noncommuta-
tivity. So, the energy levels of free particle in rotationally-
invariant noncommutative phase space up to the second
order in the parameter of momentum noncommutativity
are as follows

En1,n2,n3 =

√
h̄2⟨η2⟩

6m2

(
n1 +n2 +n3 +

3
2

)
, (93)

n1 = 0,1,2..., n2 = 0,1,2..., n3 = 0,1,2....
So, we can conclude that because of the noncommu-

tativity of momenta, the energy levels of free particles are
quantized. They correspond to the energy levels of a har-
monic oscillatorwith frequency determined by the param-
eter of momentum noncommutativity and given by (93)

4. Harmonic oscillator in rotationally-
invariant space with noncom-
mutativity of coordinates and
noncommutativity of momenta
We consider three-dimensional harmonic oscillator

with mass m and frequency ω in the frame of noncom-
mutative algebra (27)-(29)

Hosc = ∑
i

P2
i

2m
+∑

i

mω2X2
i

2
. (94)

Similarly, as in the previous section let us write the total
Hamiltonian

H = H0 +∆H, (95)
H0 = ⟨Hosc⟩ab +Ha

osc +Hb
osc, (96)

∆H = Hosc −⟨Hosc⟩ab. (97)

To find ⟨Hosc⟩ab we use representation (78)-(79) and
rewrite the Hamiltonian as follows

Hosc =
p2

2m
+

mω2x2

2
− (η · [x×p])

2m
− mω2(θ · [x×p])

2
+

+
[η ×x]2

8m
+

mω2[θ ×p]2

8
, (98)
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Using (80), (81), (86), (87) we obtain

⟨ψa
0,0,0|ãi|ψa

0,0,0⟩ = 0, (99)

⟨ψa
0,0,0|ãiã j|ψa

0,0,0⟩ =
1
2

δi j. (100)

(101)

So, finally, we find

⟨Hosc⟩ab =

(
1

2m
+

mω2⟨θ 2⟩
12

)
p2 +

+

(
mω2

2
+

⟨η2⟩
12m

)
x2, (102)

where we use the following notation

⟨η2⟩= ⟨η2⟩ab =
3(h̄cη)

2

2l4
P

. (103)

Note, that ∆H reads

∆H = −(η · [x×p])
2m

− mω2(θ · [x×p])
2

+
[η ×x]2

8m
+

+
mω2[θ ×x]2

8
mω2⟨θ 2⟩

12
p2 − ⟨η2⟩

12m
x2, (104)

and it contains terms of the first and second orders in the
parameters of noncommutativity. So, up to the second or-
der in the parameters of coordinates and momentum non-
commutativity, we obtain the following energy levels of
the harmonic oscillator

En1,n2,n3 = h̄

√(
mω2 +

⟨η2⟩
6m

)(
1
m
+

mω2⟨θ 2⟩
6

)
(

n1 +n2 +n3 +
3
2

)
(105)

n1, n2, n3 are quantum numbers, n1 = 0,1,2...,
n2 = 0,1,2..., n3 = 0,1,2... .

Note that we have correspondence of the spectrum of
harmonic oscillators in the quantum space written up to
the second order in the parameters of noncommutativity
and spectrum of harmonic oscillator in the ordinary space.
Noncommutativity affects the mass and the frequency of
the oscillator and does not affect the form of its spectrum.
From (102), we have

me f f =
6m

6+m2ω2⟨θ 2⟩
, (106)

ωe f f =

√(
mω2 +

⟨η2⟩
6m

)(
1
m
+

mω2⟨θ 2⟩
6

)
. (107)

Note, that in the limits ⟨θ 2⟩ → 0, ⟨η2⟩ → 0 we obtain

me f f = m, ωe f f = ω . So, the limits expression (105) re-
duces to the spectrum of the harmonic oscillator in the
ordinary space.

Based on the results obtained in this section in the
next section we will study the length in quantum space
with preserved rotational symmetry. We study squared
length operator defined as

Q2 = α
2
∑

i
P2

i +β
2
∑

i
X2

i , (108)

with α and β being constants. Let us find the eigenval-
ues of the operator in noncommutative phase space with
preserved rotational symmetry. So, we consider Xi, Pi sat-
isfying relations of algebra (27)-(29).

Operator Q2 can be considered as Hamiltonian of a
tree-dimensional harmonic oscillator with mass

m =
1

2α2 , (109)

and frequency

ω = 2αβ . (110)

So, we can use results presented in the previous section
and write eigenvalues of the operator Q2 up to the second
order in the parameters of noncommutativity as follows

q2
n1,n2,n3

= h̄

√(
2β 2 +

α2⟨η2⟩
3

)(
2α2 +

β 2⟨θ 2⟩
3

)
(

n1 +n2 +n3 +
3
2

)
,

(111)

n1 = 0,1,2..., n2 = 0,1,2..., n3 = 0,1,2.... Let us analyze
the minimal length on the basis of result (111). We have

q2
min =

√
q2

0,0,0 =
√

h̄ 4

√
2β 2 +

α2⟨η2⟩
3

4

√
2α2 +

β 2⟨θ 2⟩
3

(112)

So, the expression for the minimal length depends on the
parameters of coordinate and momentum noncommuta-
tivity ⟨θ 2⟩, ⟨η2⟩.

Let us study particular cases. Namely, α = 0, β = 1.
In this case one has the squared length operator in the
coordinate space

R2 =
3

∑
i=1

X2
i . (113)

Using (111), the eigenvalues of the operator read

r2
n1,n2,n3

=

√
2h̄2⟨θ 2⟩

3

(
n1 +n2 +n3 +

3
2

)
, (114)
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here n1 = 0,1,2..., n2 = 0,1,2..., n3 = 0,1,2.... From (114)
expression follows that the squared length is quantized.
This is caused by the noncommutativity of coordinates.
The minimal length in the coordinate space reads

rmin =
√

r2
0,0,0 =

√
3h̄2⟨θ 2⟩

2
. (115)

It is determined by the parameter of coordinate noncom-
mutativity ⟨θ 2⟩.

Let us also study another particular case when α = 1,
β = 0. In this case we have squared length operator in
momentum space. It reads

P2 =
3

∑
i=1

P2
i . (116)

p2
n1,n2,n3

=

√
2h̄2⟨η2⟩

3

(
n1 +n2 +n3 +

3
2

)
, (117)

n1 = 0,1,2..., n2 = 0,1,2..., n3 = 0,1,2.... And the mini-
mal length in the momentum space is determined by pa-
rameter of momentum noncommutativity. We have

pmin =
√

p2
0,0,0 =

4

√
3h̄2⟨η2⟩

2
. (118)

5. Hamiltonian of a system of oscil-
lators in rotationally-invariant
noncommutative phase space
We consider a system of N interacting harmonic os-

cillators of masses m and frequencies ω in uniform field in
the frame of rotationally-invariant noncommutatove al-
gebra of canonical type (27)-(29). The system is described
with the following Hamiltonian

Hs = ∑
n

(P(n))2

2m
+∑

n

mω2(X(n))2

2
+

+
k
2 ∑

m,n
m̸=n

(X(n)−X(m))2 +κ ∑
n

X (n)
1 , (119)

where κ , k are constants. For convenience, we choose the
direction of the field to coincide with the X1 axis direc-
tion. In the vase of κ = 0, Hamiltonian (119) describes
nondissipative symmetric network of coupled harmonic
oscillators [56].

Coordinates and momenta of harmonic oscillators
satisfy relations of rotationally-invariant noncommuta-

tive algebra

[X (n)
i ,X (m)

j ] = ih̄δmnθ
(n)
i j , (120)

[X (n)
i ,P(m)

j ] = ih̄δmn

δi j +∑
k

θ
(n)
ik η

(m)
jk

4

 , (121)

[P(n)
i ,P(m)

j ] = ih̄δmnη
(n)
i j , (122)

θ
(n)
i j =

c(n)
θ

l2
P

h̄ ∑
k

εi jkãk, (123)

η
(n)
i j =

c(n)η h̄
l2
P

∑
k

εi jk p̃b
k . (124)

Here indexes m,n = (1...N) label the oscillators.
If masses of harmonic oscillators are equal m. Using

(123), (124), we can write

θ
(n)
i j = θi j =

cθ l2
P

h̄ ∑
k

εi jkãk, (125)

η
(n)
i j = ηi j =

cη h̄
l2
P

∑
k

εi jk p̃b
k , (126)

cθ =
γ̃

m
, (127)

cη = α̃m. (128)

Using representation of noncommutative coordi-
nates and noncommutative momenta over coordinates
and momenta satisfying the ordinary commutation
relations, one has

Hs = ∑
n

(
(p(n))2

2m
+

mω2(x(n))2

2
+κx(n)1

)
+

+
k
2 ∑

m,n
m̸=n

(x(n)−x(m))2 +

+∑
n

(
−(η ·L(n))

2m
− mω2(θ ·L(n))

2
+

κ

2
[θ ×p(n)]1+

+
mω2

8
[θ ×p(n)]2 +

[η ×x(n)]2

8m

)
− k

2 ∑
m,n

m ̸=n

θ ·

·[(x(n)−x(m))× (p(n)−p(m))]+ ∑
m,n

m ̸=n

k
8
[θ × (p(n)−p(m))]2,

(129)

The total Hamiltonian reads

H = Hs +Ha
osc +Hb

osc = H0 +∆H. (130)
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We have

⟨[η ×x(n)]2⟩ab =
2
3
⟨η2⟩(x(n))2, (131)

⟨[θ ×p(n)]2⟩ab =
2
3
⟨θ 2⟩(p(n))2, (132)

⟨[θ × (p(n)−p(m))]2⟩ab =
2
3
⟨θ 2⟩(p(n)−p(m))2. (133)

So, for ∆H we can write

∆H = ∑
n

(
−(η ·L(n))

2m
− mω2(θ ·L(n))

2
+

κ

2
[θ ×p(n)]1+

+
mω2

8
[θ ×p(n)]2 +

[η ×x(n)]2

8m

)
−

−k
2 ∑

m,n
m ̸=n

θ · [(x(n)−x(m))× (p(n)−p(m))]+

+ ∑
m,n

m ̸=n

k
8
[θ × (p(n)−p(m))]2 −∑

n

(
⟨η2⟩(x(n))2

12m
+

+
⟨θ 2⟩mω2(p(n))2

12

)
− k

12 ∑
m,n

m̸=n

⟨θ 2⟩(p(n)−p(m))2.

(134)

So, up to the second order in∆H (or up to the second order
in the parameters of noncommutativity) the Hamiltonian
of a system of interacting harmonic oscillators in uniform
field reads

H0 = ∑
n

(
(p(n))2

2m
+

mω2(x(n))2

2
+κx(n)1

)
+

+
k
2 ∑

m,n
m ̸=n

(x(n)−x(m))2 +

+∑
n

(
⟨η2⟩(x(n))2

12m
+

⟨θ 2⟩mω2(p(n))2

12

)
+

+
k

12 ∑
m,n
m̸=n

⟨θ 2⟩(p(n)−p(m))2 +Ha
osc +Hb

osc.

(135)

6. Effect of noncommutativity on
spectrum of interacting oscilla-
tors
For convenience, let us introduce

me f f = m
(

1+
m2ω2⟨θ 2⟩

6

)−1

, (136)

ωe f f =

(
ω

2 +
⟨η2⟩
6m2

) 1
2
(

1+
m2ω2⟨θ 2⟩

6

) 1
2

. (137)

So, Hamiltonian (135) can be rewritten as

H0 = ∑
n

(
(p(n))2

2me f f
+

me f f ω
2
e f f (x̃

(n))2

2

)
− Nκ2

2me f f ω
2
e f f

+

+
k
2 ∑

m,n
m̸=n

(x̃(n)− x̃(m))2 +
k

12 ∑
m,n

m ̸=n

⟨θ 2⟩(p(n)−p(m))2 +

+Ha
osc +Hb

osc. (138)

Here x̃(n) is defined as

x̃(n) =

(
x(n)1 +

κ

me f f ω
2
e f f

,x(n)2 ,x(n)3

)
. (139)

For operators x̃(n), p(n) we have the ordinary commutation
relations

[x̃(n)i , x̃(m)
j ] = 0, (140)

[x̃(n)i , p(m)
j ] = ih̄δnmδi j, (141)

[p(n)i , p(m)
j ] = 0. (142)

It is also important to mention that

[H0,Ha
osc] = [H0,Hb

osc] = 0. (143)

So, the energy levels of H0 are

E{n1},{n2},{n3} =
N

∑
a=1

h̄ωa

(
n(a)1 +n(a)2 +n(a)3 +

3
2

)
−

− Nκ2

2me f f ω
2
e f f

+3h̄ωosc. (144)

Here n(a)i are quantum numbers (n(a)i = 0,1,2...) and

ω1 = ωe f f ,(145)
ω2 = ω3 = ...= ωN =

=

(
ω

2
e f f +

2kN
me f f

+
kN⟨θ 2⟩me f f ω

2
e f f

3
+

2k2⟨θ 2⟩N2

3

) 1
2

.(146)
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The spectrum of the center-of-mass of the system of
the harmonic oscillators is represented by the first term
in (144). The spectrum of the relative motion is described
by the terms with a = 2..N. To show this let us introduce
coordinates and moments of the center of mass

xc =
∑n x(n)

N
, (147)

pc = ∑
n

p(n), (148)

coordinates and momenta of he relative motion

∆x(n) = x(n)−xc, (149)

∆p(n) =
p(n)−pc

N
. (150)

Taking into account (138), we have

H0 = Hc +Hrel +Ha
osc +Hb

osc, (151)

Hc =
(pc)2

2Nme f f
+

+
Nme f f ω

2
e f f (x̃

c)2

2
− Nκ2

2me f f ω
2
e f f

, (152)

Hrel = ∑
n

(
(∆p(n))2

2me f f
+

me f f ω
2
e f f (∆x(n))2

2

)
+

+
k
2 ∑

m,n
m̸=n

(∆x(n)−∆x(m))2 +

+
k

12 ∑
m,n

m ̸=n

⟨θ 2⟩(∆p(n)−∆p(m))2, (153)

[Hc,Hrel] = [Hc,Ha
osc +Hb

osc] =

= [Hrel,Ha
osc +Hb

osc] = 0. (154)

Here x̃c reads

x̃c =
(
xc

1 +κ/(me f f ω
2
e f f ),x

c
2,x

c
3
)
. (155)

Let us analyze the obtained result. From (144) fol-
lows that frequencies in the spectra of the center-of-mass
and relativemotion of the system of interacting oscillators
are affected by the noncommutativity of coordinates and
noncommutativity of momenta. The uniform field causes
to the shift of the spectrum of the system on a constant.

Considering limit ⟨θ 2⟩ → 0, ⟨η2⟩ → 0 form

E{n1},{n2},{n3} one obtains well known expression

E{n1},{n2},{n3} = h̄ω

(
n(1)1 +n(1)2 +n(1)3 +

3
2

)
+

+
N

∑
a=2

h̄
(

ω
2 +

2Nk
m

) 1
2

(
n(a)1 +n(a)2 +n(a)3 +

3
2

)
− Nκ2

2mω2 .

(156)

On the basis of (144) we can write the spectrum of a
system of N particles of mass m with harmonic oscillator
interaction. Considering ω = 0, we have

E{n1},{n2},{n3} =
h̄⟨η2⟩
6m2

(
n(1)1 +n(1)2 +n(1)3 +

3
2

)
+

+h̄
(

2kN
m

+
⟨η2⟩
6m2 +

2k2⟨θ 2⟩N2

3

) 1
2

N

∑
a=2

(
n(a)1 +n(a)2 +n(a)3 +

3
2

)
− 3Nκ2m

⟨η2⟩
+3h̄ωosc. (157)

The spectrum of the center-of-mass of the system is de-
scribed by (157). It is important to note that this spectrum
is discreet, that is caused by momentum noncommutativ-
ity. The spectrum of the center-of-mass of the system if
the spectrum of harmonic oscillator with a frequency de-
termined by the parameter of momentum noncommuta-
tivity h̄⟨η2⟩/6m2. The spectrum of the relative motion of
the system is affected by noncommutativity of coordinates
and noncommutativity of momenta (see second term in
(157)).

It is important to stress that from (144) and (157) fol-
lows that the influence of noncommutativity on the spec-
trum increases with increasing of the number of particles
N .

In the case of k = 0 we obtain energy levels of a sys-
tem of N free particles in uniform field in a space with
noncommutativity of coordinates and noncommutativity
of momenta

E{n1},{n2},{n3} =
N

∑
a=1

h̄⟨η2⟩
6m2

(
n(a)1 +n(a)2 +n(a)3 +

3
2

)
−

−3Nκ2m
⟨η2⟩

+3h̄ωosc.

(158)

The expression corresponds to the spectrum of N oscilla-
tors with frequencies h̄⟨η2⟩/6m2. Noncommutativity of
coordinates does not affect on the energy levels of free
particle system
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7. Conclusions
A way to construct algebra with noncommutativity

of coordinates and noncommutativity of momenta which
is rotationally-invariant and equivalent to noncommuta-
tive algebra of canonical type has been proposed. The idea
of generalization of the parameters of noncommutativity
to tensors has been used to construct algebra (7)-(9). The
tensors have been defined with the help of additional co-
ordinates and conjugate momenta of them that are gov-
erned by harmonic oscillators. The length of the oscil-
lators has been considered to be the Planck length. The
frequency of the oscillators is assumed to be very large.
Therefore harmonic oscillators that are in the ground state
remains in them.

The spectrum of free particle has been studied in the
frame of rotationally-invariant noncommutative algebra.
Up to the second order in the parameters of noncommu-
tativity it is shown that the energy levels of a free particle
in noncommutative phase space correspond to the energy
levels of harmonic oscillator (93) with frequency defined
by the parameter of momentum noncommutativity (92).

Also, harmonic oscillator has been examined in
rotationally-invariant noncommutative phase space. We
have found energy levels of the oscillator up to the second
order in the parameters of noncommutativity. We have
concluded that noncommutativity of coordinates and
noncommutativity of momenta affect on the mass and the
frequency of the oscillator. The expression for the energy
levels of the harmonic oscillator in noncommutative
phase space corresponds to that in the ordinary space.

Based on the obtained results the minimal length
has been studied in the frame of rotationally-invariant
noncommutative algebra. Squared length operator has
been considered in coordinate, momentum space, and
phase space. The eigenvalues of the operators (111),
(114), (117) have been obtained up to the second order
in the parameters of coordinate and momentum non-
commutativity. Based on the results the minimal lengths
in coordinate space, momentum space, and phase space
have been obtained (115), (118), (112).

We have also examined energy levels of a system ofN
harmonic oscillators with harmonic oscillator interaction
in uniformfield in rotationally-invariant noncommutative
phase space of canonical type. Up to the second order in
the parameters of noncommutativity we have obtained in-
fluence of noncommutativity of coordinates and noncom-
mutativity of momenta on the energy levels of the system.
We have concluded that space quantization affects on the
frequencies of the system (144). Uniform field shifts of
the spectrum of the system on a constant (144). Particular
case of a system of two interacting oscillators and a system
of three interacting oscillators have been examined. We

have found energy levels of the systems in rotationally-
invariant noncommutative phase space.

On the basis of the obtained results a system of par-
ticles with harmonic oscillator interaction and a system
of free particles in uniform field have been examined. We
have concluded that up to the second orders in the param-
eters of noncommutativity, the noncommutativity of co-
ordinates does not affect the spectrum of free particle sys-
tem in uniform field. The spectrum of free particles in uni-
form field has the form of the spectrum of a system of N
harmonic oscillators with frequencies determined by pa-
rameters of momentum noncommutativity a s h̄⟨η2⟩/6m2

(158). We have also shown that a spectrum of the center-
of-mass of a system of particles with harmonic oscillator
interaction in uniform field corresponds to the spectrum
of harmonic oscillator (see first term in (157)) and is af-
fected only by noncommutativity of momenta.

We have also found that the spectrum of the rela-
tive motion of the system of interacting harmonic oscilla-
tors corresponds to the spectrum of harmonic oscillators
with frequencies that depends on the parameters of non-
commutativity (see second term in (157)). We have also
showed that effect of coordinates noncommutativity on
the spectra of systems with harmonic oscillator interac-
tion increases with increasing of the number of particles
(144), (157).
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