
2pt plus 0.1em

Optimizing Graph Learning using a Hierarchical Graph Adjacency Matrix
(HGAM)
Robert Benke 1,2,a, Emmanouil-Ioannis Farsarakis 2, Michal Szarmach2 Andrea Zanetti2, Hsien-Hsin S. Lee 2

1 Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,
Narutowicza 11/12, 80-233, Gdańsk, Poland
2 Intel Corporation, 2200 Mission College Blvd, Santa Clara, USA

https://doi.org/10.34808/tq2024/28.3/b

Abstract
Graph Neural Networks (GNNs) have been increasingly adopted in modern, large-scale applications, such as social
network analysis, recommendation systems, drug discovery, and more. However, the training cost of GNNs can be
computationally prohibitive, especially when the graph is large and complex, necessitating the use of a mini-batching
approach. In this paper, we propose a novel data structure called the Hierarchical Graph Adjacency Matrix (HGAM) to
accelerate GNN training by avoiding redundant computations. With HGAM, we can accelerate the training speed of
GNNs by up to four times. Additionally, we propose optimizations on top of HGAM to further enhance performance,
achieving an overall speedup of up to 7.72 times for training 3-layer deep GNNs. We evaluated our techniques using
three benchmark datasets—Reddit, ogbn-products, and ogbn-mag—and demonstrate that the proposed HGAM technique
and related optimizations are advantageous for GNN training across modern hardware platforms.

Keywords:
Data structure optimization, graph neural networks, graph learning, sparse data

aEmail: robbenke@pg.edu.pl

TASK Quarterly 28 (3) 2024

https://orcid.org/0000-0002-4240-5677
https://orcid.org/0000-0003-4049-0545
https://orcid.org/0000-0002-8926-8243
https://doi.org/10.34808/tq2024/28.3/b


1. Introduction
Deep neural networks and machine learning (ML)

have seen a significant increase in capabilities and adop-
tion. Until recently, research in these domains has focused
mostly on the processing of Euclidean structured data,
while hardware and software have co-evolved to accommo-
date such data structures. Graph Neural Networks (GNNs)
have emerged as a way to simultaneously leverage both
advanced learning technologies and the full context and
interconnectivity of a graph’s underlying structures. The
use of GNNs has led to state-of-the-art performance in
tasks such as node classification and link prediction, which
are employed in application domains including social net-
works, drug discovery, fraud detection, recommendation
systems, and physics simulation [1–5].

Graph Neural Networks Basics
Most GNNs achieve high accuracy on tasks such as

node classification, link prediction, and graph classifica-
tion, in part by creating improved node embeddings from
the features of the original graph dataset. Processing a
layer in most types of GNNs involves each node collecting
and aggregating data from its direct neighbors using an
aggregation function specific to the model, commonly sum
or mean. Other tasks may involve applying linear and
non-linear transformations to the embeddings to increase
complexity and add learnable parameters to the model.
Each GNN layer, therefore, transfers information to up-
dated embeddings from their direct neighbors (or “1-hop”
neighbors). Chaining GNN layers makes it possible to ex-
tend the horizon of the resulting node embeddings beyond
direct neighbors.

Scaling Challenges
Updating node embeddings in a GNN can be handled

in one of two ways: either all nodes are processed together,
known as full batch processing, which requires the full
dataset to be loaded at once, or nodes are processed in
minibatches due to memory constraints. However, in addi-
tion to the “seed nodes” that we want to update in a batch,
a GNN minibatch must also include additional “support
nodes,” e.g., the N-hop neighbors of the seed nodes, which
will not be updated in this batch but are required to carry
out the algorithm. The size of the minibatch subgraph
required scales exponentially with the model depth, even
for models with a small number of layers.

The memory pressure is further exacerbated by the
sheer growth of state-of-the-art (SOTA) GNN model sizes.
One current SOTA GNN model on the PCQM4Mv2 dataset
[6,7] hasmore parameters than the 2nd and 3rd best models

combined from the Open Graph Benchmark (OGB). The
best-performing model for text-attributed graphs has more
than 100 times the parameters of any other model in the
top five models for ogbn-products and ogbn-arxiv [8].

Previous Solutions
Learning more expressive and generalizable GNN

models requires more lightweight minibatch training. One
of the early approaches to limit the subgraph size is neigh-
bor sampling (NS) [9]. NS reduces the total number of
neighbors at each level by randomly selecting a fixed-size
subset of neighbors. This way, we can arbitrarily shrink
the subgraph with a predefined upper bound for the num-
ber of nodes and edges. More sophisticated techniques for
selecting the neighbors have been proposed, based on node
importance [10], influence [11], or variance reduction [12].
Those techniques give us control over total memory us-
age but still might be insufficient due to the exponentially
growing neighborhood in networks that require a higher
receptive field.

The exponentially growing neighborhood of seed
nodes in minibatching is a well-known problem, and many
solutions have been proposed. One of the first studies at-
tempting to mitigate this problem was ClusterGCN [13].
Despite the name, this technique can be applied to a wide
range of GNN models and reduces the minibatch subgraph
by restricting the sampled nodes to a given cluster of the
original graph. The authors of SIGN [14] proposed a GNN
model that performs all the sparse computation as a pre-
processing step and trains the model with no node neigh-
borhood requirements. In GraphSAINT [15], a technique
was proposed tomitigateminibatching inefficiency bymak-
ing use of all nodes that were sampled (support nodes)
and decreasing the total number of iterations required for
model convergence. All these methods provided improve-
ments in efficiency to various degrees, but they do not
generate the same outputs as the original implementations
and could be detrimental to model quality.

An alternative method aimed at reducing the total
number of computations in message passing is Hierarchi-
cally Aggregated Computation Graphs (HAG) [16]. HAG
groups together nodes that are all sending information to
the same place, reducing the number of nodes to aggregate
and speeding up the process. HAG and HGAM operate on
different principles but can be employed concurrently for
models where HAG can be used. While HGAM focuses
on discarding edges and nodes that are no longer needed,
HAG is designed to prevent redundant node aggregations
throughout the message passing process.

The authors of [9] proposed a technique based on a
list of bipartite graphs, one for every GNN layer, to limit
the number of unnecessary computations without chang-

2



ing the final output. Each bipartite graph contains a set of
source and destination nodes, where the set of destination
nodes is a subset of the source nodes. The paper showed
that this technique can eliminate redundant computations
from message passing. However, it requires additional
memory for storing the extra adjacency matrices, which
also increases the data transfer between CPU and GPU,
requiring a pre-processing step to be applied to every adja-
cency matrix separately. Even with the above techniques
applied, there is a fundamental problem with optimizing
GNNs on currently available hardware due to the random
memory access patterns and poor cache reuse in sparse
computations [17, 18], which means these workloads are
not able to leverage the beneficial architectural features
of standard training and inference accelerators. Therefore,
techniques such as leveraging a sparse accelerator [19]
and heterogeneous systems [20] have been proposed, and
promising results have been demonstrated.

Hierarchical Graph Adjacency Matrix
In this paper, we propose HGAM: Hierarchical

Graph AdjacencyMatrix, a new data structure for graph
data that allows us to efficiently limit the computations
in deep GNNs. It works by adjusting the minibatch
subgraph after each GNN layer to skip any redundant
computations in minibatched training or inference. We
detail the construction and usage of HGAM in Section
2. Our data structure can be adapted for compression in
line with other well-known sparse data structures like
coordinate list (COO) and compressed sparse rows (CSR)
under the hood, as described in Section 3. This makes this
novel data structure easy to adopt, as there is no need to
modify existing core computational kernels.

A key concept that underpins our approach is the
Message Flow Graph (MFG). MFGs were introduced in the
GNN domain to explain how messages propagate through
a graph during layer-wise computation. An MFG captures
the minimal subgraph required to compute the output for
a set of seed nodes, tracing only the edges and nodes along
which information actually flows. This enables a more
precise understanding of the effective receptive field of
each node at a given layer.

The concept of MFGs motivated our work by high-
lighting that, since a single GNN layer only shares a node’s
information with its direct neighbors, we can safely prune
parts of the graph that are unreachable within the remain-
ing layers. While MFGs define the relevant subgraphs
for each computational layer, they do not specify how to
construct or use them efficiently. HGAM addresses this
gap by implementing MFGs in a way that minimizes both
sampling time and memory overhead. It prunes subgraphs
in constant time and uses negligible additional memory,

Figure 1: Hierarchical Graph Adjacency Matrix data structure.

setting it apart from existing approaches known to the
authors.

Contributions
Our work makes the following contributions to ad-

vance the field of GNN optimization:

▶ We develop a novel data structure that allows us to sig-
nificantly reduce the minibatching compute overheads
with negligible extra memory needed.

▶ We provide empirical analysis for neighborhood ex-
plosion and the computational implications with and
without HGAM.

▶ We study prominent bottlenecks in GNN training and
propose additional optimization techniques based on
the meta-information stored in HGAM.

Last but not least, we make our HGAM technique
publicly available to the broader community so it can be
studied and used to accelerate a wider range of workloads
beyond GNNs. It is developed and presented in a generic
way so that it can be leveraged in any problem involving
concepts equivalent to seed nodes and the requirement to
easily generate graphs of different horizon widths around
them.

2. Hierarchical Graph Adjacency
Matrix Data Structure
The Hierarchical Graph Adjacency Matrix (HGAM)

data structure is a representation of a graph’s adjacency

3



matrix that allows for efficient extraction of the k-hop
neighborhood of a node. The HGAM data structure is
a hierarchical matrix, where each level of the hierarchy
is a subgraph of the level above. A subset of the nodes
has been chosen as "seed nodes," to which a hierarchical
neighborhood perspective is referred. The last level of the
hierarchy contains all the nodes that are at a finite distance
from the seed nodes, and each preceding level is a subset
of nodes that are closer to the seed nodes. The subgraphs
are constructed by selecting a subset of the nodes and
retrieving all edges among the selected nodes. It is usually
used in a bottom-up manner, starting from the original
graph and ending with the seed nodes only, but a reverse
order is also possible.

The HGAMdata structure is shown in Figure 1. Nodes
in this data structure are partially sorted. Seed nodes are
inserted in the matrix first (upper left region of the matrix
in Figure 1), followed by support nodes from increasingly
distant neighborhoods. In this way, any node with a given
index i is always at the same or a greater distance from the
seed nodes compared to all nodes with index j < i, where
distance is measured by the number of neighbor "hops"
between them. The order of the nodes within the same
distance level can be arbitrary. In our implementation, it
is naturally given by the construction process we describe
in the next section.

2.1. HGAM Construction
The HGAM data structure is constructed in a breadth-

first search (BFS) manner. The first level of the hierarchy
is the set of seed nodes. These nodes are selected from the
original graph, usually randomly in the case of GNN mini-
batching. In the next step, we sample (incoming) neighbors
for the first seed node and add them to the subgraph, to-
gether with the directed incoming edges to the seed node
itself. In a dense adjacency matrix representation, this
would complete the creation of the first column of the
HGAM, since no more incoming edges can be added to
the first node in subsequent stages. We move to the next
seed node and fill the second column according to the
same logic. We repeat this procedure for all seed nodes.
Once this first step is completed, our single-level HGAM
is ready. Columns that correspond to the 1-hop neighbors
are populated with zero values. This is intentional since
those support nodes are only a source of information for
the seed nodes. Then, we can continue the procedure of
neighbor sampling detailed above for level-1 nodes to cre-
ate the second level of the HGAM. The second level of the
hierarchy is the set of support nodes that are connected
to the nodes in the first level. However, we could have
also sampled one or more nodes that were already in the
subgraph: in that case, we would not add them again but

instead reuse the ones that have already been added. This
does not change the already built structure of the hierar-
chy and, most importantly, it allows for a single coherent
representation of the total graph obtained by multiple sam-
pling procedures. This process continues until the k-hop
neighborhood of the seed nodes is constructed for a given
k. It is worth noting that to be readily usable, the HGAM
construction also records some metadata generated at the
sampling time, which keeps track of the number of new
support nodes and new edges added at each level of the
hierarchy. This metadata is represented by the num_nodes
array in Figure 1.

2.2. Minibatch GNN Training with HGAM
Graph Neural Networks can be trained using a full-

batch or minibatch approach. Full batch indicates that we
are using the whole graph during the forward pass and
the gradients are calculated for all training nodes’ outputs.
By following this method, we make use of all nodes’ out-
puts and obtain stable gradients, but it is a challenge for
large graphs. Minibatch training allows us to constrain
the memory requirements of training and provide weight
updates more frequently. This is a well-known and widely
used technique in deep neural network training. There
is, however, a major difference when applying it to GNNs
because the training nodes (seed nodes) are part of the
graph and cannot be considered without their correspond-
ing neighborhood. The neighborhood size is dictated by
the model architecture. In most message-passing-based
GNNs, the neighborhood required to fully utilize the model
capacity includes the L-hop neighbors of the seed nodes,
where L is the number of GNN layers. The straightforward
implementation would use such a graph through all the
layers. However, this is far from optimal as each GNN
layer is using only direct neighbors to update each node,
and at the end of the forward pass, we need the correct
outputs only for the seed nodes. Therefore, a layer with
index l requires an (L− (l −1))-hop neighborhood of the
seed nodes. Moving from one GNN layer to the next in the
forward pass, we want to narrow down the neighborhood.
On the other hand, we should do the opposite during the
backward pass. This is where we use HGAM to allow dy-
namic resizing of the subgraph. We use the metadata about
the sampled nodes and edges to determine howmany rows
and columns are to be removed from the adjacency matrix
after each layer in the forward pass, and how many should
be added after each layer in the backward pass.

3. Selecting k-hop Subgraphs
A dense adjacency matrix is not an efficient storage

structure for sparse data because it requires O(N2) mem-

4



Figure 2: COO pruning.

ory, where N is the number of nodes in the graph. In
this section, we discuss the use of sparse data formats as
a backend for the Hierarchical Graph Adjacency Matrix
(HGAM). The two sparse data formats we have integrated
with HGAM are the compressed sparse row (CSR) and the
coordinate (COO) formats. We will also discuss how to use
these data formats to select a k-hop subgraph in constant
time, which is essential for making HGAM efficient.

3.1. COO
The coordinate list is a sparse matrix representation

where each non-zero element is stored as a triple
(src,dst,v), where src and dst are the row and column
indices of the element, and v is the value of the element.
Trimming a COO matrix is straightforward since both
edges and nodes are retrieved in a BFS order; this implies
that all the needed nodes for a layer are always at the
beginning of the vector generated by the BFS ordering.
COO pruning is shown in Figure 2. In the example, we
start with a graph that has 2 edges at the first HGAM
level and 4 edges at the second level. Restricting the
subgraph to a first-level neighborhood is done by cutting
off the right part of the edges list. The number of edges
that should be left after this operation is stored in the
num_edge vector. In this case, it is equal to 2. These
are the only edges that connect seed nodes with their
direct neighbors. The COO format is efficient for storing a
sparse matrix, but it is not efficient for performing matrix
operations.

3.2. CSR
The compressed sparse row format is a sparse matrix

representation where the non-zero values are stored using
row pointers, column indices, and value arrays. Pruning
this structure to meet the needs of the k-th layer (counting
from the last hierarchical layer) requires several steps. To
start with, we need all the (k-1)-hop neighborhood nodes’
edges. This includes k-hop node edges, but only those

Figure 3: CSR trimming.

coming into the (k-1)-hop nodes. We know that there will
be no edges coming into the nodes in the k-hop neighbor-
hood from the nodes belonging to (k+1)-hops or above, as
otherwise, they would, by definition, be k-hop neighbors.
We extract the k-hop subgraph by (a) pruning the rowptr
to the (k)-hop neighborhood, (b) pruning the cols vector
based on the pruned rowptr, and (c) restoring the empty
rows for the (k+1)-hop neighborhood by repeating the
last rowptr value for all of them, effectively creating what
would be rows of zeros in an equivalent dense adjacency
matrix. CSR trimming to a 1-hop neighborhood is shown
in Figure 3. The first step in the pruning process is to re-
strict the row pointer array to the number of nodes that
will become destination nodes (value at the first position of
the num_nodes vector). In the example, that would mean
one node. The next step is to prune the column indices
and value array to the length given by the last value in the
row pointer. That would result in column and value arrays
having two elements each. The last part is to extend the
row pointer by repeating the last value of this array. The
new length of this array is given in the num_nodes vector
at the second position.

3.3. Sparse Kernels
Message passing paradigms significantly influence

how most GNN models work [21]. The implementation
of the message passing algorithm is based mainly on two
factors: a graph data structure or format, and a set of appro-
priate kernels that operate on that format. Two of the most
popular combinations are the COO format managed by
Scatter kernels and the CSR format used by Sparse Matrix
Multiplication (SpMM) kernels. Many researchers focus
on optimizing the kernels’ implementation by dynamically
changing the sparse format [22], improving load balanc-
ing [23, 24], or enhancing memory accesses [25]. The opti-
mization of kernels helps to utilize hardware capabilities.
Our solution reduces the kernel execution time at a higher
level by decreasing the total number of computations that
need to be done.

5



4. GNN Optimizations on Top of
HGAM
The additional information about the number of nodes

and edges at each level of the hierarchy allows us to fur-
ther optimize GNNs. In this section, we describe the op-
timizations that we performed on top of the HGAM data
structure. These optimizations, referred to as HGAM++
in the results section, are not universally applicable to ev-
ery type of GNN layer. Nonetheless, they are suitable for
several widely utilized GNN structures. We applied both
optimization techniques discussed below to the Graph Con-
volutional Network (GCN), while the remaining models
were optimized using only linear layer pruning.

4.1. Self-connections
Many GNN layers [9,26,27] implement adjacency ma-

trix pre-processing at the beginning of the forward pass.
Adding self-connections is one of the steps that can be ap-
plied. It is desirable for a node to include knowledge about
the previous embedding in the new one. Self-connections
ensure that the previous embedding for a node is included
in the computations of message passing. Algebraically,
this operation is equivalent to setting the diagonal of an
adjacency matrix to one. For the furthest nodes in the sub-
graphs, it would be the only incoming edge for them. They
were added to the graph to be a source of information for
other nodes and will be removed in the HGAM process
of narrowing the graph down. Therefore, these connec-
tions are added gratuitously. Having the meta-information
about the number of nodes at each level allows us to add
only those self-connections that are useful. This saves the
time needed to add the extra edges and run the message
passing over them.

4.2. Linear Layer Pruning
Layer definitions that follow the Gather-Apply-

Scatter and Scatter-Apply-Gather [28] paradigms can
contain some type of feature matrix transformation in
the apply step. Similar to self-connections, we want to
transform only those nodes that will not be removed just
after the forward pass of the current layer is done. This is
possible only if we can switch the order of Apply-Scatter
and run the message passing before transforming the node
features. Some GNN layers are defined in a way that the
order does not influence the results (e.g., GCN [21]), but
some are not (e.g., GraphSage-max [9]). The general rule
is that this optimization can be used wherever the linear
layer occurs after the message passing.

Table 1: Datasets used in the experiments.

Dataset Nodes Edges Features Classes
products 2,449,029 61,859,140 100 47
Reddit 232,965 114,615,892 602 50
mag 1,939,743 21,111,007 128 349

5. Experiments
In this section, we present the empirical results ob-

tained from the HGAM implementation in PyTorch Geo-
metric [29]. We compare the performance of HGAM, with
and without the extra optimizations described in Section 4,
to the current PyG implementation. The CPU experiments
were performed on a third-generation Intel Xeon Scalable
processor (Intel® Xeon® Platinum 8360Y) with 36 cores
and 512GB of memory. The GPU data were collected using
the same host machine with an Nvidia A100 80GB GPU.
We selected the following datasets: ogbn-products, Reddit,
and ogbn-mag. The datasets are described in Table 1. We
believe these datasets are representative of a large range of
graph learning applications. All datasets were downloaded
from the OGB repository [8].

For model selection, we aimed to cover a wide range
of modern graph neural network models. We chose both
isotropic and anisotropic models for homogeneous graphs.
The models used in our experiments include GCN [26],
GraphSAGE [9], GAT [30], and PNA [31]. Additionally, a
heterogeneous HGAM was benchmarked on CPU using
RSage [32]. We utilized the original implementation of
these models from PyG with default parameters.

5.1. Results

5.1.1 Speedup Analysis
The CPU results for 3-layer deep GNNs with 10 neigh-

bors sampled at each level and CSR sparse data format are
shown in Table (2). As shown, native HGAM implementa-
tions (the HGAM column) are faster than the current PyG
implementations for all datasets and models. The maxi-
mum speedup for CSR varies between 1.49x and 3.94x for
native HGAM and between 1.9x and 7.72x for HGAM with
linear layer optimization (HGAM++).

The best speedup observed for GPU (Table 3) is for
PNA on the ogbn-products dataset. Conversely, HGAM
and HGAM++ result in a slowdown for the computation
of Sage. We will provide a more detailed explanation for
this behavior in the next section.

It should be highlighted that CPUs (Table 2) generally
perform better with the Compressed Sparse Row (CSR) for-
mat, whereas GPUs tend to have faster execution with the
Coordinate List (COO) format in the majority of instances.

6



Table 2: End-to-end CPU performance comparison for CSR - one
epoch training time averaged over 5 runs (in seconds).

CPU time (s)
Dataset Model PyG HGAM HGAM++
products GCN 260.3±3 142.5±0.7 61.6±0.4
products Sage 276.4±4.8 118±1.1 59.7±0.6
products GAT 1191±14 616.7±3.8 336.6±1
products PNA 5440±23 1379±2.8 1068±2
Reddit GCN 129.2±0.8 86.6±1.1 52.9±0.9
Reddit Sage 141.7±4 85.2±2.9 55.3±2.2
Reddit GAT 600±23 345.1±6.5 224±16
Reddit PNA 4799±13 2887±3 2520±12
mag RSage 4040±30 1377±9 523±1

Table 3: End-to-end GPU performance comparison for CSR - one
epoch training time averaged over 5 runs (in seconds).

GPU time (s)
Dataset Model PyG HGAM HGAM++
products GCN 58.2±0.4 56.4±0.7 53.6±0.4
products Sage 52.7±0.7 55±0.6 52.8±0.2
products GAT 60.9±1 57.7±0.7 57.6±0.5
products PNA 162±0.5 71.7±0.5 61±0.1
Reddit GCN 44.5±0.3 43.4±0.5 44.2±0.3
Reddit Sage 41.7±1 44.1±1 43±0.4
Reddit GAT 45.9±0.6 46±0.6 44.1±0.1
Reddit PNA 148.3±0.6 103.6±1 74.9±0.6

This observation underscores the need to implement and
optimize both formats.

5.1.2 Runtime Breakdown for Several Use-Cases
Beginningwith the GPU, the time distribution for data

loading, offloading, and the execution of forward and back-
ward passes is presented in Figure 4. For GCN, GraphSage,
and GAT, the data loading phase, which is executed on the
CPU, accounts for the bulk of the processing time. Our
enhancements do not impact the data loading stage, and as
a result, the time spent in this phase remains unchanged
across the baseline, HGAM, and HGAM++. The forward
and backward computations were performed on the GPU.
While we do observe some performance improvements in
the forward and backward passes, they constitute a minor
portion of the total runtime, so the overall speedup is not
substantial. PNA is different, as forward and backward
computations are the primary contributors to the total
processing time.

The breakdown of CPU runtime is presented in Figure
5. The data indicates that the implementation of HGAM,
with or without extra optimizations, positively affects the
performance of both forward and backward passes. The
time saved during the backward pass results from the linear
optimization techniques incorporated in HGAM++. These
techniques rearrange the order of message passing and
linear transformations. Consequently, in the case of GCN,
the message passing phase doesn’t require a backward

Figure 4: GNN training time breakdown of dataloader, forward, and
backward passes for ogbn-products using CSR data format on GPU.

Figure 5: GNN training time breakdown of dataloader, forward, and
backward passes for ogbn-products using CSR data format on CPU.

Figure 6: Speedup with HGAM on ogbn-products (CSR format) for
kl = 2 with varying numbers of layers.

operation for the first layer because it’s the foremost oper-
ation and doesn’t involve any learnable parameters, which
reduces the overall time required for the backward pass.

The (CSR, ogbn-products, PNA-base) configuration
achieves a backward pass time reduction of over 3.5 times
and a forward pass time reduction of over 2.7 times. Mean-
while, the (CSR, Reddit, GAT) configuration exhibits a
2.6-fold decrease in backward pass time and a 4.7-fold
improvement in forward pass time. The effects of these
optimizations contrast between CPUs and GPUs, with the
most computationally demanding models showing greater
improvements on GPUs, whereas CPUs experience varying
but significant gains in all cases.

Using HGAM, we decrease the number of nodes pro-

7



cessed in the next layer exponentially, since this is the
speed in which the subgraph grows. Only the first layer
needs to be computed with the whole subgraph which
makes all the others computationally less important. Fig-
ure 6 shows that the speedup increase with the number of
layers. This trend is expected because the runtime for both
the baseline and the optimized versions starts off compa-
rably at the first layer and then decreases exponentially
with each subsequent layer for HGAM and HGAM++ but
stays at the same level for the baseline.

5.1.3 The impact of additional optimizations
Applying HGAM shifts the GNN training bottleneck

to the first layer, which can be observed in Figure 7. These
four charts present the forward time for each layer in the
network separately. The additional optimization we intro-
duced with hgam++ works mostly for all layers but our
intent was to improve the performance of the first layer
with the extra knowledge that comes from the HGAM
structure. An counter-intuitive results can be observed for
GCN on Reddit. In this case hgam++ gives us significant
slowdown. This is expected, since Reddit comes with huge
input features of 602 dimensions. Calculating message
passing before linear transformation forces the model to
perform all the reductions in the input feature space. It
is more expensive than it would be if we first project the
feature to a lower dimensional space using linear transfor-
mation. Despite the extra cost, we achieve better end-to-
end performance because we greatly reduce the backward
propagation which is not covered by this visualization, but
can be observed in Table 2.

Figure 7: Forward pass split by layers in 3-layer deep graph neural
networks on ogbn-products (top) and Reddit (bottom) dataset.

6. Known Limitations
Our Hierarchical Graph Adjacency Matrix (HGAM)

was proposed to improve performance for all mini-batched
message-passing-based GNN workloads. We did not en-
counter any problems using it for GNN models built with
one homogeneous type of neural network layer (e.g., GCN
layers) and an appropriate, directed subgraph for the mini-
batch. However, more specialized architectures and sam-
pling strategies may not fully benefit from HGAM. For
these special circumstances, additional work may be re-
quired to make them compatible with HGAM. We split the
known limitations into two categories and describe them
in the following sections.

6.1. Incompatible Architectures
HGAM stores the number of nodes and edges at each

subgraph level as additional information regarding the
graph. There is a hidden assumption that this information
does not change after the creation of minibatches. This
assumption could be violated if we apply some topological
operations on the graph that change the total number of
edges [33]. For example, if we remove some paths from the
graph or add a new connection, the number of edges in the
subgraph will be different, and the meta-information of the
graph will be incorrect. Therefore, such operations need to
be done prior to the creation of the minibatch if possible,
or special treatment is needed to ensure that the support
nodes and edges will be correctly pruned. A common
operation that can raise problems is the addition of self-
connections to the graph to make every node aware of its
own embedding. Although this operation needs special
treatment, we found that it can be implemented much
more efficiently with HGAM. The details were described
in Section 4.

Another family of operations that can cause issues
are those that change the number of nodes in the graph.
Reducing the number of nodes in a graph is often used in
graph prediction tasks [34] but can also be used to reduce
the problem size [35]. We call these operations local pool-
ing operations, and their goal is to reduce the number of
nodes in the graph by merging groups of them into a single
node. After the pooling operation, the number of nodes
and edges in the graph is reduced. Therefore, an HGAM
restoration is needed to ensure that the meta-information
of the graph is correct. Alternatively, global nodes or global
means over all nodes are often used for graph prediction
or classification tasks. Adding an extra node to the graph
and connecting it to all other nodes is not compatible with
HGAM because the new node is a seed node and needs to
receive messages from all nodes in the subgraph at each
layer. Calculating the final embedding for graph classifica-

8



tion or regression as the mean of all nodes is also infeasible
for HGAM, since all nodes in that scenario are treated as
seed nodes. Thus, it is not possible to prune the adjacency
matrix at any stage of the computations.

6.2. Incompatible Sampling Strategies
The sampling strategy is a crucial part of the mini-

batch creation process. It is responsible for selecting the
seed nodes and their neighborhood nodes that will be in-
cluded in the minibatch. In all of our experiments, we used
k-hop neighborhoods for k-layer deep GNNs and restricted
our sampling strategy to directed subgraphs. However,
there are some other sampling strategies that could limit
the performance benefits from using HGAM.

More Layers than Neighborhood Levels
Adding more layers to the model is often motivated

by the desire to increase model capacity. The downside
of a greater number of GNN layers, which increases the
receptive field exponentially, is that more neighbors must
be added to the minibatch to ensure that the model can
fully utilize the new potential. The additional memory
and computational requirements can render the hardware
impractical. Therefore, some machine learning practition-
ers [36] choose to increase the model depth while setting
an upper limit for the number of neighbors sampled. In
that case, HGAM can still provide computational benefits
in performance, but such benefits will be curtailed as the
first layers will use the full neighborhood sampled, and
only a subset of the last layers will use increasingly smaller
parts of it.

Undirected Minibatch Graph
A different challenge can arise with an undirected

minibatch graph. The undirected minibatch graph is cre-
ated by a bidirectional connection when a new node is
sampled. This only makes sense in the settings described
above when the number of GNN layers is greater than the
number of subgraph levels. In that case, the undirected
minibatch graph can be used to train more appropriate
node embeddings without adding additional nodes to the
minibatch. The problem with an undirected minibatch
graph is that the BFS-based approach does not ensure that
the support nodes added at level l are at distance l from
the seed nodes. Therefore, using an undirected minibatch
graph would require an extra reordering of the nodes after
the creation of minibatches.

7. Discussion and Conclusions
Training large neural networks is a time-consuming

task that requires significant computational resources.
Graph neural networks (GNNs) are a special class of neural
networks that need specialized and novel techniques
to improve training efficiency for large graphs. Our
work demonstrates that the minibatch training of GNNs
can be improved by using a novel data structure called
the Hierarchical Graph Adjacency Matrix (HGAM). We
showed that HGAM can be used to reduce the training
time by up to 7.72x on 3-layer GNNs with no loss in
accuracy.

Performance improvements were achieved by remov-
ing all unnecessary nodes and edges from the graph at
every stage during training. We also proposed how the
additional structural information stored in HGAM can be
leveraged to further improve performance by adding self-
connections, message passing, and linear transformation
in GNN layers. The cumulative effect of applying all these
techniques is a significant reduction in the computational
resources required for training GNNs by exponentially
improving the computational efficiency of all additional
layers after the first. The exponential reduction of nodes
and edges makes the first layer responsible for most of the
forward and backward time. Boosting the performance of
the first layer is our primary goal for future work.

Another expensive operation in minibatch training
pertains to the sparse data format employed. Currently,
HGAM supports CSR and COO sparse data formats as the
underlying data structures. We found CSR to bemuchmore
efficient for SpMM computation on CPU, but it comes with
a high cost in transposition, which is needed for backward
computation. We are actively looking for a sparse data for-
mat that will be efficient for both SpMM and transposition.
Similarly, we hope others will be able to build on this work
to propose new formats for HGAM and HGAM-derived
data structures, which will bring further performance and
efficiency improvements.

The scope of the research presented in the paper did
not extend to assessing performance across multiple GPUs
or machines. The technique we discussed, HGAM, was
not designed to reduce the amount of data that needs to
be offloaded, since the first layer requires all the nodes to
be present. However, it is important to note that HGAM
can still enhance the efficiency of both the forward and
backward processes on each individual machine, just as it
does within a single machine setup. Additionally, it can
decrease the amount of data transferred between machines
when model parallelism is used.

Finally, HGAM has been developed to be as domain-
agnostic as possible. The same principles for computa-
tional efficiency can be applied to any problem that in-

9



volves processing graph datasets with concepts equivalent
to the seed nodes and support nodes of GNNs, as well
as the requirement to iterate between varying widths of
neighborhoods during processing. It is our intent to share
HGAM with the open-source community to not only ben-
efit graph learning practitioners but also have it adapted
to new, unexplored domains beyond GNNs.

References
[1] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,

and M. Sun, “Graph neural networks: A review of methods and
applications,” AI Open, vol. 1, pp. 57–81, 2020.

[2] J. Wang, S. Zhang, Y. Xiao, and R. Song, “A review on graph neural
network methods in financial applications,” 2022.

[3] Y. Wang, Z. Li, and A. B. Farimani, “Graph neural networks for
molecules,” in Challenges and Advances in Computational Chem-
istry and Physics, pp. 21–66, Springer International Publishing,
2023.

[4] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural net-
works in recommender systems: A survey,” ACM Comput. Surv.,
vol. 55, dec 2022.

[5] W. Liao, B. Bak-Jensen, J. R. Pillai, Y. Wang, and Y. Wang, “A
review of graph neural networks and their applications in power
systems,” 2021.

[6] A. Cattaneo, D. Justus, H. Mellor, D. Orr, J. Maloberti, Z. Liu,
T. Farnsworth, A. Fitzgibbon, B. Banaszewski, and C. Luschi, “Bess:
Balanced entity sampling and sharing for large-scale knowledge
graph completion,” 2022.

[7] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec,
“Ogb-lsc: A large-scale challenge for machine learning on graphs,”
2021.

[8] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta,
and J. Leskovec, “Open graph benchmark: Datasets for machine
learning on graphs,” 2021.

[9] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” 2018.

[10] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph
convolutional networks via importance sampling,” in International
Conference on Learning Representations, 2018.

[11] J. Gasteiger, C. Qian, and S. Günnemann, “Influence-based mini-
batching for graph neural networks,” 2022.

[12] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convo-
lutional networks with variance reduction,” 2018.

[13] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-
gcn,” in Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery Data Mining, ACM, jul 2019.

[14] F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. Bronstein, and
F. Monti, “Sign: Scalable inception graph neural networks,” 2020.

[15] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna,
“Graphsaint: Graph sampling based inductive learning method,”
2020.

[16] Z. Jia, S. Lin, R. Ying, J. You, J. Leskovec, and A. Aiken,
“Redundancy-free computation graphs for graph neural networks,”
2019.

[17] K. Huang, J. Zhai, Z. Zheng, Y. Yi, and X. Shen, “Understanding
and bridging the gaps in current gnn performance optimizations,”
in Proceedings of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’21, (New York, NY,
USA), p. 119–132, Association for Computing Machinery, 2021.

[18] Z. Gong, H. Ji, Y. Yao, C. W. Fletcher, C. J. Hughes, and J. Torrellas,
“Graphite: Optimizing graph neural networks on cpus through
cooperative software-hardware techniques,” in Proceedings of the
49th Annual International Symposium on Computer Architecture,
ISCA ’22, (New York, NY, USA), p. 916–931, Association for Com-
puting Machinery, 2022.

[19] M. J. Adiletta, J. J. Tithi, E.-I. Farsarakis, G. Gerogiannis, R. Adolf,
R. Benke, S. Kashyap, S. Hsia, K. Lakhotia, F. Petrini, G.-Y.Wei, and
D. Brooks, “Characterizing the scalability of graph convolutional
networks on intel® piuma,” in 2023 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 168–
177, 2023.

[20] B. Zhang, S. R. Kuppannagari, R. Kannan, and V. Prasanna, “Ef-
ficient neighbor-sampling-based gnn training on cpu-fpga het-
erogeneous platform,” in 2021 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–7, 2021.

[21] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” 2017.

[22] S. Qiu, Y. Liang, and Z. Wang, “Optimizing sparse matrix multi-
plications for graph neural networks,” 2021.

[23] M. Guo, Y. Wang, J. Huang, Q. Wang, Y. Zhang, M. Xu, and F. Lu,
“Rgs-spmm: Accelerate sparse matrix-matrix multiplication by
row group splitting strategy on the gpu,” in Network and Parallel
Computing (S. Liu and X. Wei, eds.), (Cham), pp. 61–66, Springer
Nature Switzerland, 2022.

[24] M. Shan, D. Gurevin, J. Nye, C. Ding, and O. Khan, “Mergepath-
spmm: Parallel sparse matrix-matrix algorithm for graph neural
network acceleration,” in 2023 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), (Los Alami-
tos, CA, USA), pp. 145–156, IEEE Computer Society, apr 2023.

[25] G. Huang, G. Dai, Y. Wang, and H. Yang, “Ge-spmm: General-
purpose sparse matrix-matrix multiplication on gpus for graph
neural networks,” 2020.

[26] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” 2017.

[27] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?,” in International Conference on Learning
Representations, 2019.

[28] Z. Zhang, J. Leng, L. Ma, Y. Miao, C. Li, and M. Guo, “Architectural
implication of graph neural networks,” IEEE Computer Architecture
Letters, pp. 1–1, 2020.

[29] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” 2019.

[30] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” 2018.

[31] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković, “Prin-
cipal neighbourhood aggregation for graph nets,” in Advances in
Neural Information Processing Systems (H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33, pp. 13260–13271,
Curran Associates, Inc., 2020.

[32] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional
networks,” 2017.

[33] E. Dai, W. Jin, H. Liu, and S. Wang, “Towards robust graph neural
networks for noisy graphs with sparse labels,” 2022.

[34] C. Liu, Y. Zhan, J. Wu, C. Li, B. Du, W. Hu, T. Liu, and D. Tao,
“Graph pooling for graph neural networks: Progress, challenges,
and opportunities,” 2023.

[35] D. Grattarola, D. Zambon, F. M. Bianchi, and C. Alippi, “Under-
standing pooling in graph neural networks,” IEEE Transactions on
Neural Networks and Learning Systems, pp. 1–11, 2022.

10



[36] G. Li, M. Müller, B. Ghanem, and V. Koltun, “Training graph neural
networks with 1000 layers,” 2022.

11


	Introduction
	Hierarchical Graph Adjacency Matrix Data Structure
	HGAM Construction
	Minibatch GNN Training with HGAM

	Selecting k-hop Subgraphs
	COO
	CSR
	Sparse Kernels

	GNN Optimizations on Top of HGAM
	Self-connections
	Linear Layer Pruning

	Experiments
	Results
	Speedup Analysis
	Runtime Breakdown for Several Use-Cases
	The impact of additional optimizations


	Known Limitations
	Incompatible Architectures
	Incompatible Sampling Strategies

	Discussion and Conclusions

