
A Survey on Privacy-Preserving Machine Learning Inference
Stanislaw Baranski
stanislaw.baranski@pg.edu.pl
Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology,
Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland

https://doi.org/10.34808/tq2024/28.2/b

Abstract
This paper examines methods to secure machine learning inference (ML inference) so that sensitive data remains

private and proprietary models are protected during remote processing. We review several approaches ranging from

cryptographic techniques like homomorphic encryption (HE) and secure multi-party computation (MPC) to hardware

solutions such as trusted execution environments (TEEs) and complementary methods including differential privacy

and split learning. Each method is analyzed in terms of security, efficiency, communication overhead, and scalability.

Use cases in healthcare, finance, and education show how these techniques balance privacy with practical performance.

We conclude by outlining open challenges and future directions for building robust, efficient privacy-preserving ML

inference systems.

Keywords:
Privacy-Preserving Machine Learning, Oblivious Neural Networks, Homomorphic Encryption, Secure Multi-Party

Computation, Trusted Execution Environments, Differential Privacy, Split Learning

TASK Quarterly 28 (2) 2024

https://orcid.org/0000-0001-7181-8860
https://doi.org/10.34808/tq2024/28.2/b

1. Introduction
Machine Learning as a Service (MLaaS) has become

increasingly popular, but it raises significant privacy

concerns when users must send sensitive data to a remote

server for inference [1], [2]. For example, a healthcare

provider might want to use a cloud-hosted model for

diagnosis, yet patient data is protected by regulations

like HIPAA and GDPR [3]. Likewise, companies may

deploy proprietary models that they do not wish to reveal

to users, creating a need to protect the model itself [4].

Privacy-Preserving Machine Learning (PPML) inference

addresses these issues by enabling inference on encrypted

or otherwise protected data, so that the server learns

nothing about the client’s input and, optionally, the

client learns nothing about the model beyond the output.

The solution to these challenges requires knowledge

to be drawn from four interconnected fields: machine

learning, computation theory, digital systems theory, and

cryptography.

Prior research has demonstrated that without PPML,

sensitive information can leak during inference. Adver-

saries might recover aspects of the input data or even

properties of the training set via inference attacks (mem-

bership inference, model inversion, etc.) [4], [5]. Initially,

fully homomorphic encryption (FHE) was proposed to

allow computations on encrypted data, and early works

like CryptoNets (2016) showed the feasibility of neural

network inference on encrypted inputs [2]. Since then, a

variety of approaches have emerged, each with trade-offs

in security, efficiency, and accuracy.

This survey is organized as follows: Section 2

defines the PPML inference problem and threat models.

Section 3 reviews major categories of PPML inference

techniques: homomorphic encryption (HE), secure

multi-party computation (MPC), trusted execution envi-

ronments (TEEs), and privacy-aware data perturbation

(e.g., differential privacy). Section 4 details practical use

cases and recommendations. Section 5 discusses practical

implementations and the state of the art, including perfor-

mance metrics and current tools. Section 6 considers the

big picture, alternative approaches like federated or split

inference, industry solutions, and key open challenges.

Finally, Section 7 concludes with observations on the

future of PPML inference.

2. Prerequisites
A typical machine learning pipeline (Fig. 1) consists

of two phases:

1. The training phase, in which the algorithm trains

the model w using a training dataset.

2. The inference phase, in which the prediction algo-

rithm f (·) makes a prediction f (x,w) based on the

input data x (called the parameter vector) and the

previously trained model w. This prediction can ei-

ther be a continuous value (regression) or a cate-

gory assignment (classification).

We focus solely on the inference phase, assuming the

model w is already trained.

In a typical PPML inference scenario, there are two

parties: a client (data owner) with private input x (e.g., an
image or personal record) and a server (model owner)with

a machine learning model f (·) that may be proprietary.

The goal is for the client to obtain f (x,w) (the inference
result) without revealing x to the server. Optionally, the

server may also wish to keep the model parameters (w) se-
cret from the client to protect intellectual property. This

is often referred to as two-party privacy: input privacy for

the client and model privacy for the server. In some set-

tings, only the client’s data privacy is required (the model

can be public), while in others both must be preserved.

Figure 1: Diagram illustrating phases and parties involved in a typi-

cal machine learning pipeline.

In order to better understand the problem, let’s define

the function f (·) a bit more concretely.

2.1. Neural Networks
A neural network is a pipeline of layers. Each layer

receives an input signal, processes it, and generates an

output signal, which then serves as the input for the next

layer. The first layer receives the input data x, and the out-
put signal of the last layer is the prediction result f (x,w).

A typical neural network layer performs a linear

transformation (matrix multiplication and addition) fol-

lowed by a nonlinear transformation (activation function,

and sometimes also pooling to reduce data resolution).

Predictions using neural networks can be repre-

sented as a pipeline of transformations:

x → f1 → a1 → ...→ fn → an → y

where:

▶ x is the input vector;

▶ y is the inference output;

▶ fi is the linear transformation of layer i;

2

▶ ai is the nonlinear transformation of layer i;
▶ n is the total number of layers in the neural network.

The goal of these transformations is to distort the in-

put data space so that it becomes linearly separable, mean-

ing that a line (if the input data is in two dimensions), a

plane (in three dimensions), or a hyperplane (in n+1 di-

mensions) can be created to divide the input set into two

subsets. Fig. 2 illustrates the transformations performed

by each layer of a sample neural network. Linear separa-

bility of the data (into green and red regions) is achieved

through a sequence of linear and nonlinear transforma-

tions. Linear transformations allow for rotation, tilting,

and stretching of the space, while nonlinear transforma-

tions enable spatial deformation.

Figure 2: Visualization of linear and nonlinear transformations to

achieve linear separability

2.2. Linear Transformations
MatrixMultiplication and Addition are the most com-

mon linear transformations used in neural networks:

y :=W · x+b (1)

where:

▶ x is the input vector;

▶ W is the weight matrix;

▶ b is the bias vector;

▶ y is the output vector.

Convolution is a linear transformation that computes

the dot product between a weight tensor (a filter, also

called a kernel) and an element of the input matrix along

with its neighboring elements. This process is repeated

as the filter moves across the input matrix. In practice,

convolutions are reformulated as matrix multiplication

and addition to improve efficiency [6], similar to equation

(1), with the difference that the input data and bias term

are matrices: Y :=W ·X +B.

2.3. Nonlinear Transformations
Neural networks utilize nonlinear transformations to

model complex relationships between input and output

spaces.

Activation Functions. There are three main categories

of activation functions:

▶ Piecewise Linear Activation Functions. These functions
can be represented as a set of n linear functions fi(x) =
aix+bi, where x is bounded by lower and upper limits

for a given interval. Examples include:

▶ Identity function: f (x) = x;
▶ Rectified Linear Unit (ReLU): f (x) = max(0,x);
▶ Leaky ReLU : f (x) = max(0,x)+amin(0,x);
▶ Maxout: f (x) = max(y1, ...,yn).

▶ Smooth (Regular) Activation Functions. These are

differentiable functions, defined a certain number

of times in their domain. The most popular smooth

activation functions include:

▶ Sigmoid (logistic): f (x) = 1
1+e−x ;

▶ Hyperbolic tangent (tanh): f (x) = e2x−1
e2x+1 ;

▶ Softplus: f (x) = log(ex +1).

Sigmoid and tanh functions are known as sigmoidal

functions, with the relationship:

tanh(x) = 2 · sigmoid(2x)−1 (2)

▶ Softmax. This function is commonly used as the final

layer in a neural network to determine a probability

distribution for classification. It is defined as

softmaxi(x) =
exi

∑k exk
(3)

Pooling is an operation that reduces the resolution of a

matrix. Also known as downsampling, it involves orga-

nizing input data into subgroups and aggregating each

subgroup while reducing the dimensionality of the input

data. The most common aggregation methods are:

▶ Mean pooling (averaging values);

▶ Max pooling (taking the maximum value).

2.4. Conclusions
The prediction phase of a neural network consists of

a sequence of linear and nonlinear transformations.

▶ Linear transformations reduce to matrix multipli-

cation and addition.

▶ Nonlinear transformations reduce to activation

functions and pooling operations.

Therefore, the entire prediction process can be

3

performed in a privacy-preserving manner using

privacy-preserving matrix multiplication, addition,

activation functions, and pooling operations.

2.5. Threat Model
The threat model typically considered is honest-but-

curious (semi-honest): both client and server follow the

protocol but may try to infer the other’s private informa-

tion from the messages they see [7]. Stronger threat mod-

els (malicious adversaries who deviate from protocol) re-

quire additional safeguards like zero-knowledge proofs or

verifiable computation, which can add overhead [8]. Most

current PPML inference research targets the semi-honest

model for efficiency [7]. We also consider potential col-

lusion in multi-party settings (e.g., if multiple servers are

involved for MPC). The adversaries of interest include an

outside attacker compromising the server or any party not

authorized to learn the data.

Privacy in inference has two aspects: (1) Protecting

the input and output privacy, so that the server learns

nothing about the client’s input (and ideally, the client

learns nothing beyond the intended output). Crypto-

graphic techniques excel at this aspect. (2) Protecting

training data privacy from inference outputs. Even if

the server never sees raw inputs, a curious client could

potentially infer information about the model’s training

data by querying the model repeatedly (model inversion

or membership attacks) [9]. Techniques like differential

privacy can mitigate this by ensuring the model or its

outputs do not reveal individual training examples.

3. Approaches to Privacy-Preserving
ML Inference
Various strategies have been developed for PPML

inference, each with different assumptions and perfor-

mance. We categorize them into: (A) Homomorphic

Encryption, (B) Secure Multi-Party Computation, (C)

Trusted Execution Environments, and (D) Privacy-

Preserving Data Perturbation. Often, hybrid approaches

combine these to balance their strengths [7].

3.1. Homomorphic Encryption (HE) Approaches
Homomorphic encryption allows computation on ci-

phertexts. In a fully homomorphic encryption scheme, an

arbitrary function (such as a neural network) can be eval-

uated on encrypted data, producing an encrypted result

that, when decrypted, matches the result of the plaintext

computation [2]. This powerful property directly enables

private inference: the client encrypts input x with their

public key pk and sends Enc(x) to the server; the server

evaluates f homomorphically to obtain Enc(f (x)) and re-
turns it; the client decrypts to get f (x). In this process,

the server sees only encrypted values, so x remains confi-

dential. If only the client holds sk (secret key), the server

cannot decrypt any intermediate or final value.

Advantages: HE-based inference provides strong

privacy of data (based on cryptographic hardness as-

sumptions). Only one round of communication is needed

(send encrypted input, receive encrypted output), which

is appealing for high-latency networks. The privacy

guarantee is information-theoretic for the data (given

properly chosen parameters and secure schemes) – the

server learns zero information about the plaintext. An-

other advantage is that HE does not require a trusted third

party; the security relies on the math of encryption (e.g.,

lattice problems for schemes like BFV/CKKS). Crucially,

modern HE schemes support packing multiple values in

one ciphertext (SIMD operations) to amortize costs [10].

This yields high throughput in batch processing. For

example, the CryptoNets work achieved 99% accuracy

on MNIST digits with HE and processed 57,000 encrypted

images per hour on a single PC [2], using packing to get

amortized latency of a few tens of milliseconds per image

(though the first inference had a much larger latency of

several minutes).

Limitations: The downside of HE is its compu-

tational overhead. Fully homomorphic encryption was

long deemed impractical due to enormous slowdown

factors. Even with improvements, evaluating deep neural

networks under HE is extremely slow compared to

plaintext. Early demonstrations like CryptoNets required

non-linear activations to be replaced with polynomial

approximations to fit within HE’s capabilities [2]. This

can degrade accuracy or increase the polynomial degree

(thus increasing runtime). Moreover, each ciphertext is

large (often KBs), and arithmetic on them is expensive

(multiplication operations can take tens of milliseconds).

HE schemes have a noise budget that limits the depth

of computation before requiring bootstrapping (a costly

refresh operation). Although “leveled HE” can be used

to avoid bootstrapping for shallow circuits by choosing

large parameters in advance, this again increases runtime

and ciphertext size.

In practice, pure HE inference was orders of magni-

tude slower. For instance, the CryptoNets network was

relatively small (a few layers for MNIST). On more com-

plex models, purely homomorphic inference might take

tens of seconds or more per input. The Gazelle system

noted that a purely HE approach (like CryptoNets) is over

1000× slower than their hybrid method for CIFAR-10

models [10]. Recent work on FHE (fully homomorphic

encryption with bootstrapping) has started to reduce

4

these costs. For example, Chillotti et al. (Concrete library)

demonstrated FHE inference on certain models, but at

significant cost (seconds per inference) [11].

Thus, while HE ensures strong privacy, it often needs

to be combined with optimizations or other techniques to

be practical. Efforts like Cheetah (2021) focus on acceler-

ating HE with algorithmic tuning and hardware accelera-

tion, achieving ∼198 ms latency for ResNet-50 inference

using a custom ASIC design [7]. These results suggest

that with massive parallelism, HE could approach real-

time for largemodels. However, on general-purpose hard-

ware, current HE inference is typically limited to smaller

models or low-throughput settings.

3.2. Secure Multi-Party Computation (MPC) Ap-
proaches
Secure multi-party computation allows joint compu-

tation on private inputs from two or more parties such

that each learns only the designated output and nothing

else. In the two-party case (client and server), MPC proto-

cols can implement the function f (x) as a series of crypto-
graphic operations (secret shares or garbled circuits) be-

tween the parties [4].

In contrast, homomorphic encryption (HE) enables

computation on encrypted data without interaction. The

client encrypts the input using a public key and sends

it to the server, which can then compute directly on the

ciphertext. Only the client, who holds the private key,

can decrypt the final result. This makes HE a public-key

one-party computation technique, since the server per-

forms the computation independently after receiving the

encrypted input. MPC, however, usually involves inter-

action: both client and server interactively engage in a

protocol exchanging messages.

Common MPC paradigms include Yao’s Garbled

Circuits (a two-party protocol for Boolean circuits) and

secret-sharing based arithmetic MPC (which can involve

two or more servers). For PPML inference, a widely

used approach is to secret-share both the input and the

model between two non-colluding servers and then use

additive secret sharing for linear operations and garbled

circuits for non-linear ones, as demonstrated in protocols

such as SplitNN or SecureML [9], [12]. In this setting,

the client’s data and the server’s model are split into

shares that are distributed between two servers. Each

server performs local computations on its share during

the linear operations (e.g., matrix multiplications and

additions), while the non-linear operations (such as

activation functions) are executed via garbled circuits.

The advantage of this approach lies in the efficiency

of secret sharing. In additive secret sharing, a secret is

split into multiple shares so that no single share reveals

any information about the secret. In a two-party setting

(with only a client and a server), each party would hold

one share. Although privacy can be maintained under

honest-but-curious assumptions using protocols like

Yao’s Garbled Circuits with Oblivious Transfer (OT), such

a setup typically requires the client to perform heavy

computations or engage in costly interactive protocols

for the non-linear operations. In contrast, when using

two non-colluding servers, the client is only required to

provide its input once—without being involved in the

computationally intensive steps of the protocol—while

the servers carry out the bulk of the processing.

Furthermore, in a three-party setting (client plus two

non-colluding servers), the inputs to the garbled circuits

are already secret-shared among the servers, so the stan-

dard need for Oblivious Transfer (OT)—which is essen-

tial in a two-party GC protocol to hide the evaluator’s

input—is largely avoided. In such protocols, the garbled

circuit evaluation is performed jointly by the servers us-

ing preprocessed randomness and correlated values, thus

avoiding the additional overhead associated with OT. In

contrast, if only a single server is available, the client must

act as one party and the server as the other in a two-party

protocol using Yao’s Garbled Circuits [13] and OT [14] to

ensure that neither party learns the other’s private input.

Although this two-party model can maintain privacy un-

der honest-but-curious assumptions, it is generally more

computationally and communicationally expensive com-

pared to the three-party secret-sharing approach.

Advantages: MPC-based solutions often have

significantly lower computational cost than FHE-only, at

the expense of more communication. They can be scaled

to larger neural networks more easily. For instance, the

Delphi system uses a preprocessing phase to handle most

heavy cryptography before the input is known, achieving

only a few seconds of online time for ResNet-32 inference

(with some accuracy trade-offs) [4]. MPC protocols (es-

pecially with preprocessing) can leverage fast symmetric

cryptography (AES, etc.) which is much faster than

public-key operations. Also, MPC naturally supports

protecting both input and model (since both can be

secret-shared or encoded as inputs to the protocol). Many

frameworks (like Facebook’s CrypTen [15], Microsoft’s

CrypTFlow [16]) exist to facilitate implementing neural

nets with MPC.

Limitations: The main cost of MPC is communica-

tion. Many protocols require multiple rounds of interac-

tion. Every multiplication gate in a circuit might involve

sending some bits or shares. In high-latency networks,

this slows down inference. The data transferred can be

large (Delphi cited 560MB for ResNet-32 with Gazelle-like

method in one example). Also, if the client has low upload

bandwidth (e.g., mobile device), sending large garbled cir-

cuits or many OT messages is problematic. Another lim-

5

itation is that MPC typically assumes at least two non-

colluding parties when using secret sharing for efficiency.

If we only have the client and one server, the client ends up

participating in the computation, which means the client

might see intermediate results unless carefully masked.

Protocols like Gazelle indeed require the client to do some

work (decrypting and re-encrypting between layers). This

shifts some compute burden to the client and introduces

more rounds (each layer in Gazelle involves a round trip).

Newer techniques try to minimize rounds (e.g., perform-

ing multiple ReLUs in one GC batch).

Several hybrid protocols combine HE and MPC to

capitalize on their strengths. A prime example is Gazelle
(2018), which achieves low latency by using homomor-

phic encryption for linear layers (fast dot-product on en-

crypted data) and garbled circuits for ReLU (which is a

cheap boolean operation) [10]. Gazelle’s approach yields

20× faster online runtime than a prior pure-MPC method

(MiniONN [17]) and 1000× faster than pure HE (Cryp-

toNets) [2]. Many subsequent works (Chameleon [18],

Delphi [4], etc.) follow this template: use additive HE or
secret sharing for linear computations, use garbled
or boolean circuits for non-linear parts. This partition
exploits the fact that linear layers dominate compute but

are friendly to HE/SS, while nonlinear activations are few

but not efficiently done in HE [7]. The client can assist

by handling the garbled circuit for ReLUs, which slightly

weakens model privacy (the client gets some info on in-

termediate values, mitigated by random masks as Gazelle

does [10]).

Overall, MPC approaches are currently the most

practical for complex deep learning models. For example,

a 2022 work used 3-party MPC to run LeNet on MNIST in

under 0.1 seconds online time [1]. Two-party approaches

for large models still face challenges, but continuous

improvements are being made to reduce communication

via quantization, model structure changes, or combining

with FHE for one-shot computation of whole layers.

3.3. Trusted Execution Environments (Hardware
Enclaves)
Trusted Execution Environments (TEEs) like Intel

SGX or ARM TrustZone provide hardware-protected

regions of memory where computations can be per-

formed in isolation. A TEE allows the server to load

the model and run inference on plaintext data inside an

enclave, with assurances that the data and model are

not accessible to the rest of the system. With remote

attestation, a client can verify that the correct enclave

code (e.g., the inference algorithm) is running on genuine

hardware before sending their encrypted input, which

the enclave will decrypt and compute on. Using TEEs

for PPML inference can be very efficient, since inside

the enclave the computation is on plaintext and as fast

as normal inference[1]. For example, Ohrimenko et

al. (2016) demonstrated decision tree and linear model

inference in SGX with small overhead. The Nervana’s

HE-Transformer (nGraph-HE) library even combined

SGX with partial HE for neural nets [11]. More recently,

Slalom (2019) proposed splitting heavy linear layers to

run on an untrusted GPU while sensitive non-linear parts

run in SGX, achieving significant speed-ups.

Advantages: The primary advantage is near-native

performance and low latency, since no cryptographic op-

erations are performed on the critical path of inference

(data is decrypted inside the enclave and processed nor-

mally). It requires minimal changes to model code. Unlike

pure cryptographic approaches, TEEs do not inflate com-

putation or memory by large factors. They can also pro-

tect the model weights and the input at rest and during

computation (everything inside the enclave is encrypted

in memory). TEEs reduce the need for complex proto-

cols—conceptually, it’s like having a “secure black box”

on the server.

Limitations: The trust model for TEEs is different:

one must trust the hardware manufacturer (Intel/AMD

etc.) that the enclave is secure and has no backdoors.

In practice, TEEs have suffered from side-channel attacks

(e.g., cache timing, speculative execution vulnerabilities

like Spectre/Meltdown) that can leak sensitive data from

enclaves. Additionally, SGX enclaves have limited mem-

ory (securememory is often limited to a few hundredMB),

which can be problematic for very large models or batch

processing. The overhead of switching into the enclave

and making syscalls can also impact performance for cer-

tain workloads. Another issue is that a determined client

cannot verify the entire behavior of the server’s enclave

beyond what attestation covers; if the enclave program is

supposed to not leak data, one must ensure it is written

correctly (no inadvertent side-channels).

From a deployment perspective, TEEs require

specific hardware support. Not all cloud providers or

edge devices have SGX or similar enabled. There are

also management challenges (enclave provisioning,

attestation setup). Furthermore, if model privacy from

the client is desired, the client should not receive the

raw model output in plaintext either, otherwise they

could use the output to infer model parameters in some

cases. Typically, in TEE solutions the client trusts the

enclave enough that model privacy is not a concern, or

the enclave can post-process outputs (e.g., apply DP noise

or only release final predictions).

A notable hybrid approach is CHEX-MIX (2021) by
Natarajan et al., which combines HE with TEEs [19]. In

their design, the model is loaded into an enclave on the

cloud, but the enclave itself operates on homomorphically

6

encrypted inputs from the client. The TEE ensures the

model’s integrity and helps with computations, but be-

cause the data stays encrypted, the client does not even

need to trust the enclave with plaintext. This removes

the need for client-side attestation of enclave code cor-

rectness. Their evaluation showed that this hybrid can re-

duce communication by 3× compared to pure multi-key

HE offloading, while still leveraging hardware speed.

In summary, TEEs can be extremely useful for PPML

inference, especially when certain trust assumptions are

acceptable. For instance, enterprise use-cases where the

hardware is owned by the data owner might prefer TEEs

(no need for heavy cryptography). On the flip side, for

cloud services where users do not fully trust the provider,

a purely cryptographic solution might be preferred de-

spite its cost.

3.4. Differential Privacy and Output Perturbation
Differential Privacy (DP) is a framework that pro-

vides guarantees against privacy leakage by adding ran-

domness to computations. In the context of inference, DP

techniques do not hide the input during computation, but

rather ensure the output (or themodel) does not reveal too

much about any single training example. Classic DP train-

ing (like training with noise or the PATE framework [20])

aims to produce models that are "safe" to query [9]. How-

ever, DP can be applied at inference time in a couple of

ways as a complementary approach:

▶ Noising the output: The server can add calibrated

noise to the prediction or confidence scores before re-

turning them to the client, so that the client cannot

precisely infer certain details about themodel or train-

ing data. This is rarely desirable for classification (it

could cause wrong predictions), but in some proba-

bilistic query settings it might be acceptable.

▶ Limiting query access: Using DP concepts, one can

set a budget on how many queries a client can make,

or add noise if too many queries are made, to protect

against model inversion attacks [20].

▶ Local DP for inputs: In scenarios where the client

does not fully trust the server and does not have cryp-

tographic means, they could locally perturb their in-

put (e.g., add noise) before sending it to the server

model. This is essentially anonymization or random-

ization of input. For example, a user might add a small

amount of noise to a feature vector so the exact data is

obscured. The challenge is to maintain accuracy – lo-

cal DP often incurs a substantial utility loss, especially

for high-dimensional data. Recent work on text data

has explored local DP by embedding text and adding

noise to the embedding [21].

Advantages: DP techniques are generally

lightweight and have mathematically rigorous guar-

antees. They do not require special hardware or complex

cryptographic protocols. When training a model with

DP (e.g., DP-SGD [22]), one can directly deploy it and

users can query it normally, with the assurance that

their queries cannot leak specific training data beyond

ε-differential privacy. This addresses the second aspect

of privacy (training data privacy).

Limitations: Differential privacy alone does not

hide the actual input during inference from the server. So

if a user simply queries a model on the cloud normally,

DP doesn’t stop the server from seeing that raw input.

Thus, DP by itself is insufficient for input privacy (which

is our main concern in PPML inference). It needs to be

combined with cryptographic or trust-based methods to

hide the input. Another limitation is that adding noise

to outputs can degrade the utility of each individual

inference. For classification tasks, a noisy output might

mean the client gets an incorrect prediction with some

probability, which is usually unacceptable in critical

applications. Therefore, output perturbation is more

applicable when returning aggregate statistics or when

many identical queries are made such that averaging can

recover the true answer.

In practice, DP is often used to complement crypto-

graphic PPML: for example, one might train the model

with DP so that even if the client or an adversary obtains

many outputs (via the cryptographically secure protocol

or via repeated queries to an enclave), they cannot exploit

those outputs to infer training set details [9]. A holistic

PPML system thusmight use FHE/MPC/TEE for input pri-

vacy and DP for training data privacy. We include DP in

this survey to emphasize that privacy is not only about

encryption but also about what the model might implic-

itly reveal. Some open challenges involve unifying these:

e.g., can we have an encrypted inference that is also differ-

entially private with respect to the training data? Recent

research suggests it’s possible by injecting noise either in

the model (during training) or in a post-processing step in

the secure computation.

3.5. Federated and Split Inference Approaches
Federated learning is a technique for training, but the

concept extends to inference: instead of sending the data

to the model, send the model (or parts of it) to the data. In

a naive approach, the server could send the entire model

to the client, and the client runs inference locally. This

is often termed on-device inference. It protects data

privacy trivially (data never leaves), but completely gives

away the model. In some cases (like open source models

or where model IP is not a concern) this is acceptable. In

others, this is undesirable. Federated inference per se is

7

not commonly referenced, but on-device inference is ef-

fectively that. Many companies prioritize on-device AI to

avoid sending user data to the cloud [23].

A compromise is split inference (also known as

split learning). Here, the model is divided into two

parts: the first few layers run on the client, and the

remaining layers run on the server. The client sends

the intermediate activation (sometimes called the cut

layer representation) to the server, which continues the

forward pass and returns the final output. This way,

raw data is not sent to the server, only an intermediate

feature vector. This vector hopefully is less revealing than

the raw input, although research shows it can still leak

information if the model is not carefully designed [21].

Some works inject noise into the intermediate activations

to provide privacy (applying local DP at the cut layer).

The recent SplitNN frameworks and the Split-and-Denoise
(SnD) method [21], [24] follow this pattern. The client

does a small part of the computation (affordable even on

mobile), then noised activations are sent to server. The

server may apply a denoising model or error-correction

code to mitigate the impact of the added noise and then

complete the inference. This approach can significantly

reduce the information content of what the server sees

(since noise is added and only partial features are shared).

Advantages: Split inference reduces communica-

tion size relative to sending raw data (in cases where

feature representations are lower-dimensional than

input, e.g., images). It also balances computational load.

More importantly, from a privacy angle, it can hide some

sensitive raw patterns (like exact pixel values) and with

added noise it can provide a formal privacy guarantee

in the local differential privacy sense [21]. Unlike full

cryptographic protocols, the overhead here is modest

(some noise addition and possibly a small local model

on the client side). It doesn’t require special hardware

beyond the ability to run a truncated model on the client

side.

Limitations: The intermediate activations can still

leak a lot. The server could potentially train a model in-

version attack to reconstruct the input from the activa-

tion. Studies have shown that without noise, it’s often

possible to partially recover original images from layer ac-

tivations of a vision model. Adding noise helps but then

accuracy drops, requiring careful balance. Another limi-

tation is that the client must run part of the model, which

might be an issue for very lightweight client devices if the

model part is not extremely small. Also, split inference

is not a universal privacy solution: it addresses input pri-

vacy to an extent, but the model is still partially revealed

(the client knows the first part of the model’s architecture

and weights). Some proposals mitigate model leakage by

only sharing the activations (not the weights) – the server

never sends the first-layer weights to the client, it only

receives activations. This keeps the model architecture

known but weights hidden.

In scenarios like LLMs (large language models),

model sizes are huge, so we cannot ship them to clients.

But researchers have explored sending a small adapter

or doing prompt encryption. One example is to use

BERT with an encoding such that the server sees only an

encoded prompt which it cannot decode, then returns an

encoded answer [25].

In summary, alternative approaches like federated

on-device inference and split learning provide lighter-

weight privacy but with weaker guarantees compared

to cryptography. They might be suitable when some

leakage is tolerable or when performance is paramount.

They can also be combined with cryptographic methods:

e.g., one could secret-share or encrypt the intermediate

activations instead of sending them raw, combining split

learning with MPC.

To summarize the various privacy-preserving infer-

ence approaches discussed in this paper, Table 1 presents a

comparative analysis based on key criteria such as privacy

guarantees, efficiency, communication overhead, scalabil-

ity, and security assumptions.

4. Use Cases and Recommenda-
tions
We illustrate the practical relevance of PPML infer-

ence through specific cases in education policy, medical

diagnostics, and finance, along with guidance on choos-

ing suitable techniques.

Education Policy Analysis: Estonia faced high

dropout rates (43%) among IT students in 2012, prompting

an investigation into the impact of employment on grad-

uation [26]. The Estonian Association of Information and

Communication Technology wanted to mine education

and tax records to see if there was a correlation. However,

privacy legislation prevented direct data sharing between

the Ministry of Education and the Tax Board. Traditional

anonymization methods like k-anonymity risked signifi-

cant analytical quality loss due to unique student profiles.

Secure Multi-Party Computation (MPC), implemented via

Cybernetica’s Sharemind framework [27], provided a so-

lution. The data analysis was performed as a three-party

computation involving servers representing the Estonian

Information System’s Authority, the Ministry of Finance,

and Cybernetica. This enabled joint analysis without

exposing raw data. The study, reported in [28], found no

correlation between working during studies and failure

to graduate on time but revealed that higher education

correlated with increased income. MPC effectively

handled distributed data ownership and maintained

8

Table 1: Comparison of Privacy-Preserving ML Inference Approaches

Approach Privacy

Guarantee

Efficiency Communication

Cost

Scalability Security

Assumptions

Limitations

Homomorphic

Encryption

(HE)

Strong (Math-

ematical)

Low (High

Computation

Cost)

Low (Minimal

Interaction)

Limited

(Slow for

Deep

Models)

No Trusted

Party

High Latency,

Large

Ciphertext

Size

Secure

Multi-Party

Computation

(MPC)

Strong (Math-

ematical)

Medium

(Depends on

Protocol)

High (Multiple

Rounds)

Moderate Honest

Majority

Required

High Com-

munication

Overhead

Trusted

Execution

Environ-

ments (TEEs)

Hardware-

Based

High

(Near-Native

Speed)

Low (Minimal

Communica-

tion)

High

(Supports

Large

Models)

Trusted

Hardware

Vendor

Side-

Channels,

Trust Vendor

Differential

Privacy (DP)

Statistical

(Training

Data Only)

High Low (Minimal

Overhead)

High Trusted

Aggregator

Needed

Adds Noise,

Utility Loss

Federated/Split

Learning

Partial

(Limited Input

Privacy)

High

(On-Device

Computation)

Medium

(Intermediate

Activations)

High Secure

Aggregator

Needed

Intermediate

Activations

May Leak

confidentiality for this statistical analysis task, which

shares principles with ML model application.

Medical Diagnostics: Hospitals and healthcare

providers increasingly leverage cloud-based AI for med-

ical image diagnosis (e.g., analyzing X-rays or MRIs) or

predicting patient outcomes. Such data is highly sensitive

and protected by regulations like HIPAA in the US and

the GDPR in Europe [3]. For robust privacy of patient

data sent to a third-party model provider, Homomorphic

Encryption or MPC are strong candidates. HE can be

beneficial when minimizing communication rounds is

critical, while MPC (especially hybrid protocols) might

offer better performance for complex models. If a hos-

pital trusts its internal hardware infrastructure and the

hardware vendor, TEEs can provide high performance

with strong protection within the enclave. For real-time,

device-based prescreening applications (e.g., on a portable

scanner), Split Inference can be useful. This reduces data

exposure by processing initial layers locally on the device

and sending only intermediate, potentially less sensitive,

feature representations to a server for final analysis.

Adding Local Differential Privacy to these intermediate

activations can further enhance privacy, though with a

potential trade-off in diagnostic accuracy that must be

carefully managed.

Finance: Financial institutions use ML for credit

risk assessment, fraud detection, and algorithmic trading.

These applications involve sensitive customer financial

data and often proprietary models developed by the

institutions. For cloud-based credit risk assessment using

third-party models, strong privacy for both client data

and the model IP can be achieved using HE or MPC.

MPC is particularly suitable for scenarios requiring

collaboration between multiple financial institutions

(e.g., for fraud detection across banks) without direct

data sharing. In applications like high-frequency trading

or real-time fraud detection where minimal latency is

paramount, TEEs can offer the necessary performance.

However, the security risks associated with TEEs (e.g.,

side-channels) must be critically assessed and mitigated.

Integrating Differential Privacy, for instance, by adding

noise to query outputs or limiting query rates, can add

a layer of protection against inference attacks aiming to

reconstruct sensitive training data or model parameters

from repeated interactions, thereby enhancing overall

system security.

In conclusion, selecting appropriate PPML inference

techniques depends critically on the specific application’s

privacy requirements (data sensitivity, model IP), per-

formance needs (latency, throughput), communication

constraints, and the trust model (trust in third parties,

hardware vendors, or colluding entities). Highly regu-

lated sectors like healthcare and finance typically benefit

most from strong cryptographic guarantees offered by

HE and MPC, or the hardware-enforced isolation of TEEs.

Lighter-weight approaches like split inference and DP

can effectively complement these methods or serve as

primary solutions in scenarios with less stringent privacy

requirements or where performance is the overriding

concern.

9

5. Implementations and Perfor-
mance
Each approach above has seen continuous improve-

ments, and several frameworks exist to implement PPML

inference in practice. We highlight some notable systems

and results.

5.1. Cryptographic Frameworks and Libraries
There are mature libraries for homomorphic en-

cryption, such as Microsoft SEAL (used in CryptoNets

and many follow-ups) [29], OpenFHE [30], HElib [31],

and TFHE [32]. SEAL, for instance, implements BFV and

CKKS schemes and has been used to evaluate CNNs on

encrypted data (like SEALion for ImageNet classifications

with approximations). These libraries provide basic oper-

ations; on top of them, researchers have built toolkits like

nGraph-HE (Intel) [33] which can take a neural network

description and execute parts homomorphically. Zama’s

Concrete [34] library (with the CGGI FHE scheme) is

another modern tool that aims to ease implementing

private inference with FHE.

For MPC, frameworks include:

▶ ABY / ABY3 [35]: A C++ framework that supports

mixed protocols (Arithmetic, Boolean, Yao sharing)

for 2-party and 3-party computation. Many PPML

research prototypes use ABY to implement neural net

layers with a mix of sharings.

▶ CrypTen: A research-oriented library by Facebook

for secure ML, built on PyTorch, which currently

supports primarily MPC with additive sharing [15].

CrypTen allows developers to write PyTorch-like

code and execute it under the hood with MPC.

▶ TF Encrypted [36]: A library that integrates secure

computation into TensorFlow. It was one of the earlier

industry-led libraries to make PPML accessible, sup-

porting both MPC and hybrid approaches.

▶ EMP-toolkit [37] and Obliv-C [38]: Low-level

libraries to implement Yao’s GC and OT efficiently,

which have been used for custom protocols in papers

like MiniONN and XONN.

▶ SecureDFL [39]: A recent line of research on using

secret sharing for federated learning can also be

adapted for inference (though these typically focus

on training).

These frameworks have demonstrated various

state-of-the-art results. For example, using CrypTen—a

secure multi-party computation library developed by

Facebook Research—a simple CNN on CIFAR-10 has been

shown to run with a latency of a few seconds in a 2-party

semi-honest setting (with some accuracy loss due to

fixed-point quantization) [15]. In addition, frameworks

such as Delphi have demonstrated that even larger

models (e.g., comparable to VGG-16) can be executed in a

3-party setting with inference times under one second on

powerful hardware [4].

The Delphi system [4] combined ideas from Gazelle

and DeepSecure and introduced a neural architecture

search to simplify the network (reduce nonlinear opera-

tions) for faster private inference. It achieved 22× lower

online latency than prior art for certain ImageNet-scale

networks by moving most cryptographic cost to offline

preprocessing. This indicates a trend: tailoring the model

(through quantization, layer replacement, etc.) can signif-

icantly improve performance. Techniques like replacing

ReLU with low-degree polynomial (SecureML [12] did

quadratic) or using special activations that are MPC-

friendly (e.g., truncation instead of ReLU [11], [12]) have

been explored.

5.2. Performance
Performance in Privacy-Preserving Machine Learn-

ing is typically evaluated based on latency (time per infer-

ence), throughput, and communication volume between

the parties. The scale and architecture of the ML model

significantly impact these metrics.

For example, for classic computer vision models:

▶ A pure Homomorphic Encryption (HE) approach

would have negligible communication (just en-

crypted input and output) but incurs substantial

latency, often orders of magnitude higher than plain-

text execution, due to the computational complexity

of operations on ciphertexts [2], [9].

▶ Hybrid or Secure Multi-Party Computation (MPC)

frameworks offer better performance. Gazelle [10]

demonstrated secure inference for a small CNN

(CIFAR10) in under 0.5 seconds with a few MB of

communication. However, scaling these methods to

larger models like ResNet-50 poses significant chal-

lenges. Delphi [4] reported a baseline for ResNet-32

secure inference taking approximately 82 seconds and

560MB of communication without their optimiza-

tions, highlighting the performance cost of larger

models.

▶ The optimized Delphi reduced ResNet-32 inference

to a few seconds with tens of MB of communication,

largely by moving computationally expensive steps

to an offline preprocessing phase [4].

Scaling these PPML techniques to Large Language

Models (LLMs) with billions of parameters introduces

even greater performance hurdles. LLM inference

involves massive matrix multiplications and complex

10

non-linear functions across many layers. Recent research

specifically addresses secure inference for these large

transformer-based models.

▶ The BumbleBee framework [40] proposes an op-

timized two-party secure inference approach for

large transformers. It focuses on significantly reduc-

ing communication costs for matrix multiplication

(claiming 80-90% reduction over prior HE-based OLT

methods based on microbenchmarks) and optimizing

non-linear activation functions. For a BERT-base

model (128 input tokens), BumbleBee achieved an

end-to-end inference time of around 2.55 minutes

with 6.4GB of communication in a LAN setting,

showing notable improvements in both metrics com-

pared to earlier 2PC frameworks like Iron and BOLT

for BERT models [40]. For LLaMA-7B, BumbleBee

reported an inference time of approximately 13.87

minutes for 8 tokens with 5.64GB communication

[40].

▶ Another recent work [41] focuses on secure inference

for fine-tuned LLMs leveraging the architecture of

Parameter-Efficient Fine-Tuning (PEFT) techniques

like LoRA. Their approach splits the model into a

public base model (processed client-side in plaintext)

and private LoRA matrices (processed server-side

using Fully Homomorphic Encryption). This division

significantly reduces the computation performed in

the HE domain. For a ChatGLM2-6B model fine-tuned

with LoRA, they report an inference efficiency of

1.61 seconds per token for sequences longer than

1000 tokens. This result demonstrates a significant

performance leap compared to some prior LLM secure

inference methods cited in their paper [41].

▶ Microbenchmarks within frameworks like Bumble-

Bee and findings from other recent works [1], [11]

consistently highlight that matrix multiplication and

the evaluation of non-linear activation functions (like

GeLU and Softmax) remain the most computationally

expensive operations in secure transformer inference,

underscoring the importance of optimizing these core

components.

Despite progress, challenges remain. Results from an

AWS engineering blog [42] demonstrate that even using

CKKS-based FHE for a simpler model like logistic regres-

sion on the IRIS dataset incurs significant computational

overhead (processing 140 samples took 60 seconds end-

to-end). This linear scaling with input size and model

complexity highlights why pure FHE can still be imprac-

tical for very large and complex models in interactive set-

tings, driving the need for hybrid methods or optimized

MPC.

Nevertheless, research continues to push boundaries.

Recent work demonstrates that GPU acceleration can

reduce FHE inference latency by an order of magnitude

for certain models [43]. On the MPC side, efforts like

PriViT [44] aim to adapt techniques for complex models

such as Vision Transformers by minimizing non-linear

operations. The advancements demonstrated in Bum-

bleBee and the FHE-LoRA approach for LLMs show

promising paths towards more practical and efficient

privacy-preserving inference for even the largest and

most complex AI models.

5.3. Open Challenges and Ongoing Work
Despitemuch progress, several challenges remain for

PPML inference:

Scalability to Large Models: While small and

medium models have been demonstrated, state-of-the-art

large models (e.g., transformer-based language models

with billions of parameters) are currently infeasible to

run with full cryptographic privacy. The communication

and compute would be enormous. One direction to

handle this is model compression or distillation to get

smaller models that approximate the large ones, then

run those privately [45]. Another is using privacy-

friendly models (Delphi’s approach for CNNs, PriViT for

transformers [44]).

Reducing Interaction Rounds: Protocols with

many rounds (like one round per layer) suffer in high

latency settings. Techniques to pack more computation

into a single round (at the cost of more client compute

or using somewhat homomorphic encryption in inter-

mediate steps) are being explored. For example, one

could evaluate multiple layers in one go by having the

client provide some auxiliary info or by using leveled HE

across a couple of layers before needing to communicate.

Achieving near one-round (two-message) protocols for

entire deep networks remains an open problem. Some

fully HE approaches are one-round but then the challenge

is performance.

Robustness and Side-Channels: If using TEEs,

one must consider side-channel attacks. Recent research

attempts to combine masking or oblivious algorithms

inside enclaves to reduce leakage, but at performance

cost. For cryptographic protocols, side-channels can also

appear if implementations aren’t careful (e.g., timing

differences in operations could leak secret information

if one party is malicious). Achieving malicious security

(where parties can deviate arbitrarily) typically dou-

bles the overhead or worse (because you need to add

zero-knowledge proofs or MACs on every operation).

Nearly all current systems target semi-honest adversaries

for efficiency [7]. Bridging that gap is important for

real-world deployment.

Privacy-Utility Trade-offs: There is a need for

11

systematic ways to trade a little privacy for significant

gains in performance when appropriate. For instance,

allowing the client to learn some minimal additional

information that isn’t too sensitive might simplify a

protocol. Conversely, adding a little noise might dras-

tically speed things up by allowing use of quantized

approximations. Understanding which minor relaxations

of the threat model could yield major efficiency gains

is an area of active exploration. An example is the “ra-

tional adversary” model used in CHEX-MIX [19], which

assumes the model provider is rational (cares about

output integrity) so they remove the need for client-side

attestation by using HE, thereby simplifying trust issues.

Integration and Usability: From a machine learn-

ing engineer perspective, PPML inference is still not plug-

and-play. Each newmodel might require custom tuning to

run efficiently. Developing high-level compilers that can

take an arbitrary TensorFlow/PyTorch model and compile

it into an efficient secure protocol (choosing automatically

in which parts to use HE vs MPC vs etc.) is a challeng-

ing software engineering problem. Projects like CrypT-
Flow [16] and EzPC [46] are early steps in this direction,

but more work is needed for wide adoption.

Multi-client and Batch Inference: In many real

cases, a server will serve many clients. Fully HE solu-

tions allow easy batching of different inputs (they are in-

dependent). MPC solutions can sometimes amortize cost

if the server can batch processmultiple queries together or

reuse some precomputation. However, if multiple clients

want to jointly get some function of all their inputs (not

the usual scenario for inference, more for aggregation),

then multi-party protocols are needed. In inference-as-a-

service, usually each query is separate. One question is:

can a server amortize work across queries to hide cost?

Some techniques like using the same garbled circuit for

multiple clients (if model fixed) exist, but then security

between clients must be ensured (a malicious client might

use that to invert another’s output, etc.).

Finally, an open challenge is standardization of
evaluation. Different works often use different models,

datasets, hardware; some report online time excluding

preprocessing, others include it. There is a lack of

consensus on benchmarks (beyond maybe MNIST and

CIFAR). The healthcare survey [3] noted that most PPML

inference studies use their own validation setups and

not a common benchmark, making it hard to compare.

A community effort to establish reference tasks (e.g., a

private version of ImageNet inference challenge) would

be valuable to measure progress.

6. Big Picture and Future Direc-
tions
Privacy-preserving ML inference is an interdisci-

plinary endeavor at the intersection of machine learning

and cryptography. Figure 3 conceptually places the ap-

proaches on a spectrum of privacy vs. efficiency. On one

end, we have pure on-device inference (max efficiency,

minimum server trust needed); on the other end, we have

FHE (max privacy, huge cost). In between lie hybrid MPC

and enclave solutions offering different balances. The big

picture is that no single approach is universally best – it

depends on the threat scenario:

▶ If the primary concern is data confidentiality from an

honest but curious service provider, and some latency

can be tolerated, then HE or two-party MPC is appro-

priate.

▶ If low latency is required and the user is willing

to trust hardware, TEE-based inference may be

preferred.

▶ If model IP is not a concern but data is, one could even

send the model to the client (which some companies

do for premium users in federated settings).

▶ If both sides are equally concerned (e.g., two hospi-

tals want to run one’s model on the other’s data), then

multi-party or dual-enclave setups might be used.

Figure 3: PPML methods balance privacy and efficiency. On-device

inference maximizes speed but lacks model protection, while FHE en-

sures privacy at high cost. Hybrid approaches (MPC, TEE, split and

federated learning) offer varying trade-offs based on security needs.

6.1. Industry Approaches: Vendor-Controlled Se-
cure Infrastructure
Beyond academic research, major technology com-

panies are developing and deploying large-scale systems

12

that aim to provide strong privacy for ML services, of-

ten blending hardware security, operational policies, and

transparency mechanisms. A notable example is Apple’s

Private Cloud Compute (PCC) [47], [48].

PCC is designed to process complex AI queries (e.g.,

for advanced Siri features) that are too demanding for on-

device execution, without Apple retaining user data. In-

stead of relying on cryptographic blindness during com-

putation (like HE or MPC for the main processing), PCC’s

privacy model centers on strong infrastructure security

and operational guarantees:

▶ Stateless Servers: Data sent for processing is not

stored persistently on PCC servers after the query is

handled.

▶ Cryptographic Unlinkability: Requests processed
on PCC servers are designed not to be tied to a user’s

Apple ID or other personally identifiable information

visible to the server infrastructure during processing.

▶ Minimal Software Stack: PCC servers run a

purpose-built, minimal operating system and soft-

ware stack to reduce the attack surface.

▶ Access Controls: Technical measures are imple-

mented to prevent unauthorized access, including by

Apple employees, to user data during processing.

To build trust in these claims, Apple employs a veri-

fiability mechanism. They make the software images that

run on PCC servers publicly available for independent se-

curity researchers to download and audit. The goal of this

audit is to allow experts to verify that the code imple-

ments the stated privacy promises (e.g., statelessness, no

logging of sensitive data). This approach contrasts with

per-computation cryptographic proofs (like ZKPs) and in-

stead relies on transparency and expert validation of the

system’s software design and operational integrity.

Conceptually, such vendor-controlled secure in-

frastructure models like PCC offer high efficiency

(computation occurs on plaintext data within the secured

environment, comparable to standard cloud inference)

while aiming for strong privacy guarantees. The pri-

vacy level is stronger than typical cloud processing

but relies on trust in the vendor’s operational security,

the robustness of their hardware/software isolation,

and the thoroughness of the public audit process. This

positions such solutions near TEEs in terms of efficiency,

with a privacy model that heavily depends on vendor

commitments and verifiable transparency. This trend

highlights how industry is tackling the PPML challenge

for demanding, large-scale ML tasks by creating custom

ecosystems.

6.2. Alternative Approaches:
Beyond what we discussed, there are a few niche

methods:

▶ Obfuscation: Attempts to obfuscate the model itself

such that it can be executed without revealing inner

workings. General program obfuscation is impracti-

cal, but for specific circuits there might be methods

(this is largely theoretical at this point) [49].

▶ Zero-Knowledge Proofs for inference: A client could

prove to a server that they know an input that

produces a given output, without revealing the input.

This way the server doesn’t even run the model; the

client does and proves correctness. Recent advances

in succinct ZK proofs (like zkSNARKs) could poten-

tially make this viable for small models. However,

applying it to deep networks is challenging due to the

need to prove knowledge of a large computation [50].

▶ Specialized neural architectures: Using binary neural

networks (weights and activations are 0/1) so that

inference can be done with simple XOR operations

under MPC (as in XONN [51]) or efficient boolean

circuits [52]. Alternatively, use can be made of

quantized ReLUs that are effectively “max(0,x)” which

can be done by bit tricks in MPC more easily. These

changes can improve speed but may reduce accuracy,

so careful design is needed.

The key open challenges moving forward include:

1. Efficiency at Scale: How to support models with

millions of parameters and high-dimensional data

within acceptable time. This may involve algorith-

mic breakthroughs (better compression of circuits,

asymptotically faster HE operations) or hardware

(accelerators as proposed by Cheetah) [9].

2. Robust Security Guarantees: Achieving protection

against malicious servers/clients so that the system

can be robust in adversarial settings. Also, quantify-

ing information leakage (if any) when using hybrid

schemes or if protocols abort.

3. Composable Privacy: If one wants both train-

ing data privacy and inference input privacy,

combining DP-trained models with cryptographic

inference is promising. But analyzing the combined

leakage is non-trivial. Ensuring that no vector of

outputs over many queries can breach privacy re-

quires consideration of both cryptographic leakage

(which is zero in ideal case) and statistical leakage

(bounded by DP ε).

4. Regulatory Acceptance: For PPML methods to be

adopted in regulated industries (finance, health-

care), there needs to be trust in the technology.

This may involve standardizing security claims,

certification of libraries (perhaps via formal verifi-

13

cation of protocols), and education of stakeholders

about how PPML protects data [53].

5. Interoperability: In many scenarios, the party hold-

ing the data and the party holding the model might

use different platforms or frameworks. Interopera-

ble protocols (maybe using a common intermediate

representation for models) would ease deployment.

There is optimism in the community that with

continuing advances, PPML inference will become

practical for an increasing set of use cases. The fact

that major cloud providers (Amazon, Microsoft, Google)

are investing in homomorphic encryption research [42]

and releasing related tools indicates a push towards

making this technology usable. Meanwhile, academic

collaborations like OpenMined are fostering open-source

efforts for PPML. A collaborative benchmark suite and

clearer consensus on requirements (as noted in healthcare

domain survey [3]) will further accelerate progress by

allowing apples-to-apples comparisons and highlighting

bottlenecks.

7. Conclusion
Privacy-preserving machine learning inference has

evolved from a theoretical possibility to working proto-

types and frameworks that can handle non-trivial models

and datasets. Through a combination of cryptographic

protocols (HE, MPC), hardware-based solutions (TEEs),

and privacy-aware algorithms (DP, split learning), we

now have a toolkit of approaches that can be tailored to

specific privacy needs and performance constraints. The

state-of-the-art shows that for small to medium models,

one can achieve seconds or sub-second latency with full

data confidentiality [10], and even approach real-time

inference with specialized hardware [7]. However, chal-

lenges remain in scaling to extremely complex models

and achieving robust security against all adversaries.

Key open problems include improving efficiency

(perhaps via model co-design or hardware acceleration)

and standardizing methods for broader adoption. We also

need more research into measuring and mitigating any

subtle information leakage (e.g., through side-channels

or from output distributions). Encouragingly, trends such

as integrating PPML into cloud services, and combining

techniques (like CHEX-MIX’s HE + TEE, or MPC +

DP training), alongside industry developing large-scale

privacy-focused infrastructures like Apple’s PCC, suggest

that practical deployments are on the horizon. For exam-

ple, Apple has deployed private lookup services using HE

for certain features [23], and Amazon’s prototype with

FHE shows even logistic regression can be served with

reasonable throughput on encrypted data [42].

In conclusion, PPML inference is a rapidly maturing

field that sits at a crucial intersection of machine learning

and privacy. Asmodels continue to permeate sensitive ap-

plications (medical diagnosis, personal assistants, finan-

cial forecasting), the demand for techniques reviewed in

this paper will only grow. By harnessing the state-of-

the-art methods outlined and addressing remaining chal-

lenges, we move closer to a future where users can benefit

from powerful ML services without sacrificing their pri-

vacy, and companies can deploy models without fear of

leaking proprietary data. Achieving this promises to un-

lock data sharing and collaboration opportunities that are

currently hindered by privacy concerns [3], truly enabling

machine learning to reach its full potential in a privacy-

conscious world.

References
[1] J. Mo, K. Garimella, N. Neda, A. Ebel, and B. Reagen,

“Towards Fast and Scalable Private Inference,” in

Proceedings of the 20th ACM International Confer-
ence on Computing Frontiers, Bologna Italy: ACM,

May 9, 2023, pp. 322–328, isbn: 9798400701405. doi:

10.1145/3587135.3592169. [Online]. Available:
https ://dl .acm.org/doi/10 .1145/3587135 .
3592169 (visited on 03/06/2025).

[2] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter,

M. Naehrig, and J. Wernsing, “CryptoNets: Apply-

ing neural networks to encrypted data with high

throughput and accuracy,” in Proceedings of the 33rd
International Conference on International Conference
onMachine Learning - Volume 48, ser. ICML’16, New

York, NY, USA: JMLR.org, Jun. 19, 2016, pp. 201–

210.

[3] A. Guerra-Manzanares, L. J. L. Lopez, M. Mani-

atakos, and F. E. Shamout, “Privacy-preserving

machine learning for healthcare: Open challenges

and future perspectives,” in vol. 13932, 2023,

pp. 25–40. doi: 10.1007/978-3-031-39539-0_3.
arXiv: 2303 . 15563 [cs]. [Online]. Available:

http://arxiv.org/abs/2303.15563 (visited on

03/05/2025).

[4] P. Mishra, R. Lehmkuhl, A. Srinivasan, W.

Zheng, and R. A. Popa, “Delphi: A Crypto-

graphic Inference Service for Neural Networks,”

presented at the 29th USENIX Security Sym-

posium (USENIX Security 20), 2020, pp. 2505–

2522, isbn: 978-1-939133-17-5. [Online]. Avail-

able: https : / / www . usenix . org / conference /
usenixsecurity20/presentation/mishra (visited

on 03/06/2025).

[5] C. Zhang and S. Li. “State-of-the-Art Approaches to

Enhancing Privacy Preservation of Machine Learn-

14

https://doi.org/10.1145/3587135.3592169
https://dl.acm.org/doi/10.1145/3587135.3592169
https://dl.acm.org/doi/10.1145/3587135.3592169
https://doi.org/10.1007/978-3-031-39539-0_3
https://arxiv.org/abs/2303.15563
http://arxiv.org/abs/2303.15563
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra

ing Datasets: A Survey.” arXiv: 2404 . 16847 [cs].
(Jan. 28, 2025), [Online]. Available: http://arxiv.
org/abs/2404.16847 (visited on 03/06/2025), pre-

published.

[6] K. Chellapilla, S. Puri, and P. Simard, “High Per-

formance Convolutional Neural Networks for

Document Processing,” presented at the Tenth

International Workshop on Frontiers in Handwrit-

ing Recognition, Suvisoft, Oct. 23, 2006. [Online].

Available: https : / / inria . hal . science / inria -
00112631 (visited on 03/10/2025).

[7] B. Reagen, W. Choi, Y. Ko, et al. “Cheetah: Optimiz-

ing and Accelerating Homomorphic Encryption for

Private Inference.” arXiv: 2006.00505 [cs]. (Oct. 8,
2020), [Online]. Available: http://arxiv.org/abs/
2006.00505 (visited on 03/06/2025), pre-published.

[8] R. Gennaro, C. Gentry, and B. Parno. “Non-

Interactive Verifiable Computing: Outsourcing

Computation to Untrusted Workers.” (2009), [On-

line]. Available: https://eprint.iacr.org/2009/
547 (visited on 04/01/2025), pre-published.

[9] R. Xu, N. Baracaldo, and J. Joshi. “Privacy-

Preserving Machine Learning: Methods, Chal-

lenges and Directions.” arXiv: 2108 . 04417
[cs]. (Sep. 22, 2021), [Online]. Available: http :
/ / arxiv . org / abs / 2108 . 04417 (visited on

03/05/2025), pre-published.

[10] C. Juvekar, V. Vaikuntanathan, and A. Chan-

drakasan. “Gazelle: A Low Latency Framework

for Secure Neural Network Inference.” arXiv:

1801 . 05507 [cs]. (Jan. 16, 2018), [Online]. Avail-
able: http://arxiv.org/abs/1801.05507 (visited

on 03/06/2025), pre-published.

[11] L. Zhou, Z. Wang, H. Cui, Q. Song, and Y. Yu.

“Bicoptor: Two-round Secure Three-party Non-

linear Computation without Preprocessing for

Privacy-preserving Machine Learning.” arXiv:

2210 .01988 [cs]. (Apr. 19, 2024), [Online]. Avail-
able: http://arxiv.org/abs/2210.01988 (visited

on 03/06/2025), pre-published.

[12] P. Mohassel and Y. Zhang. “SecureML: A Sys-

tem for Scalable Privacy-Preserving Machine

Learning.” (2017), [Online]. Available: https :
/ / eprint . iacr . org / 2017 / 396 (visited on

03/12/2025), pre-published.

[13] A. C. Yao, “Protocols for secure computations,” in

23rd annual symposium on foundations of computer
science (sfcs 1982), IEEE, 1982, pp. 160–164.

[14] M. O. Rabin, “How to exchange secrets with obliv-

ious transfer,” Cryptology ePrint Archive, 2005.

[15] B. Knott, S. Venkataraman, A. Hannun, S. Sen-

gupta, M. Ibrahim, and L. van der Maaten.

“CrypTen: Secure Multi-Party Computation

Meets Machine Learning.” arXiv: 2109 . 00984
[cs]. (Sep. 15, 2022), [Online]. Available: http :
/ / arxiv . org / abs / 2109 . 00984 (visited on

03/06/2025), pre-published.

[16] N. Kumar, M. Rathee, N. Chandran, D. Gupta,

A. Rastogi, and R. Sharma. “CrypTFlow: Secure

TensorFlow Inference.” (2019), [Online]. Available:

https://eprint.iacr.org/2019/1049 (visited on

03/06/2025), pre-published.

[17] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious

neural network predictions via minionn transfor-

mations,” presented at the Proceedings of the 2017

ACM SIGSAC Conference on Computer and Com-

munications Security, 2017, pp. 619–631.

[18] M. S. Riazi, C. Weinert, O. Tkachenko, E. M.

Songhori, T. Schneider, and F. Koushanfar.

“Chameleon: A Hybrid Secure Computation

Framework for Machine Learning Applications.”

arXiv: 1801 . 03239 [cs]. (Jan. 10, 2018), [Online].
Available: http ://arxiv . org/abs/1801 .03239
(visited on 03/06/2025), pre-published.

[19] D. Natarajan, A. Loveless, W. Dai, and R. Dres-

linski. “CHEX-MIX: Combining Homomorphic

Encryption with Trusted Execution Environ-

ments for Two-party Oblivious Inference in

the Cloud.” (2021), [Online]. Available: https :
/ / eprint . iacr . org / 2021 / 1603 (visited on

03/06/2025), pre-published.

[20] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow,

and K. Talwar. “Semi-supervised Knowledge Trans-

fer for Deep Learning from Private Training Data.”

arXiv: 1610.05755 [stat]. (Mar. 3, 2017), [Online].

Available: http ://arxiv . org/abs/1610 .05755
(visited on 03/05/2025), pre-published.

[21] P. Mai, R. Yan, Z. Huang, Y. Yang, and Y. Pang.

“Split-and-Denoise: Protect large language model

inference with local differential privacy.” arXiv:

2310.09130 [cs]. (Aug. 27, 2024), [Online]. Avail-
able: http://arxiv.org/abs/2310.09130 (visited

on 03/06/2025), pre-published.

[22] X. Li, F. Tramèr, P. Liang, and T. Hashimoto. “Large

Language Models Can Be Strong Differentially Pri-

vate Learners.” arXiv: 2110 . 05679 [cs]. (Nov. 10,
2022), [Online]. Available: http://arxiv.org/abs/
2110.05679 (visited on 03/05/2025), pre-published.

[23] “Combining Machine Learning and Homomorphic

Encryption in the Apple Ecosystem,” Apple Ma-

chine Learning Research. (Aug. 24, 2024), [Online].

Available: https://machinelearning.apple.com/

15

https://arxiv.org/abs/2404.16847
http://arxiv.org/abs/2404.16847
http://arxiv.org/abs/2404.16847
https://inria.hal.science/inria-00112631
https://inria.hal.science/inria-00112631
https://arxiv.org/abs/2006.00505
http://arxiv.org/abs/2006.00505
http://arxiv.org/abs/2006.00505
https://eprint.iacr.org/2009/547
https://eprint.iacr.org/2009/547
https://arxiv.org/abs/2108.04417
https://arxiv.org/abs/2108.04417
http://arxiv.org/abs/2108.04417
http://arxiv.org/abs/2108.04417
https://arxiv.org/abs/1801.05507
http://arxiv.org/abs/1801.05507
https://arxiv.org/abs/2210.01988
http://arxiv.org/abs/2210.01988
https://eprint.iacr.org/2017/396
https://eprint.iacr.org/2017/396
https://arxiv.org/abs/2109.00984
https://arxiv.org/abs/2109.00984
http://arxiv.org/abs/2109.00984
http://arxiv.org/abs/2109.00984
https://eprint.iacr.org/2019/1049
https://arxiv.org/abs/1801.03239
http://arxiv.org/abs/1801.03239
https://eprint.iacr.org/2021/1603
https://eprint.iacr.org/2021/1603
https://arxiv.org/abs/1610.05755
http://arxiv.org/abs/1610.05755
https://arxiv.org/abs/2310.09130
http://arxiv.org/abs/2310.09130
https://arxiv.org/abs/2110.05679
http://arxiv.org/abs/2110.05679
http://arxiv.org/abs/2110.05679
https://machinelearning.apple.com/research/homomorphic-encryption
https://machinelearning.apple.com/research/homomorphic-encryption

research/homomorphic - encryption (visited on

03/06/2025).

[24] X. Yang, J. Sun, Y. Yao, J. Xie, and C. Wang. “Differ-

entially Private Label Protection in Split Learning.”

arXiv: 2203 . 02073 [cs]. (Mar. 4, 2022), [Online].

Available: http ://arxiv . org/abs/2203 .02073
(visited on 03/11/2025), pre-published.

[25] X. Liu and Z. Liu. “LLMs Can Understand En-

crypted Prompt: Towards Privacy-Computing

Friendly Transformers.” arXiv: 2305 . 18396
[cs]. (Dec. 15, 2023), [Online]. Available: http :
/ / arxiv . org / abs / 2305 . 18396 (visited on

03/11/2025), pre-published.

[26] D. Evans, V. Kolesnikov, and M. Rosulek, “A prag-

matic introduction to secure multi-party computa-

tion,” Foundations and Trends® in Privacy and Se-
curity, vol. 2, no. 2–3, pp. 70–246, 2018, issn: 2474-
1558.

[27] D. Bogdanov, S. Laur, and J. Willemson. “Share-

mind: A framework for fast privacy-preserving

computations.” (2008), [Online]. Available: https :
/ / eprint . iacr . org / 2008 / 289 (visited on

03/12/2025), pre-published.

[28] “Track Big Data For Governments and Education

| Sharemind.” (Oct. 26, 2015), [Online]. Available:

https : / / sharemind . cyber . ee / big - data -
analytics-protection/ (visited on 03/12/2025).

[29] Microsoft/SEAL, Microsoft, Mar. 5, 2025. [Online].

Available: https : / / github . com / microsoft /
SEAL (visited on 03/06/2025).

[30] A. Al Badawi, J. Bates, F. Bergamaschi, et al.,
“Openfhe: Open-source fully homomorphic

encryption library,” in Proceedings of the 10th
Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, ser. WAHC’22,

Los Angeles, CA, USA: Association for Com-

puting Machinery, 2022, pp. 53–63. doi: 10 .
1145 / 3560827 . 3563379. [Online]. Available:

https://doi.org/10.1145/3560827.3563379.

[31] Homenc/HElib, homenc, Mar. 11, 2025. [Online].

Available: https://github.com/homenc/HElib
(visited on 03/12/2025).

[32] I. Chillotti, N. Gama, M. Georgieva, and M. Iz-

abachène, TFHE: Fast fully homomorphic encryption
library, https://tfhe.github.io/tfhe/, 2016.

[33] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzyn-

ski, “nGraph-HE: A graph compiler for deep

learning on homomorphically encrypted data,” in

Proceedings of the 16th ACM International Confer-
ence on Computing Frontiers, ser. CF ’19, New York,

NY, USA: Association for Computing Machinery,

Apr. 30, 2019, pp. 3–13, isbn: 978-1-4503-6685-4.

doi: 10 . 1145 / 3310273 . 3323047. [Online].

Available: https://doi.org/10.1145/3310273.
3323047 (visited on 03/12/2025).

[34] Zama,Concrete: TFHE Compiler that converts python
programs into FHE equivalent, https : / / github .
com/zama-ai/concrete, 2022.

[35] P. Rindal, The ABY3 Framework for Machine
Learning and Database Operations. https :
//github.com/ladnir/aby3.

[36] Tf-encrypted/tf-encrypted, TF Encrypted, Mar. 2,

2025. [Online]. Available: https://github.com/tf-
encrypted/tf-encrypted (visited on 03/12/2025).

[37] X. Wang, A. J. Malozemoff, and J. Katz, EMP-toolkit:
Efficient MultiParty computation toolkit, https ://
github.com/emp-toolkit, 2016.

[38] “Obliv-C.” (), [Online]. Available: https://oblivc.
org/ (visited on 03/12/2025).

[39] B. Jeon, S. M. Ferdous, M. R. Rahman, and A. Walid.

“Privacy-preserving Decentralized Aggregation

for Federated Learning.” arXiv: 2012 . 07183
[cs]. (Dec. 28, 2020), [Online]. Available: http :
/ / arxiv . org / abs / 2012 . 07183 (visited on

03/12/2025), pre-published.

[40] W.-j. Lu, Z. Huang, Z. Gu, et al., BumbleBee:
Secure Two-party Inference Framework for Large
Transformers, 2023. (visited on 06/17/2025).

[41] Z. Ruoyan, Z. Zhongxiang, and B. Wankang,

Practical Secure Inference Algorithm for Fine-tuned
Large Language Model Based on Fully Homomorphic
Encryption, Jan. 2025. doi: 10 . 48550 / arXiv .
2501 . 01672. arXiv: 2501 . 01672 [cs]. (visited on

06/17/2025).

[42] “Enable fully homomorphic encryption with

Amazon SageMaker endpoints for secure, real-

time inferencing | AWS Machine Learning Blog.”

(Mar. 23, 2023), [Online]. Available: https://aws.
amazon.com/blogs/machine-learning/enable-
fully-homomorphic-encryption-with-amazon-
sagemaker - endpoints - for - secure - real - time -
inferencing/ (visited on 03/06/2025).

[43] C. Gouert and N. G. Tsoutsos. “Data Privacy Made

Easy: Enhancing Applications with Homomorphic

Encryption.” (2024), [Online]. Available: https://
eprint.iacr.org/2024/118 (visited on 03/06/2025),

pre-published.

[44] N. Dhyani, J. Mo, M. Cho, et al. “PriViT: Vision
Transformers for Fast Private Inference.” arXiv:

2310.04604 [cs]. (Oct. 6, 2023), [Online]. Available:
http://arxiv.org/abs/2310.04604 (visited on

03/06/2025), pre-published.

16

https://machinelearning.apple.com/research/homomorphic-encryption
https://machinelearning.apple.com/research/homomorphic-encryption
https://arxiv.org/abs/2203.02073
http://arxiv.org/abs/2203.02073
https://arxiv.org/abs/2305.18396
https://arxiv.org/abs/2305.18396
http://arxiv.org/abs/2305.18396
http://arxiv.org/abs/2305.18396
https://eprint.iacr.org/2008/289
https://eprint.iacr.org/2008/289
https://sharemind.cyber.ee/big-data-analytics-protection/
https://sharemind.cyber.ee/big-data-analytics-protection/
https://github.com/microsoft/SEAL
https://github.com/microsoft/SEAL
https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3560827.3563379
https://github.com/homenc/HElib
https://doi.org/10.1145/3310273.3323047
https://doi.org/10.1145/3310273.3323047
https://doi.org/10.1145/3310273.3323047
https://github.com/zama-ai/concrete
https://github.com/zama-ai/concrete
https://github.com/ladnir/aby3
https://github.com/ladnir/aby3
https://github.com/tf-encrypted/tf-encrypted
https://github.com/tf-encrypted/tf-encrypted
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://oblivc.org/
https://oblivc.org/
https://arxiv.org/abs/2012.07183
https://arxiv.org/abs/2012.07183
http://arxiv.org/abs/2012.07183
http://arxiv.org/abs/2012.07183
https://doi.org/10.48550/arXiv.2501.01672
https://doi.org/10.48550/arXiv.2501.01672
https://arxiv.org/abs/2501.01672
https://aws.amazon.com/blogs/machine-learning/enable-fully-homomorphic-encryption-with-amazon-sagemaker-endpoints-for-secure-real-time-inferencing/
https://aws.amazon.com/blogs/machine-learning/enable-fully-homomorphic-encryption-with-amazon-sagemaker-endpoints-for-secure-real-time-inferencing/
https://aws.amazon.com/blogs/machine-learning/enable-fully-homomorphic-encryption-with-amazon-sagemaker-endpoints-for-secure-real-time-inferencing/
https://aws.amazon.com/blogs/machine-learning/enable-fully-homomorphic-encryption-with-amazon-sagemaker-endpoints-for-secure-real-time-inferencing/
https://aws.amazon.com/blogs/machine-learning/enable-fully-homomorphic-encryption-with-amazon-sagemaker-endpoints-for-secure-real-time-inferencing/
https://eprint.iacr.org/2024/118
https://eprint.iacr.org/2024/118
https://arxiv.org/abs/2310.04604
http://arxiv.org/abs/2310.04604

[45] A. Polino, R. Pascanu, and D. Alistarh. “Model com-

pression via distillation and quantization.” arXiv:

1802 . 05668 [cs]. (Feb. 15, 2018), [Online]. Avail-
able: http://arxiv.org/abs/1802.05668 (visited

on 03/06/2025), pre-published.

[46] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and

S. Tripathi, “Ezpc: Programmable and efficient se-

cure two-party computation for machine learning,”

in 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), IEEE, 2019, pp. 496–511.

[47] “Blog - Private Cloud Compute: A new frontier

for AI privacy in the cloud - Apple Security

Research,” Blog - Private Cloud Compute: A new

frontier for AI privacy in the cloud - Apple Secu-

rity Research. (Oct. 6, 2024), [Online]. Available:

https : / / security. apple . com / blog / private -
cloud-compute/ (visited on 04/08/2025).

[48] Apple, director, WWDC 2024 — June 10 | Apple,
Jun. 10, 2024. [Online]. Available: https://www.
youtube.com/watch?v=RXeOiIDNNek (visited

on 04/08/2025).

[49] M. Zhou, X. Gao, J. Wu, et al., “ModelOb-

fuscator: Obfuscating Model Information to

Protect Deployed ML-Based Systems,” in Pro-
ceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis,
ser. ISSTA 2023, New York, NY, USA: As-

sociation for Computing Machinery, Jul. 13,

2023, pp. 1005–1017, isbn: 9798400702211. doi:

10.1145/3597926.3598113. [Online]. Available:
https : //doi . org/10 . 1145/3597926 . 3598113
(visited on 03/12/2025).

[50] H. Sun, J. Li, and H. Zhang. “zkLLM: Zero Knowl-

edge Proofs for Large Language Models.” arXiv:

2404 .16109 [cs]. (Apr. 24, 2024), [Online]. Avail-
able: http://arxiv.org/abs/2404.16109 (visited

on 03/12/2025), pre-published.

[51] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K.

Lauter, and F. Koushanfar, “{XONN}: {XNOR-

based} Oblivious Deep Neural Network Inference,”

presented at the 28th USENIX Security Sym-

posium (USENIX Security 19), 2019, pp. 1501–

1518, isbn: 978-1-939133-04-5. [Online]. Avail-

able: https : / / www . usenix . org / conference /
usenixsecurity19/presentation/riazi (visited on

03/07/2025).

[52] M. Ball, B. Carmer, T. Malkin, M. Rosulek, and N.

Schimanski. “Garbled Neural Networks are Practi-

cal.” (2019), [Online]. Available: https ://eprint .
iacr .org/2019/338 (visited on 03/07/2025), pre-

published.

[53] Trustworthy AI, in Wikipedia, Jan. 18, 2025. [On-
line]. Available: https://en.wikipedia.org/w/
index . php ? title=Trustworthy_AI&oldid=
1270145996 (visited on 03/12/2025).

17

https://arxiv.org/abs/1802.05668
http://arxiv.org/abs/1802.05668
https://security.apple.com/blog/private-cloud-compute/
https://security.apple.com/blog/private-cloud-compute/
https://www.youtube.com/watch?v=RXeOiIDNNek
https://www.youtube.com/watch?v=RXeOiIDNNek
https://doi.org/10.1145/3597926.3598113
https://doi.org/10.1145/3597926.3598113
https://arxiv.org/abs/2404.16109
http://arxiv.org/abs/2404.16109
https://www.usenix.org/conference/usenixsecurity19/presentation/riazi
https://www.usenix.org/conference/usenixsecurity19/presentation/riazi
https://eprint.iacr.org/2019/338
https://eprint.iacr.org/2019/338
https://en.wikipedia.org/w/index.php?title=Trustworthy_AI&oldid=1270145996
https://en.wikipedia.org/w/index.php?title=Trustworthy_AI&oldid=1270145996
https://en.wikipedia.org/w/index.php?title=Trustworthy_AI&oldid=1270145996

	Introduction
	Prerequisites
	Neural Networks
	Linear Transformations
	Nonlinear Transformations
	Conclusions
	Threat Model

	Approaches to Privacy-Preserving ML Inference
	Homomorphic Encryption (HE) Approaches
	Secure Multi-Party Computation (MPC) Approaches
	Trusted Execution Environments (Hardware Enclaves)
	Differential Privacy and Output Perturbation
	Federated and Split Inference Approaches

	Use Cases and Recommendations
	Implementations and Performance
	Cryptographic Frameworks and Libraries
	Performance
	Open Challenges and Ongoing Work

	Big Picture and Future Directions
	Industry Approaches: Vendor-Controlled Secure Infrastructure
	Alternative Approaches:

	Conclusion

