
Document coordination patterns
Magdalena Godlewska 1, Bogdan Wiszniewski 2

Dept. of Intelligent Interactive Systems, Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland

https://doi.org/10.34808/tq2024/28.2/a

Abstract
Many organizations lack support for document workflowmanagement, making it difficult to efficiently handle business
processes. Implementing a workflow management service that encompasses all organizational tasks is both complex
and costly. However, document workflows can be observed as structured sets of identifiable workflow patterns. These
patterns have been extensively described in the literature based on real-world organizational processes. By adopting
and integrating these patterns into document workflows, it is possible to enable documents to autonomously deter-
mine the processes they should execute. The paper explores the application of a well-known set of workflow patterns in
email-based document workflows and outlines the necessary conditions for integrating workflowmanagement directly
into documents. Documents circulating within an organization can easily collect information about their workflow in
the form of logswithminimal effort. By applying processmining techniques, it is possible to extract the actual processes
they follow. The canonical set of document workflow patterns proposed in this paper enables a much faster implemen-
tation of a document management application compared to a top-down approach, where processes are theoretically
defined first and then implemented.

Keywords:
Workflow management, Task coordination, Process mining

1Email: maggodle@pg.edu.pl
2Email: bogwiszn@pg.edu.pl

TASK Quarterly 28 (2) 2024

https://orcid.org/0000-0001-7292-2221
https://orcid.org/0000-0002-5798-0252
https://doi.org/10.34808/tq2024/28.2/a

1. Introduction
Document workflow is crucial in organizations as

it ensures efficiency, transparency, and proper record-
keeping. However, the available technical support is
often insufficient, leading to frustration and inefficiencies
among employees. When technical issues arise, delays
occur, disrupting operations and reducing productivity.
Moreover, inadequate support can cause stress and
dissatisfaction among staff, as they struggle with system
errors, lack of training, or slow response times from IT
teams. These emotional reactions can further impact
workplace morale and overall organizational effective-
ness, making it essential to improve and streamline
document management systems.

Cloud solutions are very fashionable now, in this
processing model document management systems can
be found. Azmir and Wijayanti listed an overview of
this type of solution [1] and summarized its main advan-
tages and disadvantages. Thus, cloud-based electronic
document management offers several advantages. It
provides flexibility and accessibility, allowing users
to access documents from anywhere with an internet
connection. Additionally, cloud solutions often reduce
costs by eliminating the need for extensive on-premise
infrastructure and maintenance. They also enhance
collaboration, enabling multiple users to work on the
same documents in real time. However, there are also
challenges. Security and data privacy remain significant
concerns, as storing sensitive information in the cloud
increases the risk of cyber threats. Dependence on
internet connectivity can also be a drawback, as system
downtimes or slow connections may hinder productivity.
Moreover, some organizations face compliance issues, as
cloud providers may store data in different jurisdictions
with varying legal regulations.

Although cloud-based document management sys-
tems are continuously improving, many employees still
prefer using email for document sharing and communi-
cation. This preference often stems from the familiarity
and simplicity of email, as well as the perceived ease of
managing files directly from inboxes. Despite the bene-
fits of cloud solutions, such as improved collaboration and
organization, employees may be reluctant to adopt new
systems due to the need to learn new knowledge, non-
intuitive interfaces, lack of trust in central solutions, and
their own established work methods that they are unwill-
ing to discontinue.

This may also be due to the fact that, aside from
group editing, email aligns with the natural way humans
work with documents. A person completes their task,
finishes it, and forwards the document, having control
over when they finish their work and when and to whom

they send the email with the document. Additionally,
they can include instructions, comments, etc., related to
the document in the message. However, basing document
flow on email brings a number of other problems, which
we described in detail in the paper [2]. In the mentioned
paper, we described a collaborative system implementing
email-based document exchange and proposed for that
purpose proactive email attachments with a built-in
workflow module. Such documents constitute both in-
formation and interaction units [3], as they can combine
passive content with active services to interact with col-
laborators and their devices. This paper offers a detailed
analysis of workflow patterns (Section 2) as realized
through email communication acting as a transport
layer, and introduces a comprehensive, implementable
set of Document Coordination Patterns (Section 3.2)
for modeling the migration paths of proactive email
attachments.

The question arises, however, whether documents
with an integrated workflow module are capable of
handling processes of the same complexity as centralized
document management systems. Our research conducted
to address this issue resulted in the development of
document coordination patterns. The possibility of
identifying them allowed us to define the assumptions
for distributed work management. Both of these develop-
ments are completely independent of the implementation
of the system, which will be the transport layer and the
runtime environment for documents. That is why we
have described them in this paper, separately from the
description of the collaborative system.

Two perspectives of modeling dependencies of the
control flow of knowledge processes involving email-
based activities are discussed in Section 2; they refer
to both the process communication and coordination
levels, with the latter involving the concept of workflow
patterns introduced by Aalst et al. in [4]. The solution
proposed in Section 3 draws on this concept by defining
document coordination patterns that can be implemented
in email systems with proactive documents that have the
ability to implement document coordination patterns.
In Section 4, a case study of the knowledge process is
presented. It shows the use of document coordination
patterns in a specific example and was used to validate
our systems implementing the described idea.

The main contribution of this paper is the mapping
of established flow patterns from the literature — such as
sequential, conditional, and parallel flows — to their real-
ization within email-based communication, which func-
tions as a transport medium for organizational processes.
Despite its informal nature, email reflects structured in-
teractions like delegation, escalation, and feedback loops.
By abstracting email exchanges into formal patterns, we
can reveal latent workflows embedded in everyday com-

2

munication. And the primary outcome of this study is that
these workflow patterns are embedded into autonomous
migrating documents — digital entities that carry content,
context, and logic as they navigate an organization. Such
documents interpret and adapt their built-in routing based
on email-derived patterns, enabling dynamic workflows
almost without centralized control. The document coor-
dination patterns presented in Section 3.2 constitute a set
of ready-to-use and implementable templates that enable
document migration within email-based communication
and cover all the ways in which a process organizes the
execution of its activities, as defined in standard workflow
patterns listed in Section 2.

The paper is primarily related to three topics:
loosely-coupled systems [5], email-based communica-
tion [6], and workflow patterns [4]. A detailed reference
to the literature along with a discussion can be found in
Section 5. In Section 6 we summarize our research.

2. Workflow patterns
The basic activities performed by workers exchang-

ing documents by email (it can also be other transport me-
dia) involve a few simple steps: opening an email, copy-
ing its attachments to the local filesystem, processing their
content with available computer applications and finally
attaching the resulting document or documents to a new
message sent to another worker. Throughout this time,
the worker remains the only user of his/her inbox, lo-
cal file system and personal device used to read and send
emails. The dependencies of the control flow between
such email-based activities may be, however, less obvious
to collaborating workers, especially when viewed from
different levels. At the process communication level, work-
ers perceive collaboration through matching the send and
receive operations: based on who sent the message and
what documents were produced, the recipient must de-
cide who to send the message to next. At the process co-
ordination level, however, more complex patterns of or-
ganizing activities into larger decision and synchroniza-
tion structures may occur. For the workers to perceive
these patterns, they must understand the broader context
of the activities being performed, which may not be fully
comprehensible from the communication level. Based on
their process understanding, workers must be able to im-
plement the related workflow patterns by receiving and
sending messages appropriately. Throughout the rest of
this section we will investigate whether such patterns can
be implemented when exchanging documents as email at-
tachments, and next in Section 3, what set of patterns
would suffice to implement realistic document-centric col-
laboration processes.

2.1. Process communication level
Let’s start with the canonical classification of com-

munication events in distributed systems that use mes-
sage passing for data exchange [7]:

▶ one-to-one (1-1), when one sender sends a single mes-
sage in a single action to one recipient,

▶ one-to-many (1-n), when one sender sends a single
message in a single action to many recipients, and

▶ many-to-one (n-1), when many senders send indepen-
dently their own (but related to each other) messages
to one recipient.

Implementation of 1-1 and 1-n communication
events is fairly simple for email users. Sending an email
to some known recipient (1-1) requires performing
just one send operation, whereas for sending the same
email to multiple recipients (1-n) in one operation their
addresses must be listed explicitly in the To or Cc fields
of the message. Alternatively, the sender may put there
an alias pointing to many addresses, or use an electronic
mailing list; the two respective types of 1-n events
correspond to multicast and broadcast in distributed
systems.

Implementation of n-1 communication events is a lit-
tle bit more complicated with emails, as the typical email
client has a limited capability to get all messages from its
inbox that are sent from different addresses, but are some-
how related in a global context. This relation may be es-
tablished by senders denoting messages with commonly
agreed identifiers in the Subject field, so the recipient
could collect all so marked messages in a separate local
folder. Nevertheless, this informal technique is prone to
error, as senders may fail to edit their Subject fields prop-
erly when preparing their messages for sending.

Another important characteristic of communication
events based on email messaging is their inherent asyn-
chronism. Sending an email message is a buffered send ac-
tion, because the sender puts the message into a commu-
nication buffer and continues their current activity with-
out waiting for the message to be delivered to the recipi-
ent. On the other hand, receiving the email message is a
non-blocking receive action, as the recipient does not wait
for any specific message to be delivered.

2.2. Process coordination level
In order to assess implementability of a knowledge

process with email messaging and the minimum scope of
the worker’s comprehension of the context of executing a
given activity, let’s review briefly the list of workflow pat-
terns proposed originally by Aalst et al. in [4] and elab-
orated further by the same team in [8]. They capture all
relevant decisions and synchronization process structures

3

in real organizations.

2.2.1 Basic Control Flow Patterns
A process arranges the execution of its activities in

a specific order, constituting its control flow. It consists
of specific structures, combining their subsets in a serial
and/or parallel manner:

▶ Sequence; upon completion of one activity, the next
one is enabled. This corresponds to one collaborator
sending a single email message to another one. No
choice is involved, i.e., there is no alternative recipient
for the sender.

▶ Parallel Split; a single thread splits without any con-
dition into multiple parallel threads. This implies one
collaborator sending a single email message to many
collaborators.

▶ Synchronization; multiple parallel threads converge
into one thread after the preceding Parallel Split. At
this point no further activity may be performed until
all merging threads are completed. This implies one
worker receiving emails from the expected number
of collaborators. The recipient should not perform
any activity related to the received messages until all
messages are delivered.

▶ Exclusive Choice; a single thread is redirected to an-
other one, selected under some condition associated
with this point. This implies one collaborator sending
a single email message to another one, selected by the
sender from a set of possible recipients.

▶ Simple Merge; one out of many threads may become
active after the preceding Exclusive Choice. This im-
plies a collaborator receiving a single email message
from one of many possible senders. The recipient
should not perform any further activity related to
that point if no message is delivered.

2.2.2 Advanced Branching and Synchronization Patterns
This class of patterns characterizes more complex

branching and merging transitions that may occur in
processes:

▶ Multi-Choice; a subset of threads is selected under
some conditions to be executed in parallel. This
generalizes Synchronization and Exclusive Choice
patterns. For email messaging, this implies that one
collaborator sends a single message to a number of
collaborators after selecting them from a larger set of
possible recipients.

▶ Synchronizing Merge; like the Synchronization pat-
tern, except that for multiple incoming threads only
a few may actually converge into one after some
preceding Multi-Choice. For email messaging, this

implies that one collaborator receives emails from
a certain number of collaborators belonging to the
larger group. The problem for the recipient is to
determine the exact number of messages that should
be received. Therefore, the original Synchronizing
Merge has been divided further in [8] into three more
specific Structured, Local and General Synchronizing
Merge patterns, which differ in determining how
many threads are required to synchronize.

▶ Multi-Merge; many threads converge without syn-
chronization, i.e., each incoming thread requires the
same reaction in the activity. This pattern is useful
when one collaborator is counting the number of
responding collaborators upon receiving their respec-
tive emails, and performs the same activity for each
one received. It resembles the execution of a single
definite ’for’ loop in an imperative programming
language.

▶ Partial Join; an activity waits for the specific subset
of all incoming threads to complete. The k first com-
pleted threads converge into one subsequent activity,
while all other threads are ignored, regardless of their
completion status. For email messaging, this implies
one collaborator waiting for emails from the unspec-
ified group of collaborators, who upon receiving the
first few emails perform the relevant activity and ig-
nore all subsequent ones. The Partial Join pattern has
been divided further in [8] into three more variants:
Structured, Cancelling and Blocking, which differ in
determining what to do with ignored threads. In email
systems, it is difficult to cancel a message sent but
not delivered yet to its recipient’s inbox or one which
prevents the sender from sending another message.
Therefore, only the Structured variant is feasible in
email systems.

▶ Generalized AND-Join; similar to the basic Synchro-
nization pattern in that upon completion all incoming
threads converge into one thread again, but provides
for the possibility that incoming multiple threads may
be completed repeatedly. In such a case, threads may
have to synchronize with other threads on a repeti-
tive basis and in the correct order, as incoming threads
are independent of each other. For email-based com-
munication, this implies the worker receiving periodic
emails from his/her collaborators and performing a
subsequent activity for each complete set (wave) of
emails received in one cycle.

▶ Thread Split and Thread Merge; a single outgoing
thread must be activated a specific number of times,
and a single incoming thread must be completed a
specific number of times. For email-based commu-
nication, this implies the worker sending a series
of emails to his/her collaborator, and respectively
one collaborator receiving a series of emails from a

4

single sender, e.g. multiple blocks of a large message
partitioned into smaller chunks.

2.2.3 Multiple Instances Patterns
It is often required to perform a single piece of work

in parallel by multiple instances of the same activity. This
is the case of Multiple Instances patterns, which in an
email system may involve sending a single email in one
click to a group of recipients identified by some email
alias, or a named group of workers subscribing to the rel-
evant mailing list or shared mailbox. A common feature
of the latter communication event is the anonymity of
recipients, including their exact email addresses and the
group size. Instances of the multiplied activity should
return their results as if they were produced by a single
instance, therefore some external entity is required to
collect, combine and send them back as one email from a
single address. Alternatively, upon multiplying instances
the results may be loaded back directly into the local
file system. The latter, however, is beyond the capability
of a typical email client and would require manual
implementation, e.g. by providing links in the broadcast
message to the relevant file transfer service.

2.2.4 State-based Patterns
In this class of patterns, one thread depends on the

state of another thread in the process or even outside of
the process, as these patterns are interdependent. It is
not a standard situation in email-based communication —
most often the only way for signaling state by collabora-
tors is to exchange messages. Some additional communi-
cation channels would be necessary to implement these
patterns, for example phone calls or texting. The patterns
are:

▶ Deferred Choice; one out of several alternative threads
is chosen, based on information which is not neces-
sarily available when this point is reached. i.e., alter-
natives are offered, but the choice between them is de-
layed until the occurrence of some future event. This
is a situation where a collaborator does not know to
whom an email should be sent and waits for some ad-
ditional information to proceed further.

▶ Milestone; a given activity has finished and another ac-
tivity following it has not yet started. This may be a
point in the process at which an email was sent by a
collaborator who waits for the acknowledgment of its
delivery to proceed further.

▶ Interleaved Routing; a set of activities is executed in
an arbitrary order. Each activity in the set is executed
exactly once and no two activities in the set can ever
be active at the same time. This pattern may corre-
spond to sending a single email with a link to an ex-

ternal service providingmutual exclusion access to the
shared resource needed to perform the related activ-
ity by each group member one at a time. A variant
of this pattern — the Interleaved Parallel Routing pat-
tern imposing a constraint of partial ordering on these
activities — could be implemented by the aforemen-
tioned service if subsequent calls of individual recipi-
ents are kept in a priority queue. Although the above
mentioned solutions can automate mutual exclusion
of specific activities related to accessing a shared re-
source, a more general implementation of the Inter-
leaved Routing pattern in an email system is costly
and not intuitive, as processing the same message by
a group of recipients in the mutually exclusive man-
ner requires locking all but one member out repeat-
edly until all of them are done with completing the
given activity.

2.2.5 Cancellation and Termination Patterns
Process conclusion may be either exceptional and

caused by some external entity (cancellation) or planned
and implied by the internal process structure (termina-
tion). Cancellation is normally beyond the capability of
any email client, as a properly sent email message cannot
be eliminated by any process participant until it has been
delivered to its destination address.

Note that even providing collaborators with a sepa-
rate communication channel, e.g. phone calls, would not
be sufficient to implement the Cancellation pattern in an
email-based system, as there is no mechanism for tracing
the current locations of messages being sent. Of course,
the respective ’cancellation’ message could be sent to all
potential collaborators involved in other threads, but this
may not work if some collaborators have been added to
the process after starting it, and thus may not be known
to the sender of the ’cancellation’ message.

A Termination pattern occurs when each active
thread in the process has no remaining work to do
(implicit termination), or when any of its active threads
reaches a distinguished end activity (explicit termination).
In an email-based communication, implicit termination
implies receiving a message that does not need to be
forwarded to any other collaborator, whereas explicit
termination requires the worker receiving such a message
to send a notification (cancellation) message to all other
workers involved in the process.

2.2.6 Iteration Patterns
This class of patterns includes:

▶ Arbitrary Cycle; cycles in a process having more than
one entry or exit point without any structure. This
pattern could be implemented with the Exclusive

5

Choice and Simple Merge patterns.
▶ Structured Loop; repeated execution of some process
part. The loop has either a pre-test or post-test con-
dition and its structure is single-entry single-exit — in
fact a combination of the Exclusive Choice and Simple
Merge patterns with a condition at the beginning or at
the end of the split-join region of the process.

▶ Recursion; an activity invokes itself during execution.
In an email-based system, this implies a collaborator
sending a message to himself/herself. This may seem
rather unusual during normalwork, but this technique
is used sometimes by collaborators processing a work-
ing copy of the received document in separate stages,
each time accessing his/her email from a different de-
vice. Sending a message to himself/herself keeps the
working copy up-to-date, without the need to transfer
it between stages by using some additional media, e.g.
a memory stick.

2.3. Pattern implementability issues
The set of control flow patterns presented above

is summarized in Table 1 as the reference set for our
document coordination patterns defined further in the
paper. The ’sender’ and ’recipient’ columns indicate for
each respective pattern the elementary email operations
that have to be performed by collaborators in order
to implement it manually. Note that apart from basic
sending, reading and acknowledging message delivery,
these patterns are not directly supported by any popular
email client.

A question to be asked is whether operations listed in
Table 1 can be implemented with the built-in functional-
ity of active documents attached to the email message in
a nondisruptive manner to the standard email exchange
protocols but fully conformant with the coordination pat-
terns discussed above.

3. Document-centric collaboration
Traditional models of collaborative work based on

document exchange assume each document to be a pas-
sive object, whose content represents a certain corpus of
data in terms of bytes, syntax and structure, to be pro-
cessed with some dedicated tool. The worker handling
the document has to select and activate the tool individu-
ally, based on its syntax and the local system resources. If,
however, the exchanged documents possess execution ca-
pability, they may automatically call the appropriate soft-
ware function required to work with their content and in-
teract with their human users. Such a document-centric
computing paradigm could then involve documents im-

plemented as autonomous agents, which render and use
services interchangeably with their human counterparts.
If the agents additionally include a workflow component
that routes them to the appropriate workers, they may be
able to migrate on their own in between various execution
devices operated by people.

Such properties of documents can be integrated with
the email system. This was our proposal for the appli-
cation of a document-agent in a specific communication
model within the organization. We described the details
in our paper [2]. Here, we will focus on the definition of
a document-agent itself.

3.1. Proactive document-agents
The key functionality of the document-agent en-

abling document-centric collaboration is its ability to
execute and migrate. The former refers to activation
of the incoming document-agent (object) and calling
its services to process the related content brought to
the device by the agent, whereas the latter refers to the
specific operations to be performed on the document to
forward it to collaborators operating other devices. This
concept is presented in Figure 1.

Document
agent

content

workflow

services

logs

Figure 1: A document-agent concept

Services of the activated document-agent are called
by the local client running on the receiving device and
acting as the intermediary between the document and the
worker. Three types of services are possible: an embedded
service, implemented as a piece of code or script that may
be executed directly in the local system of the receiving
worker’s device, a local service, implemented as a script
that can test for availability and may also activate a spe-
cific tool installed on the worker’s device, and an external
service, implemented as a script requesting the local sys-
tem to call a specified remote service.

For security reasons, execution of the aforemen-
tioned services is governed by preferences of the actual
worker, who may decide whether to allow the document
to activate its embedded code or just to open its content
with his/her locally installed tools. Of course in either
case the attached document is routinely scanned for
viruses by the locally available anti-virus tool. A decision
to activate a proactive document does not deviate from

6

Table 1: Implementability of control flow patterns in email systems

Workflow
pattern

Email system Impl.
Event
type Sender Recipient

1. Sequence 1-1 A sender sends a message to a single
recipient. The recipient reads the message. +

2. Parallel Split 1-n A sender sends the same message to all
members of the group of recipients.

Each group member reads the same
message. +

3. Synchroniz-
ation n-1 Each groupmember sends amessage to

the same recipient.
The recipient reads messages from all
members of the group of senders. +

4. Exclusive
Choice

1-1
A sender selects a recipient from the
group of recipients and sends him/her
a message.

The recipient reads the message. +

5. Simple
Merge

1-1 A group member sends a message to a
single recipient.

The recipient reads the message from
one member of the group of senders. +

6. Multi-
Choice

1-n
A sender sends the samemessage to se-
lected members of the group of recipi-
ents.

Each selected member of the group of
recipients receives the same message. +

7. Synchroniz-
ing Merge

n-1 Each groupmember sends amessage to
the same recipient.

The recipient reads messages from all
members of the group of senders. +

8. Multi-Merge n-1 Some members of the group send a
message to the same recipient.

The recipient reads messages from
some members of the group of senders. +

9. Partial Join n-1 Each groupmember sends amessage to
the same recipient.

The recipient reads the first few mes-
sages from a larger group of senders
and ignores all subsequent ones.

∼

10. Generalized
AND-Join

(n-1)+ Each group member sends at least one
message to the same recipient.

The recipient repeatedly reads mes-
sages from all members of the group of
senders.

+

11. Thread
Split/Merge

(1-1)+ A sender sends a series of messages to
a single recipient.

The recipient reads the series of mes-
sages. +

12. Multiple
Instances 1-n A sender sends a message to some des-

tination address.

The recipient forwards the message to
a group of undisclosed recipients and
waits for a response.

∼

13. Deferred
Choice 1-1 A sender waits for a destination ad-

dress to send a message to. The recipient reads the message. +

14. Milestone 1-1
A sender waits before sending a mes-
sage to some known destination until
receiving another message.

The recipient reads the message. +

15. Interleaved
(Parallel)
Routing

1-n A sender sends the same message to all
members of the group of recipients.

Exactly one group member reads the
message one at a time. ∼

16. Canceling
and Termina-
tion

1-n
A sender identifies a group of recipi-
ents not known beforehand and sends
them the same message.

A recipient deletes selected messages
from his/her inbox. ∼

17. Arbitrary
Cycle

(1-1)+
A group member sends a message to
another member despite the fact that
he/she might have gotten it before.

The recipient repeatedly reads each re-
ceived message and sends it to another
member of the group.

+

18. Structured
Loop

(1-1)+ One group member sends a message to
another and waits to get it back again.

The recipient repeatedly reads each re-
ceived message and sends it back to the
sender.

+

19. Recursion 1-1 A sender sends a message to him-
self/herself.

The recipient reads the message from
himself/herself. +

Note:’+’ in full, ’∼’ in part (additional functionality of the email server required)

7

the typical situation when the recipient of a message has
to decide whether to open a plain (passive) document
attached to it. Usually, when he/she is sure that the
document comes from a trusted source, the decision is
to open the attachment. In the solution proposed in the
paper, we expanded the range of possible decisions not
only based on the personal preferences of the receiving
worker, but also on the current location of the device
on which the document will be opened, the device per-
formance characteristics, the security parameters of its
system software, the quality and security of the available
network connection and several other attributes, whose
values define the document execution context. Moreover,
values of these attributes may be negotiated automati-
cally by the document and its receiving worker’s device.
A preferences file, prepared by the worker, enables our
smart email client to choose the appropriate sets of
negotiable attribute values called modes: a private mode
indicates what types of document computations would
not be possible (local services/tools are preferred and no
embedded services are allowed), a travel mode indicates
that access to available networks is possible but unstable
or not recommended for security reasons (thus external
services are not allowed), a business mode assumes that
documents come from the corporate, trusted network
from inside of the worker’s organization (both embedded
and external services are allowed), an airplane mode
with no access to any network (external services are
not possible and the received document can further be
processed only off-line) also exists, and so on.

Mobility of the document-agent on the other hand
could utilize the whole range of data communication
protocols used on the Internet for sending and retrieving
email messages, including the lower layer TCP/IP or
HTTP/HTTPS data streaming protocols, as well as
protocols of higher layers, such as SMTP, POP3 and
IMAP.

The workflow path is also an integral part of the
document-agent and can be modified during its flow.
This eliminates the need to know the entire process in
advance. The details of document workflow in various
business scenarios are presented in the subsection below.
From the perspective of organizational management, it
is crucial that every document workflow leaves a trace
in the form of an event log. This enables the application
of process mining techniques [9], which are discussed in
more detail in Section 5.

3.2. Document Coordination Patterns
A knowledge process represents a logical sequence

of activities to be performed by workers involved in it.
Its specification is usually composed of several reusable

patterns to enforce a certain choreographic order in docu-
ment flows. Each pattern of that kind represents a specific
rationale for coordinating document transfer between
activities of various types and purposes. In this paper,
we distinguish three classes of such patterns. One class
includes distributed state patterns, when the document
transitions depend only on the execution state of a single
activity performed at some location in a system. Another
class includes coupled state patterns, when the document
transitions depend on execution states of two or more
activities performed simultaneously by other workers
at other locations in the system. Finally, embedded state
patterns involve block activities implemented as subflows.
These classes are specified further with BPMN diagrams
shown in Figures 3a–5b. A subset of standard BPMN
widgets [10] used in these diagrams is listed in Figure 2.

Start event
activity

End event
activity

Intermediate
event activity

Inclusive
gateway

Activity

Send message
activity

Transform document
activityTransform

Subflow
activity

Send/Receive
message

Send/Receive
interrupt

comment

Binary
semaphore

Unconditional
flow

Conditional
flow

Default
flow

Message
flow

Figure 2: BPMN elements used to specify document coordination
patterns

The specific functionality brought by a proactive
document-agent to aid the receiving client is represented
by a generic transform document activity. The binary
semaphore symbol has been added to denote a semaphore
enabling a document to wait for an asynchronous exter-
nal event. The inclusive gateway widget, which allows
one, several or all options to be taken respectively of
the conditions controlling them is used to specify all
situations when specific threads of the pattern diverge or
converge.

3.2.1 Distributed State Patterns
The four patterns described below refer to situations

in which the successive activity to be performed can be
determined based solely on data brought by the received
document to the execution device.

8

Sequencer involves a collaborator who upon comple-
tion of the activity sends to another collaborator one or
more resulting documents in a sequence (see Figure 3a).
Depending on the implementation of the Transform ac-
tivity, this could range frommanual operations performed
by a worker to fully automated execution of the internal
functionality of the document. Each outgoing document is
labeled with a serial number based on the value of variable
a counter embedded in its body. The total number of doc-
uments produced by Transform is not known in advance
to workers KW1 and KW2 and the last document should
be marked appropriately with the sentinel serial num-
ber. If for the last produced component counter>1, the
document sequencer patterns correspond to the Thread
Split/Merge pattern listed in row 11 of Table 1; otherwise
it is just the Sequence pattern listed in row 1 of Table 1.

Even in this most basic pattern, the processing of the
received document may be a serious job demand for the
recipient, as well as for the sender, who often has to ex-
plain to the recipient what to do with the attached docu-
ment. A proactive document can buffer that job demand
by automatically checking for the availability of the ap-
propriate local application tool to process the document
content or by providing a dedicated service enabling that.

An active document is also able to calculate the ur-
gency level of activity based on deadline or other process
attributes rather than the individual sender’s indications
and can change this level over time.

Splitter may be cloning or decomposing (see Figure 3c).
A cloning splitter creates multiple copies of each single
received document, whereas its decomposing counterpart
partitions the document into disjointed fragments. The
resulting documents, either copies or fragments, are
sent next to the respective collaborator specified in the
received document body. The Transform activity in the
cloning splitter merely copies a received document, while
in the decomposing splitter it may perform more complex
operations, as in the sequencer pattern described above.

Another distinction of this pattern is whether the
number of receiving workers is constant or must be
determined dynamically upon splitting of the received
document. That number is required to properly merge all
arriving documents and should be stored in the body of
each outgoing document, as each one may win a possible
race to the execution device where merging shall be per-
formed. If all workers specified in the received document
body are intended to receive the outgoing documents,
the value of the counter is copied to each one of them
accordingly and no gateway conditions or increment op-
erations at each outgoing thread are required. This is the
case of the Parallel Split pattern listed in row 2 of Table 1;
note that neither gateway conditions nor incrementation

activities at each outgoing thread are needed in this
case. Conversely, if the number of receiving workers
is determined dynamically upon splitting the received
document, the increment operation counter++ and
calculation of gateway conditions are performed by the
respective Transform activity — corresponding to the
Multi-Choice pattern listed in row 6 of Table 1. If only
one condition is true each time the gateway is passed,
then the document splitter corresponds to the Exclusive
Choice pattern listed in row 4 of Table 1.

Sending a document to many recipients by email is
easy (maybe sometimes too easy) and may often lead to
neglect and abuse of the sender, such as sending emails
with missing attachments, an ill-considered number of re-
cipients or placing toomany topics in onemessage — each
of which may require separate processing. Any of these
is a job demand for the recipient, which a proactive doc-
ument can buffer easily: no missing attachments, a pre-
cisely determined number of recipients in its migration
path and the ability to divide the message into indepen-
dent threads. That would certainly bemuch easier to com-
prehend and process.

Merger complements the document splitter pattern
(see Figure 3d). It may involve any functionality in
its Transform activity brought to the receiving client,
depending on whether a preceding splitter was cloning
or decomposing. It may be a simple concatenation of
document fragments or a more complex combination
of multiple document fragments [11]. The value of the
counter variable, set to the total number of documents
sent by some preceding splitter, is copied by the receiving
client from the first delivered document and decremented
subsequently by operation counter-- with each next
arriving one. Each received document component may
be immediately processed and sent further, or saved in
a buffer folder until all expected document components
are received. Note that in either case the merger pattern
is terminated when the value of counter reaches 0. The
former corresponds to the Multi-Merge pattern listed
in row 8 of Table 1, while the latter does so to both
the Synchronization and Synchronizing Merge patterns,
listed respectively in rows 3 and 7 Table 1. Merging
document components stored in a buffer folder may
involve various functionalities, depending on whether
the preceding splitter was the cloning or decomposing
type. It may be as simple as the concatenation of chunks
of text, or quite complex if sophisticated content merging
algorithms are required. If the arriving document brings
counter=1, the document merger corresponds to the
Simple Merge pattern listed in row 5 of Table 1. Parts
of documents from various processes can be received in
the inbox of one collaborator. However, each attached
proactive document can have a unique ID, so the email

9

S
E
Q
U
E
N
C
E
R

K
W

1

Receive
document

K
W

2
sentinel == true

Transform

Receive
document

counter++
Send

document

Transform

sentinel == false

(a) Document sequencer

IT
E
R
A
T
O
R

K
W
1 Receive

document

K
W
2

continue == true

Transform

Receive
document

Send
document

Transform
Send

document

(b) Iterator

S
PL
IT
T
E
R K
W
1

Receive
documentK

W
2

KW2==true

counter++

counter++

Transform

Transform
Send

document

Send
document

Receive
documentK

W
3

KW3==true

(c) Document splitter

M
E
R
G
E
R

K
W
1

K
W
2

counter--

counter--

Send
document

Send
document

K
W
3

Receive
document

Transform

counter==0
Receive
document

(d) Document merger

D
IS

C
R

IM
IN

A
T

IN
G

 M
E

R
G

E
R K

W
1

K
W

2

counter--

counter--

Send
document

Send
document

K
W

3 counterDis--

counterDis--

counter--

counter--
counter==0

Receive
document

(accepted)

counterDis==0Receive
document

(accepted)

Receive
document

(rejected)

Receive
document

(rejected)

Transform
(accepted)

Transform
(rejected)

counterDis>0

(e) Discriminating merger

Figure 3: Distributed State Patterns

system would know exactly which documents from the
inbox are parts of the document to be merged. This
corresponds to the Generalized AND-Join pattern listed
in row 10 of Table 1.

In email systems, the majority of the effort to adopt
this pattern lies with the recipient. A proactive document
can indicate how many and exactly which attachments to
various emails need to be integrated. Moreover, its ser-
vices can aid the recipient in integrating them correctly.
The basic services can collect cloned documents in one
logical folder or automatically concatenate a previously
decomposed document. More advanced services can per-
form automatic integration using various dedicated intel-
ligent algorithms proposed by D’Angelo et al. in [12, 13]

Discriminating merger pattern shown in Figure 3e
is a special case of the document merger. It waits for a
number of documents before performing the subsequent
Transform block activity. The respective value of this
number is specified by the variable counterDis. The
value of counter external attribute specifies the total
number of all expected documents. Gateway condition
counterDis>0 determines for each received document if
it can be accepted, while the condition counter==0 is
used to terminate the pattern. If for the first received doc-
ument (upon starting the pattern) counterDis<counter,
the discriminating merger corresponds to the Partial Join
pattern listed in row 9 of Table 1; otherwise it corresponds
to the Synchronizing Merge pattern listed in row 7 there.

10

In email messaging, this pattern is performed by the
recipient, who needs to look up the inbox to select all rel-
evant messages. An active document can make its han-
dling smart email client automatically selects messages in
the inbox; the condition for the pattern terminationwould
be then reading all the required messages or exceeding a
certain time limit.

Iterator enables repeated execution of the sequencer
pattern controlled by the loop termination condition cal-
culated by the respective document Transform activity
(see Figure 3b). This is a powerful pattern for creating
more complex patterns listed in Table 1. One of them is
the Arbitrary Cycle pattern listed in row 17. It may be
constructed by iterating a combination of the Exclusive
Choice, Sequence and Simple Merge patterns listed
respectively in rows 4, 1 and 5. Another is the Structured
Loop pattern listed in row 18 with pre- or post-test
conditions. The gateway in the iterator pattern can also
be placed on the KW1 lane after the Transform activity.
The value of the continue flag is set by Transform
based on the predetermined loop counter or the ad-hoc
worker’s decision, making this pattern useful in many
real situations. The Recursion pattern listed in row 19
corresponds to the situation where KW1 and KW2 lanes
specify the same worker using different devices.

An iteration without an a priori determined counter
is commonly used by electronic mail users. The sender
can explicitly create loops by choosing the "reply" option
or implicitly by forwarding a document to a recipient who
has already processed it. Such loops can be created by
the sender many times, without any restrictions enforc-
ing their structure. An active document does not limit the
possibility of creating ad-hoc loops of any structure (the
Arbitrary Cycle pattern in row 17 of Table 1), but it can im-
pose this structure if the process requires it. Examples of
the latter include: after completing certain activities the
document always returns to the worker responsible for
the specific part of the process, a copy of the document au-
tomatically returns to the responsible worker, or the doc-
ument has to be checked a specified number of times (e.g.
after reviews or translations).

3.2.2 Coupled State Patterns
As indicated before, a principal source of information

to determine the next activity to be performed is the ar-
riving document itself. However, certain states reported
by other devices may also be needed to make a decision.
This is the case in coupled state patterns, which involve
the notion of asynchronous signals, sent to the performer
of a given activity by other performers, who participate in
the same process and perform their respective activities in
parallel to the former one. Three patterns of this kind are

proposed below.

Deferred choice is used when sending a given doc-
ument which has to be postponed until the respective
execution device receives information as to whom it
should be sent to (see Figure 4a). This corresponds
directly to the Deferred choice pattern listed in row 13 of
Table 1. The arriving document brings Lock==closed
as the initial value of its semaphore, so if worker KW1
is ready to send a document before a signal from KW2
has been received, it is put aside and waits to enable the
execution device to handle other arriving documents.
Upon receiving a signal from worker KW2, processing of
the document is resumed. If the signal has been received
by KW1 before receiving a document, the relevant signal
notification should be stored by the client internally
to enable immediate transfer as soon as the document
has been received and processed. The signal involved
in deferred choice carries additional data, which are
the email addresses of workers to whom the pending
document will be sent; in Figure 4a they are workers
KW3 and KW4.

Milestone is the simplified version of the deferred
choice pattern, in which the related signal does not
carry any specific data associated with it and whose only
purpose is to block some activity of one collaborator by
another (see Figure 4b). It corresponds directly to the
Milestone pattern listed in row 14 of Table 1. Processing of
the document arriving to worker KW2 may be postponed
until a certain "milestone" activity has been completed by
worker KW1. Again, the initial setting of the semaphore
Lock==closed, brought by the arriving document to
KW2, prevents it from proceeding any further until the
signal notifying it of completion of the milestone activity
has been received from worker KW1. Conversely, if a
signal from KW1 has been received before document
delivery to KW2, its notification should be stored by the
client internally to enable immediate transfer as soon as
the document is received and processed. A combination
of the document splitter, merger, sequencers (if any) and
a set of milestone patterns would suffice to implement
the Interleaved Parallel Routing pattern listed in row 15
of Table 1. A document is sent to all workers of the group
with the initial setting of the semaphore Lock==closed,
whereas the unlocking signal can be sent by the proactive
document to all members of the group to unlock their
activities automatically.

Cancel activity would be needed when the performer
of one activity decides that some other activity of another
performer should be canceled. Unfortunately, implemen-
tation of Canceling and Termination patterns listed jointly

11

D
E

FE
R

R
E

D
 C

H
O

IC
E K

W
1

K
W

2

Send
document

Send
document

KW4 == true
Lock

Transform

KW3 == true

recipients
Indicate

Receive
document

Receive
document

K
W

3
K

W
4

(a) Deferred choice

M
IL

E
ST

O
N

E

K
W

1
K

W
2

Send
document

Lock

Transform
Notify

of milestone

Transform

(b) Milestone

C
A

N
C

E
L

 A
C

T
IV

IT
Y

K
W

1
K

W
2

Transform

Transform

Delete
document

cancel ==KW2

(c) Cancel activity

Figure 4: Coupled State Patterns

in row 16 of Table 1 is not straightforwardwith email mes-
saging for its inherent asynchronism.

Consider the cancel activity pattern shown in Fig-
ure 4c. Three cases are possible when the cancellation sig-
nal or out-of-bound cancellation message has to be sent.
One is when a document has not yet been delivered to
another collaborator, so the cancellation signal should be
registered internally by the receiving device to enable im-
mediate deletion of the indicated document as soon as it
has been delivered. Another is when the document is cur-
rently being processed, hence its deletion may be prob-
lematic if the performer has advanced to the point where
some resulting documents have already been sent. Note
that no semaphore is needed there, as a decision on cancel-
ing the activity and deleting the related document is im-
mediate for the execution device. Finally, a document may
have already been processed and sent to another worker,
so canceling that particular activity would fail. Since there
is no guarantee that the activity can be effectively can-
celed (and its related document deleted), a cancellation
message should be sent to all performers indicated in the
migration path. It would however implement a cancel
case pattern rather than cancel activity or cancel region
patterns defined originally in [8] — a feasible but expen-
sive solution. Note that the cancellation signal should be
sent to all activities in the relevant process and its sub-
processes, some of which may be hard to identify if new
workers have been added to the process after starting it.
The pattern specified in Figure 4c also corresponds to the

explicit termination pattern defined in [8], where the can-
celing signal is sent when the process reaches a specific
end node along any of its active threads.

3.2.3 Embedded State Patterns
Sometimes the process threadmay include a set of ac-

tivities performed as a subprocess, with workers not spec-
ified originally in the document body. Two patterns of this
kind are proposed below. They both incorporate the Mul-
tiple Instances pattern listed in row 12 of Table 1.

Internal subflow implies that the performer of the ac-
tivity is authorized to extend the original migration path
of a document by adding new activities of his/her choos-
ing. Such an extension would constitute an internal sub-
flow (see Figure 5a). Neither its structure nor the identity
of added performers are assumed to be known in advance
to other collaborators in the original process. This pattern
makes it possible to modify the process during its execu-
tion. A graph of new activities is added as a subflow to the
parent activity, which allows the process to be expanded,
and saves the already defined activities structure.

External subflow may be initiated by the performer
of the activity who calls the external service to do some
work involving a separate subprocess structure (see Fig-
ure 5b). The identity of the thus "subcontracted" perform-
ers are not known to the performer and other collabora-

12

Receive

document document

Send

K
W

1

S
U

B
P

R
O

C
E

S
S

A
D

D
E

D
 W

O
R

K
E

R
S

L
O

C
A

L
 S

U
B

P
R

O
C

E
S

S

(a) Internal subflow

Receive
document

Call

download

service
document

Send
Call

upload

service

Upload
service document

Notify of Download
service

Upload
service

Download
service

Call

download

service
processes

Independent

termination
Notify of

Call

upload

service

K
W

1

P
R

O
C

E
S

S

S
E

R
V

E
R

P
R

O
C

E
S

S
E

X
T

E
R

N
A

L

P
R

O
C

E
S

S

U
N

K
N

O
W

N

W
O

R
K

E
R

S

(b) External subflow

Figure 5: Embedded State Patterns

tors. Separation between the main process and the exter-
nal subprocess is provided by an intermediary server, to
which the relevant document is uploaded for extra pro-
cessing and later downloaded upon completion. At the
other side of the intermediary server, the subcontracted
external process downloads that document for processing
and upon completion, uploads it back to the intermediary
server. Upload and download service calls are blocking
and the external process may be implemented in an arbi-
trary manner, including manual operations. This allows
the email system to be merged with many other systems
operating on documents, e.g. cloud-based group editing
systems [13].

4. Class Roster Case Study
Several proof-of-concept prototypes of smart email

clients were implemented by us to handle proactive at-
tachments, that concept is presented in Figure ??.

They were tested using the class roster application
described below. Although this application implements
relatively uncomplicated decision processes, related to
grading student work in a typical academic setting, it
is sufficient to demonstrate the non-algorithmic flavor
of an interactive computer system. It also demonstrates
the use of document coordination patterns introduced in
Subsection 3.2.

4.1. Class Roster Case Study
Consider the course grading knowledge process in

which instructors judge the academic quality of students’
work and assign grades as symbols of their evaluation.
In doing so, they collaborate towards assigning a final
(semester) grade for each student registered in the
course. A Registrar’s Office (RO) is the course grade
roster document originator, whose collaborator is a
Course Leader (CL). The CL runs his/her subprocess to
successively collect credits from other instructors during
all semester weeks. Structure and implementation of
that subprocess are irrelevant to the RO. While the RO
may use an online grading system for one-time roster
submission and approval, the CL is free to implement
the collection of credits on his/her own, in our case
with email messages. The dynamics of the grading
process involve scheduled events, such as assessment
of lab assignments and unscheduled events, such as
occasional grade corrections, which can both be readily
implemented with the document coordination patterns
defined before.

Figure 6a specifies the course management process
from the perspective of the RO, to which the CL is the only
collaborator. Note two sequencer patterns — one for send-
ing the roster only with student names and IDs to the CL
at the beginning of the semester and another for receiving
it with final grades at the end of the semester. Details on
collecting scores that correspond to assignments listed in

13

C
O

U
R

SE
 G

R
A

D
IN

G

R
E

G
. O

FF
IC

E
Create class

roster

C
. L

E
A

D
E

R

Archive class
roster

Assigning
grades

SEQUENCER

SEQUENCER

INTERNAL SUBPROCESS

(a) The main grading process

A
SS

IG
N

IN
G

 G
R

A
D

E
S Distribute

class roster

C
. L

E
A

D
E

R

Receive
grades

Evaluate

DECOMPOSING SPLITTER

MERGER

Evaluate

Evaluate

ITERATOR

I 1
I 2

I N

(b) Course leader subprocess

E
V

A
L

U
A

T
IO

N
(H

O
M

E
W

O
R

K
)

Assign
a homework

T
E

A
C

H
E

R

Receive
a solution

Complete
a task

DISCRIMINATING MERGER

Complete
a task

Complete
a task

ST
1

S
T

2
ST

N

(c) Homework competition subprocess

E
V

A
L

U
A

T
IO

N
(P

R
O

JE
C

T
 R

E
A

L
IZ

A
T

IO
N

)

T
E

A
C

H
E

R

Assign
project

implementation

S
T

U
D

E
N

T
S

Receive
project

Implement
project

EXTERNAL
SUBPROCESS

(d) Out-of-class project subprocess

PR
O

JE
C

T
 A

SS
E

SS
M

E
N

T

Receive
submission

IN
ST

R
U

C
T

O
R

Grade
assignment

Review
CLONING SPLITTER

Review

R
E

V
1

R
E

V
2

C
. L

E
A

D
E

R

 Appoint
 two reviewers

MERGER

DEFERRED CHOICE

(e) Project assessment subprocess

C
H

A
N

G
IN

G
 G

R
A

D
E

S

IN
ST

R
U

C
T

O
R

C
. L

E
A

D
E

R

Accept
change

MILESTONE

R
E

G
. O

FF
IC

E
Change
grade

Archive
roster

(f) Grade changing subprocess

E
V

A
L

U
A

T
IO

N
(C

A
N

C
E

L
L

IN
G

) T
E

A
C

H
E

R
1

C
. L

E
A

D
E

R

CANCEL ACTIVITY

Evaluate
test

Cancel
test

T
E

A
C

H
E

R
2

Evaluate
test

(g) Handling of academic misconduct

Figure 6: Document migration patterns in a course management process

the course schedule, in particular their weights and tim-
ing, are irrelevant to the RO, who perceives grading as
a single activity performed by the CL. Alternatively, the
CL can implement that activity using the internal subpro-
cess pattern to handle all relevant types of classes selected
from the set of lectures, tutorials, seminars, projects or
labs, engaging instructors to run them and monitor dead-

lines for each respective assignment. A generic structure
of that subprocess is shown in Figure 6b.

The class roster may be partitioned at the CL’s ex-
ecution device into complementary group rosters, each
one for the respective instructor and sent out according
to the decomposing splitter pattern. Each instructor evalu-
ates his/her group assignments and sends grades back to

14

the CL for merging, in accordance with the merger pat-
tern. Group rosters, governed by the iterator pattern, re-
turn on their own to the CL, after collecting credits for
each particular assignment.

Evaluating assignments by individual instructors
ends by entering scores in the respective group rosters,
but may also involve more complex internal subpro-
cesses. For example, Figure 6c specifies a situation where
students compete when submitting homework solutions
to their instructor. If only a few first correct solutions
are to be awarded a grade, the discriminating merger
pattern should be used. Another situation is shown in
Figure 6d, when students participate in an out-of-class
project, assessed by workers external to the university,
e.g. company employees approved by the CL. In such
a case, the CL may not know details of the external
evaluation process, which is the case in the external
subprocess pattern.

If the paperwork prepared by students requires inde-
pendent reviews, the CL may appoint reviewers to assess
student’s work in a formal way. This is the case in the
deferred choice pattern, as shown in Figure 6e. Each re-
viewer receives from the instructor a copy of the project
documentation, as provided by the cloning splitter pattern.
Upon receiving the reviews, the instructor makes a deci-
sion on the final score for the project work andmerges the
reviews to provide justification for it. If during the grad-
ing process some grade requires a correction (for example
a grading error has been detected by the instructor or the
student’s query has been accepted), the milestone pattern
may be used as shown in Figure 6f — under the condi-
tion that corrections are still possible because the dead-
line set by the RO for returning the class roster has not
yet elapsed. Some grades may also be directly revoked by
the CL, if a case of academic misconduct like cheating or
plagiarism was revealed. This can be handled by the can-
cel activity pattern, as shown in Figure 6g.

Although the aforementioned process has algorith-
mic elements, such as calculating for each student the final
grade based on a formula combining all received scores
with their corresponding weights, for the most part it re-
mains non-algorithmic. This is because assessment of the
student’s work involves human decisions based on under-
standing what has been done. Examples include evalua-
tion of the individual contribution of a student member
to a team project, assessment of oral presentations, report
reviews, etc. Moreover, the grading process must be able
to handle any incident that may occur during the course.
Due to the unexpectedness and large volume of events,
document workflow designers must be able to predict and
implement mechanisms handling situations not known to
them in advance. This necessitates in turn provisions for
dynamic modification of a document migration path after
the process has started. Authorized knowledge workers

may then add or remove arbitrary process activities when
interpreting procedures in accordance with their experi-
ence, common sense, ethics, and other non-algorithmic
aspects of decision making.

5. Discussion
Workflow patterns [14] are recurring structures that

represent common control-flow scenarios in business pro-
cesses. They serve as a conceptual framework to analyze
and compare the capabilities of various process modeling
approaches and business process management tools. In
the context of process mining, workflow patterns play a
crucial role in understanding and discovering the under-
lying structures of processes from event logs.

Process mining introduced by Aalst in [15] is a data-
driven technique used to analyze, discover, monitor, and
improve business processes based on event logs recorded
by information systems. It bridges the gap between tradi-
tional process modeling and real-time process execution
by extracting insights from actual data.

There are three main types of process mining: dis-
covery, which generates process models from raw event
logs; conformance checking, which compares real pro-
cess execution with predefined models to detect devia-
tions; and enhancement, which optimizes processes by in-
corporating additional insights.

By leveraging processmining, organizations can gain
transparency into their workflows, identify inefficiencies,
and make data-driven decisions to improve operational
performance.

Process mining involves extracting process models
from event logs to gain insights into actual process execu-
tions. By identifying workflow patterns within these logs,
analysts can recognize standard behaviors and deviations,
facilitating the discovery of accurate and comprehensible
process models. Porouhan et al. introduced the impor-
tance of recognizing such patterns to bridge the gap be-
tween real-time workflow processes and their perceived
models [16].

Moreover, workflow patterns assist in addressing
data quality issues in event logs. The paper [17], Suriadi
et al. discussed how patterns can be utilized to identify
and manage imperfections in event data, ensuring more
reliable process mining outcomes. Thus, the application
of workflow patterns in process mining enhances the
discovery and analysis of business processes by providing
a structured approach to identify common behaviors
and address data imperfections. By analogy, document
coordination patterns (see Section 3.2), which are directly
derived from workflow patterns (Section 2), have a
similar application.

15

Moreover, as argued in Section 2, collaborative work
based on document exchange involves communication
of content, meaning effective exchange of portions
of information between workers, and coordination of
activities performed by them in the knowledge pro-
cess. In a more general sense they may be viewed as
knowledge transactions, defined as transportation of
knowledge objects between two or more communicating
workers [18]. This in turn affects the dependence of the
conduct of the related knowledge process on various
interconnected knowledge-intensive decisions made by
process members; they concern the knowledge objects
and transactions alike [19]. The solution proposed in
this paper enables convenient separation of these two
concerns: knowledge about the formal process synchro-
nization structure remains in the system, whereas the
knowledge on how to perform the particular activity and
make informed decisions by interacting with the relevant
documents is left to the worker. As illustrated by the run-
ning example in Section 4, this can introduce a reasonable
level of process management to document-agents.

To verify the above claim let us refer to the spectrum
of knowledge-intensive process classes proposed by
Ciccio et al. [20]. Spontaneous exchange of e.g. emails
with attached documents and without any coordina-
tion of knowledge transactions results in unstructured
processes. Although such processes can exhibit a great
level of flexibility to collaborators, the predictability of
the results and repeatability of the order of execution of
individual activities could be problematic, as decisions
of process participants on these issues are solely based
on their experience and implicit knowledge. If, however,
messages with attached documents could bring the
necessary information to guide or instruct collaborators
on how to control their knowledge transactions, then
implemented processes would exhibit a loosely structured
behavior. Their scope would then be implicitly framed by
indicating to the worker the undesired behavior. This is
the case of variables carried by our documents, such as
counter or lock specified in Section 3, whose values affect
the execution of knowledge transactions implemented
by the respective distributed state and coupled state
coordination patterns. If all knowledge transactions are
implemented with a fixed set of patterns, then according
to [20] processes can be considered unstructured with
pre-defined segments. The overall process logic would
not have to be explicitly defined, but its structured,
pre-defined fragments should introduce rules governing
at least its essential knowledge transactions. It is worth
noting that such rules can be implemented automatically
for our documents. If collaborators need to make ad-hoc
changes to the process at runtime they can add subpro-
cesses whenever the actual course of action needs to
deviate or expand beyond the particular activity; they can

do so with our document-agents by using respectively the
cancel activity pattern (Figure 4c) or any of the subflow
patterns (Figures 5a and 5b). Thus according to [20], our
document-agent-based process would become structured
with ad hoc exceptions. Finally, with a migration path
built in the document body as proposed in this paper,
the relevant process would become structured — with all
possible options and decisions that can be made during
process enactment captured in a process model defined a
priori; they can be repeatedly instantiated in a predictable
and controlled manner.

Given the above it can be seen that proactive
document-agents provide sufficient flexibility in model-
ing the whole spectrum of document-centric processes.
In particular, the structured with ad-hoc exceptions
class of processes is interesting, as due to the duality
of our proactive document, recipients may access/open
the document content directly with the local tool of
their choice or let the document-agents service to point
the proper tool; they can also modify the document’s
migration path by adding subprocesses or modifying
workers/performers assigned to specific activities. In this
way, both anticipated or unanticipated exceptions can be
handled dynamically.

According to the criteria defined by Steinau et
al. [21], the document-centric approach proposed in this
paper conforms to the data-centric paradigm, whose
common feature is that only the availability of specific
data objects (documents) drives process execution. It
involves two modeling aspects: behavior to describe how
data values are acquired by a data object (document) to
perform the activity, and interactions to describe how
data objects (documents) communicate with one another
during the process enactment. Two principal concepts of
interaction models have been proposed in this regard in
the world literature.

The first one assumes separate modeling of interac-
tions and behavior with different notations. A representa-
tive of this concept is the object-aware approach (e.g., the
PHILharmonicFlows framework [22]), where the behav-
ior (lifecycle) of an object is described as a micro-process
and interactions among different objects are described as
a macro-process. Both are addressed by document coordi-
nation patterns specified in Figures 3a–5b.

The second concept encapsulates into a conceptual
artifact object both information and lifecycle models. The
information model includes both the application data
(called data attributes) and process-relevant data (called
status attributes). A representative of this concept is
the artifact-centric approach (e.g., the BizArtifact frame-
work [23]), which uses the Guard-Stage-Milestone (GSM)
notation to define in a declarative manner the lifecycle
of artifacts and changes to the information model that
are caused by interactions with other artifacts [24].

16

GSM defines stages that group individual activities with
guards and milestones representing entry conditions to
a stage and their respective completion points in the
specified artifact lifecycle. This metaphor may also be
used to specify the business process based on proactive
document-agents.

Based on the above two representatives of business
modeling frameworks, it may be seen that mapping of
their underlying models towards our solution is possible
when implementing various process models with the
document-agents exchange.

6. Summary
The document coordination patterns presented in

this paper can contribute to the advancement of multiple
domains of research and technological development,
particularly in the fields of process mining, document
management systems, and electronic communication.

Firstly, document coordination patterns can serve as
a foundational input for process mining studies, enabling
the systematic analysis of workflow execution and iden-
tifying deviations, inefficiencies, and optimization oppor-
tunities. By leveraging structured document coordination
patterns, process mining algorithms can more effectively
reconstruct process models from event logs, leading to en-
hanced accuracy in business process discovery and con-
formance checking in the field of document flow manage-
ment.

Secondly, these patterns contribute to the design
and development of document management systems by
providing standardized frameworks for handling docu-
ment workflows. By integrating document coordination
patterns into workflow automation, organizations can
achieve more structured and efficient document routing
and access management, thereby improving overall op-
erational efficiency and compliance with organizational
policies.

Moreover, document coordination patterns can
significantly impact the evolution of email systems and
similar communication platforms. Given that email
remains the dominant medium for document exchange,
incorporating structured document coordination patterns
into email systems could enhance functionalities such
as automated categorization, knowledgeable routing,
and collaborative editing. These advancements would
bridge the gap between traditional email-based document
handling and modern workflow automation solutions.

Finally, document coordination patterns offer a
robust foundation for further research into the advance-
ment of electronic documents and collaborative document
processing. As the digital transformation continues to re-

shape document-centric workflows, exploring advanced
document pattern applications such as smart contracts,
blockchain-based document verification, and AI-driven
document processing can lead to more intelligent and
adaptive document ecosystems. Additionally, fostering
interdisciplinary collaboration on document patterns can
facilitate the development of innovative frameworks for
knowledge sharing and workflow standardization across
various industries.

In summary, document coordination patterns not
only provide valuable insights for process mining but
also enhance document management systems, improve
electronic communication tools, and pave the way for
future innovations in electronic document processing
and collaboration.

Acknowledgements
The researchwas supported in part by project “Cloud

Artificial Intelligence Service Engineering (CAISE) plat-
form to create universal and smart services for various ap-
plication areas”, No. KPOD.05.10-IW.10-0005/24, as part of
the European IPCEI-CIS program, financed by NRRP (Na-
tional Recovery and Resilience Plan) funds.

References
[1] A. Azmir and L. Wijayanti, “Cloud computing opportunities and

challenges in electronic document management,” Record and Li-
brary Journal, vol. 8, pp. 248–258, 12 2022.

[2] M. Godlewska and B. Wiszniewski, “Serverless-edge computing
with mobile documents agents,” TASK Quarterly, 2025.

[3] R. J. Glushko and T. McGrath, Document Engineering - Analyzing
and Designing Documents for Business Informatics and Web Ser-
vices. MIT Press, 2008.

[4] W. M. van der Aalst, N. Russell, A. H. ter Hofstede, and
N. Mulyar, “Workflow control-flow patterns: A revised view,”
Tech. Rep. BPM-06-22, BPM Center, http://bpmcenter.org/
wp-content/uploads/reports/2006/BPM-06-22.pdf , 2006.

[5] L. Arango-Vasquez and M. Gentilin, “Organizational couplings:
A literature review,” Innovar, vol. 31, pp. 151–168, 03 2021.

[6] M. Fullman, T. Jackson, P. Chamakiotis, and E. Russell, “Getting
on top of work-email: A systematic review of 25years of research
to understand effective work-email activity,” Journal of Occupa-
tional and Organizational Psychology, vol. 97(1), p. 74–103, 2024.

[7] H. Krawczyk and B. Wiszniewski, Analysis and Testing of Dis-
tributed Software Applications. John Wiley & Sons, Inc., 1998.

[8] N. Russell, W. M. van der Aalst, and A. H. ter Hofstede,Workflow
Patterns: The Definitive Guide. Cambridge, MA, USA: MIT Press,
2016.

[9] W. van der Aalst, T.Weijters, and L.Maruster, “Workflowmining:
discovering process models from event logs,” IEEE Transactions
on Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128–1142,
2004.

[10] OMG, “Business Process Model and Notation (BPMN), Version

17

http://bpmcenter.org/wp-content/uploads/reports/2006/BPM-06-22.pdf
http://bpmcenter.org/wp-content/uploads/reports/2006/BPM-06-22.pdf

2.0,” Tech. Rep. formal/2011-01-03, Object Management Group,
http://www.omg.org/spec/BPMN/2.0/PDF, 2011.

[11] J. Challenger, P. Dantzig, A. Iyengar, andK.Witting, “A fragment-
based approach for efficiently creating dynamic Web content,”
ACM Trans. Internet Technol., vol. 5, pp. 359–389, May 2005.

[12] G. D’Angelo, A. Di Iorio, and S. Zacchiroli, “Spacetime charac-
terization of real-time collaborative editing,” Proc. ACM Hum.-
Comput. Interact., vol. 2, pp. 41:1–41:19, Nov. 2018.

[13] Y. Sun, D. Lambert, M. Uchida, andN. Remy, “Collaboration in the
cloud at Google,” in Proc. 2014 ACM Conference on Web Science,
WebSci ’14, (New York, NY, USA), pp. 239–240, ACM, 2014.

[14] N. Russell, A. Ter, D. Edmond, and W. Aalst, “Workflow data pat-
terns: Identification, representation and tool support,” vol. 3716,
10 2005.

[15] W. van der Aalst, Process Mining: Data Science in Action. Springer
Publishing Company, Incorporated, 2nd ed., 2016.

[16] P. Porouhan, N. Jongsawat, and W. Premchaiswadi, “Workflow
mining: Discovering process patterns data analysis from mxml
logs,” in 2013 Eleventh International Conference on ICT and Knowl-
edge Engineering, pp. 1–8, 2013.

[17] S. Suriadi, R. Andrews, A. ter Hofstede, and M. Wynn, “Event log
imperfection patterns for process mining: Towards a systematic
approach to cleaning event logs,” Information Systems, vol. 64,
pp. 132–150, 2017.

[18] P. Dalmaris, E. Tsui, B. Hall, and B. Smith, “A framework for the
improvement of knowledge-intensive business processes,” Busi-
ness Proc. Manag. Journal, vol. 13, no. 2, pp. 279–305, 2007.

[19] R. Vaculin, R. Hull, T. Heath, C. Cochran, A. Nigam, and
P. Sukaviriya, “Declarative business artifact centric modeling of
decision and knowledge intensive business processes,” in 2011
IEEE 15th International Enterprise Distributed Object Computing
Conference (EDOC 2011), pp. 151–160, Aug 2011.

[20] C. D. Ciccio, A. Marrella, and A. Russo, “Knowledge-intensive
processes: Characteristics, requirements and analysis of contem-
porary approaches,” Journal on Data Semantics, vol. 4, pp. 29–57,
2014.

[21] S. Steinau, A. Marrella, K. Andrews, F. Leotta, M. Mecella, and
M. Reichert, “DALEC: A framework for the systematic evalu-
ation of data-centric approaches to process management soft-
ware,” Software & Systems Modeling, September 2019.

[22] V. Künzle and M. Reichert, “PHILharmonicflows: towards a
framework for object-aware process management,” Journal of
Software Maintenance and Evolution: Research and Practice,
vol. 23, no. 4, pp. 205–244, 2011.

[23] D. Boaz, Artifact-centric Business Process Management. BizArti-
fact, 2016. [Software].

[24] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. T. Heath, S. Hob-
son, M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and
R. Vaculin, “Introducing the guard-stage-milestone approach for
specifying business entity lifecycles,” inWeb Services and Formal
Methods (M. Bravetti and T. Bultan, eds.), (Berlin, Heidelberg),
pp. 1–24, Springer Berlin Heidelberg, 2011.

18

http://www.omg.org/spec/BPMN/2.0/PDF

	Introduction
	Workflow patterns
	Process communication level
	Process coordination level
	Basic Control Flow Patterns
	Advanced Branching and Synchronization Patterns
	Multiple Instances Patterns
	State-based Patterns
	Cancellation and Termination Patterns
	Iteration Patterns

	Pattern implementability issues

	Document-centric collaboration
	Proactive document-agents
	Document Coordination Patterns
	Distributed State Patterns
	Coupled State Patterns
	Embedded State Patterns

	Class Roster Case Study
	Class Roster Case Study

	Discussion
	Summary

