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Abstract
In this research paper, we examine recurrent and linear neural networks to determine the relationship between the
amount of data needed to achieve generalization and data dimensionality, as well as the relationship between data
dimensionality and the necessary computational complexity. To achieve this, we also explore the optimal topologies for
each network, discuss potential problems in their training, and propose solutions. In our experiments, the relationship
between the amount of data needed to achieve generalization and data dimensionality was linear for feed-forward
neural networks and exponential for recurrent ones. Our findings indicate that computational complexity exhibits an
exponential growth pattern as the dimensionality of the data increases. We also compared the networks’ accuracy in
both distance approximation and classification to the most popular alternative, Siamese networks, which outperformed
both linear and recurrent networks in classification despite having lower accuracy in exact distance approximation.
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1. Introduction

1.1. Objectives and Motivations
The first goal of this study was to investigate the

amount of data required to achieve model generalization.
For this, we needed to find optimal topologies for linear
(feed-forward) and recurrent architectures. We also aimed
to compare the abilities of those two networks against the
industry standard in comparative classification - Siamese
networks. Additionally, we tried to examine the relation
between the dimensionality and the computational com-
plexity needed.

1.2. State of the Art
In recent years, neural networks, as universal func-

tion approximators, have seen significant development,
becoming one of the most important tools in the field
of artificial intelligence. Their applications span a wide
range of domains, from image processing (e.g., through
convolutional neural networks [1]), to speech recognition
(thanks to models like Deep Speech [2]), and even text
generation (as seen in the recently popular models such
as GPT-3 [3]).

Initially, neural networks were used for simple prob-
lems, such as classifying data with a small number of fea-
tures. However, over the years, their ability to learn com-
plex patterns, along with the dynamic development of op-
timization techniques and the increase in computational
power, has led to their widespread application in more
challenging tasks. Examples include convolutional neu-
ral networks (CNNs) used in image processing tasks and
recurrent neural networks (RNNs), which play a key role
in sequential processing, such as speech recognition and
text analysis.

Due to their ability to represent data in the form of
multidimensional vectors, neural networks enable effec-
tive modeling of relationships between different obser-
vations, which is crucial in many applications. For in-
stance, Long Short-Term Memory (LSTM) recurrent net-
works have solved issues related to long-term memory in
sequences, problems that were previously unsolvable for
standard RNNs.

Modern neural networks are evolving toward more
complex models, such as hybrid networks and graph-
based models (Graph Neural Networks - GNN) [4]. These
models combine the advantages of different network
architectures, enabling more advanced approaches to
analyzing data with complex structures, such as social
or molecular networks. Moreover, the application of
Reinforcement Learning (RL) [5], in combination with

neural networks, allows for more efficient modeling of
decision-making sequences, which is crucial in problems
like robotics or autonomous systems.

In particular, Siamese networks, which are used for
classification tasks requiring the comparison of two ob-
jects, are gaining popularity in the context of problems re-
lated to distance approximation and similarity measures.
By using shared weights, these networks are more effi-
cient and scalable compared to traditional approaches.

In this paper, in addition to the simplest, feedfor-
ward, fully connected neural networks, we will also dis-
cuss recurrent network architectures.

One of the main applications of distance approxima-
tion using neural networks is image processing, where
comparing vector representations of images in feature
space is key. Research on the use of neural networks for
image analysis and comparison is based, among other
things, on metrics such as the Euclidean and cosine
distance. These studies have gained significance in the
context of tasks such as content-based image retrieval
and pattern recognition [6].

1.3. Overview of the Use of Distance Measures in
Machine Learning

1.3.1 Euclidean distance
Euclidean distance is one of the most widely used

distance metrics, especially for numerical data. For two
points p = (p1, p2, . . . , pn) and q = (q1,q2, . . . ,qn) in an
n-dimensional space, the Euclidean distance is defined as:

d(p,q) =
√

(p1 −q1)2 +(p2 −q2)2 + · · ·+(pn −qn)2

(1)
this metric is intuitive as it measures the "straight-line"
distance between points. Euclidean distance is commonly
used in algorithms like k-NN (k-Nearest Neighbors) and
K-means, where finding points with minimal distance is
crucial.

Applications:

▶ k-NN algorithms
▶ K-means clustering
▶ Principal Component Analysis (PCA)

1.3.2 Manhattan (City Block) Distance
TheManhattan distance, also known as the city block

distance, is calculated as the sum of the absolute differ-
ences of the coordinates. For points p and q, it is computed
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using the formula:

d(p,q) = |p1 −q1|+ |p2 −q2|+ · · ·+ |pn −qn| (2)

this distance is particularly useful in high-dimensional
spaces and in situations where movement is restricted
along axes, making it less susceptible to noise than the
Euclidean distance.

Applications:

▶ k-NN algorithms in high-dimensional spaces
▶ Clustering in irregular coordinate systems

1.3.3 Minkowski Distance
The Minkowski distance is a generalization of both

the Euclidean distance and Manhattan distance. It is de-
fined as:

d(p,q) =

(
n

∑
i=1

|pi −qi|p
)1/p

(3)

where he parameter p allows for customization of the dis-
tance measure to specific application requirements. For
p = 2, the measure becomes the Euclidean distance, while
for p = 1, it corresponds to the Manhattan distance.

Applications:

▶ Optimization in matching algorithms, depending on
data specifics

▶ Clustering algorithms

1.3.4 Cosine Similarity
Cosine similaritymeasures the angular difference be-

tween vectors, ignoring their magnitude. It is particularly
useful when directions are more important than the actual
distances between points. It is defined as:

d(p,q) = 1− p ·q
||p|| ||q||

(4)

this measure is widely used in text analysis, such as TF-
IDF vectors, as we often care about contextual similarity
rather than absolute differences.

Applications:

▶ Text analysis
▶ Natural Language Processing (NLP)
▶ Recommendation systems

1.3.5 Hamming Distance
Hamming distance measures the difference between

two binary vectors. It is defined as the number of positions
at which the two vectors have different values. For vectors

p and q, their Hamming distance is:

d(p,q) =
n

∑
i=1

I(pi ̸= qi) (5)

where I is the indicator function. Hamming distance is
used primarily for discrete data, such as comparing binary
strings or genotypes, in computational biology.

Applications:

▶ Algorithms operating on binary data
▶ Biometrics, DNA analysis
▶ Hopfield neural networks

1.4. Recurrent Neural Network (RNN) Operation
Algorithm
Recurrent neural networks (RNNs) (Fig. 1) offer a

promising method for approximating distances between
vectors due to their ability to process sequential data ele-
ment by element. They feature an architecture built with
feedback connections, allowing them to consider informa-
tion from previous processing stages in the final result.

The RNN operation algorithm can be presented as
follows:

1. Sequence Element Fetching: At the beginning of
the algorithm, one element is fetched from the data
sequence. Let us denote it as xt , where t is the ele-
ment index.

2. Element Processing: The fetched element xt is
then processed by the internal fully connected
layers of the RNN. The processing result is denoted
as ht .
This can be mathematically expressed as:

ht =Whxt +Uhht−1 +bh (6)

where Wh is the weight matrix of the hidden layer,
Uh is the weight matrix of the recurrent connec-
tions, bh is the bias vector of the hidden layer, ht−1
is the value of the hidden state from the previous
step (for t = 1, ht−1 is initialized to zero).

3. Output Forwarding: The processing result ht from
the hidden layer is fed back to the network input.
This is a key feature of RNNs, as it allows the net-
work to consider the context of previous sequence
elements when processing the current element.

4. Step Repetition: Steps 1-3 are repeated for subse-
quent sequence elements until all data is processed.

5. Result Generation: After processing the entire se-
quence, the RNN can generate an output, such as
classification, prediction, or translation. This out-
put is based on information from all sequence ele-
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Figure 1: Architecture of a Typical Recurrent Neural Network [7].

ments, considering dependencies and context.
The operation algorithm of recurrent neural net-

works is relatively simple, but it allows for efficient
processing of sequential data. Considering the context
of previous elements, RNNs are able to achieve better
results in many tasks.

2. Problems and Solutions

2.1. The Problem of Vector Scale
To accurately approximate distance measures, a

model must learn two key skills: approximating the
shape of the function and calibrating the scale of values.

Approximating the function structure involves the
neural network understanding the relationships between
input data and function values. The networkmust learn to
recognize patterns and correctly map changes in function
values in response to changes in input data.

Calibrating the scale of values, on the other hand, in-
volves adjusting the magnitude of the output values to the
correct scale. The neural network must learn to transform
input values into values that match the expected range.

Simply put, approximating the structure can be com-
pared to fitting the shape of a function’s graph, while cal-
ibrating the scale is responsible for scaling this shape ap-
propriately.

It is possible to simplify the process of calibrating the
scale of model values by dividing the input values by a
constant and multiplying the output values by the same
constant.

Figure 2: Euclidean Distance.

Minkowski Metrics (e.g., Euclidean (Fig. 2), Man-
hattan, Chebyshev) scale distances linearly when vectors

are multiplied by the same constant. For vectors a and b,
let c = ∥a−b∥. If a′ = ka and b′ = kb, then

c′ = ∥a′−b′∥= ∥k(a−b)∥= |k|∥a−b∥= |k|c. (7)

Thus, the distance scales by the factor |k|.
Cosine Similaritymeasures the angle between vec-

tors, making it scale-invariant. For a and b with

similarity(a,b) =
a ·b

∥a∥∥b∥
, (8)

if a′ = ka and b′ = kb, then

similarity(a′,b′) =
a′ ·b′

∥a′∥∥b′∥
=

=
k2 (a ·b)

|k|∥a∥ |k|∥b∥
=

=
a ·b

∥a∥∥b∥
=

= similarity(a,b).

(9)

Hence, cosine similarity (and its distance) does not change
when both vectors are scaled by the same constant.

Using the above data, we implemented the following
mechanism:

1. At the input, we calculate the coefficient k as the
maximum value among the input vectors

a⃗ = [a1,a2,a3, . . . ,an] (10)

b⃗ = [b1,b2,b3, . . . ,bn] (11)

k = max(a1,b1,a2,b2,a3,b3, . . . ,an,bn) (12)

2. Then we standardize the values in both vectors by
dividing them by the coefficient k.

a′ =
[a1

k
,
a2

k
,
a3

k
, . . . ,

an

k

]
(13)

b′ =
[

b1

k
,
b2

k
,
b3

k
, . . . ,

bn

k

]
(14)

3. The model calculates the distance for standardized
vectors, which is multiplied by the coefficient k before the
output:

d(a,b) = k ·d(a′,b′). (15)

In the case of cosine distance, the third step is omitted.

2.2. The Vanishing Gradient Problem
When using RNNs for sequence processing, we must

deal with the vanishing gradient problem. This problem
occurs when the gradient values become smaller and
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smaller during backpropagation. This happens because
of repeated multiplication of the gradient by weights
of neurons with values less than 1. This causes their
value to decrease exponentially. This problem signifi-
cantly hinders the learning of the model for long-term
dependencies.

One solution to the aforementioned problem is a spe-
cial type of recurrent network - Long Short-TermMemory.
LSTM solves the problem by introducing special memory
units that can maintain information for a longer time.

2.2.1 LSTM Structure
The main LSTM unit consists of several key

elements:

▶ Memory cell (cell state): Stores long-term information.
Information is added or removed through gates.

▶ Gates: Control the flow of information to and from the
memory cell. There are three main gates:

▶ Forget gate: Decides what information from the
memory cell should be forgotten. It is a sigmoid
layer that takes the previous hidden state and the
current input state and generates a value between
0 and 1, where 0 means "forget completely" and 1
means "keep fully".

▶ Input gate: Controls which new information will
be written to the memory cell. It consists of a sig-
moid layer that decideswhich values to update and
a tanh layer that creates new candidate values.

▶ Output gate: Decides what information from the
memory cell will be passed on as output. It is also
a sigmoid layer that modifies the cell state through
a tanh layer.

2.2.2 LSTM Operation
Each time step in LSTM works as described below.
Forget gate:

ft = σ(Wi f xt +bi f +Wh f ht−1 +bh f ) (16)

calculates which parts of the memory cell ct−1 should be
forgotten.

Input gate:

it = σ(Wiixt +bii +Whiht−1 +bhi) (17)

gt = tanh(Wigxt +big +Whght−1 +bhg) (18)

decides which new information gt will be added to the cell
state.

Cell state update:

ct = ft ⊙ ct−1 + it ⊙gt , (19)

is updated, combining old information ct−1 filtered by the
forget gate and new candidate values gt filtered by the in-
put gate.

Output gate:

ot = σ(Wioxt +bio +Whoht−1 +bho), (20)

ht = ot ⊙ tanh(ct), (21)

decides which parts of the updated cell state ct will be
passed on as output.

3. Our Approach

3.1. Linear Network
When constructing our neural network, we used

ready-made modules from the PyTorch library. This
network consists of nn.Linear layers and ReLU acti-
vation functions, which are created based on the given
layer sizes - at the input, when creating the model, it
therefore receives a list that sequentially describes the
sizes of subsequent hidden layers. The input size of the
network is defined as 2× input_dim, where input_dim is
the dimension of the input vectors. The last layer of the
network consists of a single neuron.

Strictly speaking, only the list of hidden layer sizes
is a hyperparameter of this network. However, consider-
ing the topology of the network by providing an exact list
would be very inconvenient, so in this work we mainly
use the number of layers and the coefficient Q

Q = 1− 1
n−1

n−1

∑
i=1

(
Li+1

Li

)
(22)

where n is the number of layers, Li is the number of neu-
rons in the i-th layer, Li+1 is the number of neurons in the
i+1-th layer.

The Q coefficient is intended to measure how the
sizes of the layers converge. In this work, we only con-
sider networks with a constant width (then Q = 0), and
those in which each subsequent layer is smaller.

Figure 3: Siamese Network Schematic.
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3.2. Recurrent Network

3.2.1 Model Hyperparameters
Similarly to linear networks, to construct our recur-

rent neural network (RNN), we used ready-made modules
from the PyTorch library. We chose the Long-Short-Term
Memory variant, available as nn.LSTM. The network ar-
chitecture is defined by four hyperparameters:

▶ hidden_dim_r: Specifies the number of neurons in
the recurrent module. It has the same value for the re-
current layer and for the fully connected input layers.
This number affects the complexity of the model and
its ability to learn the dependencies in the data.

▶ hidden_dim_fc: Specifies the number of neurons in
the output layer. This number affects the complexity
of the model and its ability to learn the dependencies
in the data.

▶ recurrent_layers_number: Specifies the number of
recurrent layers in the network. More layers allow for
considering the context from further elements of the
sequence.

▶ fully_connected_layers_number: Specifies the
number of fully connected output layers. These layers
transform the output of the recurrent layer to the
desired output format.

An important feature of recurrent networks is that
they do not require a change in input size. The input size
is automatically adjusted to the size of the sequence. This
means that the network can process sequences of differ-
ent lengths without the need to modify its structure. The
recurrent layer will perform a number of iterations equal
to the length of the sequence.

3.2.2 Input Description
The data passed to the input of the recurrent

model differs from the data used in linear and Siamese
networks. Instead of a batch of pairs of vectors, we get a
three-dimensional array with dimensions batch_size ×
vector_size × 2. This tensor contains a set of pairs of
corresponding elements from two vectors. A single pair
constitutes an element of the sequence that is processed
during one pass of the recurrent network. This approach
allows the network to better learn the dependencies
between corresponding elements of the vectors, which is
crucial in the case of Euclidean and cosine distances.

Our Siamese network model was built using ready-
made modules from the library. This network consists
of nn.Linear layers, which are created based on defined
layer sizes and the number of hidden layers, resulting in
a multi-layer structure.

The model takes three key parameters during initial-

Figure 4: Reccurent network schematic

ization: input_dim, hidden_dim, and output_dim,
which correspond to the input dimension, the hidden
layer dimension, and the output dimension. Furthermore,
the number of hidden layers is determined by the param-
eter num_layers. The input, in the form of two vectors,
is passed separately to two twin networks, which return
vectors of size input_dim, between which the Euclidean
distance is then calculated.

This is the most classic scheme of a Siamese network
(Fig. 3). However, not wanting to impose an impossible di-
mensionality reduction task on the network, we decided
to limit our research to cases where the parameter out-
put_dim is equal to the parameter input_dim.

In such a situation, one could observe that the net-
work would only have to pass the unchanged input vec-
tors to the output to achieve 100% accuracy. In view of
this fact, we did not consider this network in the context
of learning the Euclidean distance.

Although recurrent networks allow processing
sequences of different lengths without the need to adjust
the network topology, we were unable to train a universal
model for vectors of arbitrary length. This is due to the
mechanism of recurrent networks - adding additional
elements to the vector can disrupt the network’s op-
eration due to additional passes through the recurrent
network. This problem does not occur when reducing the
size of the vector, as one can then apply the *padding*
technique, which consists of filling in missing elements
with the value 0.

4. Experiments and Results

4.1. Hyperparameter Optimization of a Linear
Model
This section is dedicated to the optimization of hy-

perparameters for a linear model. The goal is to find the
best possible network topology. We will also examine the
impact of the amount of data on the discrepancies be-
tween the results for training data and test data.

4.1.1 Topology in the Linear Model (Fig. 5)
Experiment 1 To determine the optimal topology
of a linear model for 10-dimensional vectors, we first
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generated different possible arrangements, sizes, and
numbers of layers for the same computational complexity.
For these settings, neural networks approximating the
Euclidean distance were trained and tested multiple times
for 10,000 epochs. Based on these results, we generated
the Fig. 5, from which we can conclude that:

▶ two layers are the optimal number. Surprisingly,
adding more layers does not seem beneficial.

▶ For the coefficient Q, the optimal value is 0.75. (An
example of such a network is a network with the fol-
lowing layer sizes: 248, 186, 139, 104, 78, 59). It can
also be observed that, in general, networks that con-
verge more smoothly perform better.

4.1.2 Required Computational Complexity
In order to derive what level of computational com-

plexity is required to achieve a satisfactory accuracy of
the network for selected dimensionality, we selected all
the networks achieving a loss function of 0.01 from the
data generated in the experiment 4.1.1 then grouped them
by their dimensionality and calculated the average of each
group. From this transformed data, figure 6 was created.

▶ The shape of the function can be most accurately de-
scribed as exponential-like.

4.1.3 Required Amount of Data
Experiment 2 We also conducted an experiment where
the best-performing networks for a given dimensionality
were trained for different sizes of training data in a range
between 1000 and 1000000. In these kinds of experiments,
we can observe a so-called "point of diminishing returns,"
i.e., a moment fromwhich addingmore vector pairs brings
little improvement (see Fig. 7).

Based on the analysis of many graphs, such points
were selected for many dimensions, and Fig. 8 was cre-
ated.

▶ The relationship between dimensionality and the

Figure 5: On the left: the dependence of the average loss function
value on the number of layers, on the right: the dependence of the
average loss function value on the Q factor (i.e on convergence)

Figure 6: Average complexity of a network with a value of the loss
function 0.01 for a given dimensionality

number of data points needed to reach the point of
diminishing returns is linear.

4.2. Hyperparameter Optimization of a Recurrent
Model
This section is dedicated to the optimization of hy-

perparameters for a recurrent model. The goal is to find
hyperparameter values that will allow for:

▶ Minimizing the amount of data needed to train the
model: This is important when training a model on
real, limited data.

▶ Minimizing the absolute error: Reducing the absolute
error will lead to more accurate results in approximat-
ing the distance between vectors.

▶ Minimizing hyperparameters: Reducing the number
of neurons in a layer and the layers themselves will
allow faster calculations.

For the purposes of the research, some simplifications
were made, thanks to which the research could be carried
out more efficiently and with a wider range of data. The
simplifications are as follows:

▶ It was assumed that the training ends for the
loss_tolerance parameter equal to 0.05. A tolerance of
error with such a value may be insufficient for many
applications of approximating the distance between
vectors, but this study is only intended to illustrate
the trends appearing during training.

▶ It was assumed that if the number of epochs of
data needed to train the model exceeds the value of
max_epochs, then overfitting has occurred.

Both of these assumptions should not significantly
affect the conclusions drawn from the research presented
below.
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Figure 7: Function loss for train and test data versus the size of the
dataset. Adding more data beyond the 5th datapoint does not lower
the loss function, thus the 5th datapoint is "the point of diminishing
returns".

Figure 8: Dataset size necessary to reach the point of diminishing
returns versus dimensionality

4.2.1 Number of Layers in a Recurrent Module
The first step is to examine the relationship between

the number of layers in a recurrent module and the
model’s learning speed. These layers aim to find the
relationship between two corresponding elements of
a pair of vectors. When investigating the number of
neurons in a recurrent module, it should be remembered
that the computational complexity of the model grows
very quickly with increasing this hyperparameter.

Experiment 3 (Subexperiment 3.1) The experiment
consists of selecting several input_dim parameters and
conducting training for them with a continuously in-
creasing recurrent_layers_number parameter. This allows
us to find the range of recurrent_layers_number values
where the parameters with the best training results are
located. For the experiment, we chose the following
hyperparameter values:

▶ input_dim = [15, 30, 45, 75]
▶ hidden_dim_r = [24, 32, 64]
▶ hidden_dim_fc = hidden_dim_r
▶ learning_rate = 0.001
▶ recurrent_layers_number = [2, 4, 6, . . . , 64]
▶ fully_connected_layers_number = 2
▶ loss_tolerance = 0.05
▶ max_epochs_number = 15000

Due to the occurring overfitting effect, the trainings
were stopped at the moments when all the data contribut-
ing any value to the research were collected.

On the Figs. (9) we can observe several key phenom-
ena:

▶ The input size significantly affects the amount of data
needed to train themodel - based on the collected data,
the smaller the input size, the faster the learning and
the higher the resistance to overfitting.

▶ The number of neurons in the recurrent and output
layers significantly affects the training results - as can
be seen, in most cases, smaller numbers of neurons
have a positive impact on themodel’s results and delay
the appearance of overfitting. The exception is the last
graph, where hidden_dim_r and hidden_dim_fc with a
value of 32 performed better.

▶ The range where we should look for the optimal num-
ber of layers in the recurrent module is at the begin-
ning of the examined range.

Experiment 3 (Subexperiment 3.2) The experiment
consists of training themodel for different numbers of lay-
ers in the recurrent module and finding the most optimal
one. This time, the range [1, 7] is examined, due to the
results obtained in Experiment 3.1. First, we assume the
following hyperparameter values:

▶ input_dim = [5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125,
150]

▶ hidden_dim_r = [32, 64]
▶ hidden_dim_fc = hidden_dim_r
▶ learning_rate = 0.001
▶ recurrent_layers = [1, 2, 3, . . . , 7]
▶ loss_tolerance = 0.05
▶ max_epochs_number = 20000

Models with the above hyperparameters were
trained multiple times, the number of epochs was divided
by the minimum value in the corresponding set and av-
eraged. The results also include those trials in which the
model’s error function did not converge to the specified
value within 20000 epochs of data. However, they should
not significantly affect the conclusions drawn from this
study.

The results of the study are presented in Fig. 10.
From the graph, we can read that the model learned best
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Figure 9: Number of layers in the recurrent module Experiment 3.1

when there were two layers of neurons in the recurrent
module. A sudden drop is also visible at the point corre-
sponding to five layers with a dimension of 32 neurons,
but it does not occur for layers with a dimension of 64
neurons, so we reject it from potential candidates.

4.2.2 Number of Fully Connected (Output) Layers
Another key hyperparameter in the recurrent net-

work model is the fully connected output layers. Their
task is to transform the result obtained from the recurrent
module into the approximated distance.

Experiment 4 In this experiment, we train the model
multiple times, for continuously increasing values of
the parameter fully_connected_layers_number. The goal
is to observe the relationship between the amount of

data needed for learning and the number of layers. The
trainings were called for the following hyperparameters:

▶ input_dim = [15, 30, 45, 75, 100]
▶ hidden_dim_r = [32, 64]
▶ hidden_dim_fc = hidden_dim_r
▶ learning_rate = 0.001

▶ recurrent_layers = [2, 4, 6, . . . , 24]
▶ loss_tolerance = 0.05
▶ max_epochs_number = 15000

Models for the given hyperparameters were trained
multiple times and their results averaged. From the re-
sults, we can draw the following conclusions:

▶ More than 10 layers do not significantly improve train-
ing speed.

▶ A larger number of neurons delays overfitting.
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Figure 10: Number of layers in the recurrent module Experiment 3.2

▶ If we care about high model efficiency after training
and have enough data, a number of layers in the
range [2, 4] will handle this task well. However, if our
dataset is limited and computation time after training
does not matter, we can invest in a larger number of
layers.

4.2.3 Number of neurons in the recurrent module
The number of neurons in the recurrent module

nn.LSTM is responsible for the better ability of the model
to find dependencies between subsequent data elements.
This value is crucial from the perspective of model
efficiency; the time needed for calculations grows very
quickly with an increase in this hyperparameter.

Experiment 5 The experiment consists of training the
model multiple times for changing values of hidden_dim_r
and checking the dependence of the value of this parame-
ter on the amount of data needed to train the model. The
model is trained in this way for different lengths of vec-
tors. The training parameters are as follows:

▶ input_dim = [15, 50, 75]
▶ hidden_dim_r = [16, 32, 48, . . . , 256]
▶ hidden_dim_fc = 64
▶ learning_rate = 0.001
▶ recurrent_layers = [2, 4, 6, . . . , 24]
▶ loss_tolerance = 0.05
▶ max_epochs_number = 15000

Analyzing the Fig. 12, we can draw the following
conclusions:

▶ The overfitting effect becomes noticeable at a lower
number of epochs for larger input sizes. Specifically,
for input_dim = 75, the training converges quickly
but shows signs of overfitting after approximately
150 epochs, whereas for input_dim = 50 overfitting
is present at around 200 epochs. For input_dim = 15,
the number of required epochs remains more stable.

▶ The number of neurons in the recurrent module in the
range [32, 64] will handle the task well and be compu-
tationally efficient.

4.2.4 Number of neurons in fully connected layers in the out-
put module
The number of neurons in a single layer of the output

module is responsible for amore precise transformation of
the output of the recurrent module to the expected result.
The first layer has an input size of hidden_dim_r and an
output size of hidden_dim_fc, and the last one has an input
size of hidden_dim_fc and an output size of 1. The rest of
the intermediate layers have both input and output equal
to hidden_dim_fc.

Experiment 6 The experiment consists of training the
model multiple times for a continuously increasing pa-
rameter, this time hidden_dim_fc, and observing changes
in the amount of data needed for training. The training
parameters are as follows:

▶ input_dim = [15, 50, 75]
▶ hidden_dim_r = 64
▶ hidden_dim_fc = [16, 32, 48, . . . , 256, 288, 320, 352, . . . ,
512, 578, 642, . . . , 1024, 1152, 1280, . . . , 2096]

▶ learning_rate = 0.001
▶ recurrent_layers = [2, 4, 6, . . . , 24]
▶ loss_tolerance = 0.05
▶ max_epochs_number = 15000

As can be seen in Fig. 11, a properly selected number
of neurons in the output module can improve the model’s
results several times. For all three input sizes, the shape
of the graph seems to be similar. The optimal values of
the parameter hidden_dim_fc seem to be in the range [250,
750]. For larger values, a slight performance deterioration
can be observed.

4.2.5 Amount of data needed for training
Experiment 7 The experiment consists of training the
neural network multiple times for a continuously increas-
ing input size. With each epoch, new data is generated, as
in previous experiments, which allows us to capture the
worst case of data demand for a specific input size. The
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Figure 11: Number of fully connected (output) layers Experiment 4

network will be trained until the loss function value is less
than 0.5.

The average growth rate (where the growth rate is
defined as ∆V

∆D , where ∆V is the change in the number of
vector pairs needed and ∆D is the change in dimensional-
ity) is equal to 3031 vector_pairs

dimension . However, toward the right
end (higher input dimensions), the curve steepens signif-
icantly, indicating an exponential or superlinear growth
trend. From Fig. 14, we can see that the demand for data
grows quite rapidly with the length of the vectors, even
though the tolerance that we have adopted is not large. It
is worth noting that we can reduce this demand by first
generating our dataset and then training the network on
its permutations.

4.2.6 Conclusions
From the conducted experiments, it follows that the

best model for approximating the Euclidean distance is a
model with parameters close to those given below:

▶ recurrent_layers_number = 2
▶ fully_connected_layers_number = 3
▶ hidden_dim_r = [32, 64]
▶ hidden_dim_fc = [256, 750]

It is possible that for increasing input size, these
parameters will have to be adjusted, but due to the rapidly
increasing computational complexity of the recurrent
module, relative to the input size, the recurrent model
may not be the best choice for very large vector sizes.
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Figure 12: Number of neurons in the recurrent module Experiment 5

4.3. Data-Based Distance Metrics
In this work, we also wanted to investigate the so-

called "Sample-Based Distance Metrics" where distances
are defined a priori by humans; however, it is difficult
to find publicly available datasets that we would need,
and gathering such data exceeded our organizational and
logistical capabilities. Nevertheless, to take some initial
steps in this area for future research, we tried to simu-
late this type of situation using algorithms that create dis-
tance metrics based on data. For this purpose, we used
the metric-learn library [8] and the algorithms contained
therein. The research was conducted on many algorithms
(LMNN, RCA, NCA, etc.), but in each case, similar depen-
dencies could be observed, therefore, we present only the
results of using the LMNN algorithm.

Experiment 8 (Subexperiment 8.1) The experiment
was conducted by running the algorithm on the Iris
dataset, calculating all distances between pairs of in-
stances in the Iris set using this metric, and then using
part of these as a training set for the selected neural
network. In this way, a Siamese network (Fig. 15), a linear
network (Fig. 16), and a recurrent network (Fig. 17) were
trained for 200 epochs.

Experiment 8 (Subexperiment 8.2) Additionally, we
then performed classification using the KNN algorithm
and trained neural networks, resulting in accuracies of
53% for Siamese, 49% for recurrent, and 37% for linear
networks. These results lead to an interesting conclusion
that Siamese networks, despite achieving lower accuracy
in distance measures, achieve better results in classifica-
tion.

Figure 13: Number of epoches in the Experiment 6.

Figure 14: Data demand for training the recurrent network.

5. Discussion

5.1. Comparison of distance approximation results
The results of the experiments showed that recurrent

networks generally achieve better results in approximat-
ing the distances between the vectors compared to linear
networks, and they work better than Siamese networks.
However, when using networks in KNN classifications,
the Siamese architecture outperforms both linear and re-
current networks.
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5.2. Topologies

5.2.1 Topology of reccurent model
In the research on the number of recurrent layers, it

was observed that increasing the number of LSTM layers
up to a certain point improves the quality of the approxi-
mation. The optimal solution for most of the tested cases
was an architecture with two recurrent layers. A larger
number of layers led to problems related to overfitting the
model, which slowed the learning process.

Similar effects were observed when analyzing the
number of neurons in the recurrent module. The larger
the number of neurons, the longer the model learned, but
at the same time, the effect of overfitting was delayed.
The optimal number of neurons in the tested configura-
tions ranged from 32 to 64, which allowed a good balance
between learning time and model accuracy. It is possible
that the number of neurons will need to be increased for
extremely large input sizes to improve the ability of the
recurrent module to remember long dependencies.

Figure 15: Error distribution for the Siamese network trained for 200
epochs for the LMNN algorithm.

Figure 16: Error distribution for the linear network (feed forward)
trained for 200 epochs for the LMNN algorithm.

Figure 17: Error distribution for the recurrent network trained for
200 epochs for the LMNN algorithm.

5.2.2 Topology of linear model
Linear models appear to function best when they

include two layers, adding more of them did not appear
to improve accuracy of the network; this may be due to
overfitting, or the fact that more complex networks may
need more time (i.e., more epochs) to reach the same
level, while in our case each model was trained for the
same number of epochs.

Networks that converge smoothly (Q factor of 0.75
or higher) consistently outperform those that converge
faster. This could be caused by the last layers of mod-
els that converged fast being too small to contain all the
necessary information.

The necessary complexity to accomplish given accu-
racy appears to be increasing exponentially with the in-
crease in dimensionality.

5.3. Influence of Data Quantity on Model Efficiency
Experiments have also confirmed that the amount

of input data has a significant impact on the quality of
the approximation. Models with fewer data dimensions
achieved satisfactory results faster and were more resis-
tant to overfitting. However, for data with a higher num-
ber of dimensions, a significantly larger number of train-
ing examples was required for the model to achieve an
acceptable level of generalization.

Graphs showing the relationship between the
amount of data and model quality (loss function) indicate
a linear relationship between data dimensionality and
the number of needed samples for feed-forward archi-
tecture and an exponential relationship for recurrent
architecture.

This discrepancy suggests that the feedforward ar-
chitecture is better suited for higher-dimensional data.
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5.4. Classification Based on Distance Approxima-
tion
An interesting result of the experiments was the

analysis of classification results based on approximated
distances, especially when using Siamese neural net-
works. Although these networks achieved slightly worse
results in approximating the distance itself, they proved
to be more effective in the classification task. Siamese
networks, thanks to their architecture designed to
compare vector pairs, achieved the highest classification
accuracy of 53%, outperforming both recurrent networks
(49%) and linear networks (37%).
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