GDANSK UNIVERSITY
OF TECHNOLOGY

| | TASK Quarterty 27 (4) 2023

Neural Networks in solving Minesweeper
K. Lubarski?, B. Samujto, K. Wszeborowski

Department of Computer Communications, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology
Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland

https://doi.org/10.34808/FTWJ-Q764

Abstract

The purpose of this article is to present the operation of certain neural networks in solving the Minesweeper game
and to assess whether it is possible to represent the decisions made by these neural networks in an understandable
way using logical rules. Existing solutions such as CSP (Constraint Satisfaction Problem) were utilized to design an
algorithm that analytically solves the Minesweeper game. The results obtained were then used to train Multi-Layer
Perceptron (MLP), Encoding Neural Network (ENN), and Convolutional Neural Network (CNN) models. The CNN
emerged as the best-performing network. Based on the tests conducted by this network, a decision tree was constructed
that represents the network’s logic for these specific tests with approximately 90% accuracy. Ultimately, none of the
tested neural networks were able to match the analytical approach. However, based on the decision trees obtained for
the functioning networks (mainly CNN), it was inferred that, in theory, with a sufficiently large number of tests, it

should be possible to closely replicate the network’s operation using logical rules (nested conditional statements)

Keywords:

artificial neural networks, minesweeper, decision tree

2E-mail: s188569@student.pg.edu.pl

https://doi.org/10.34808/FTWJ-Q764

1. Introduction

Minesweeper is a simple, single-player logic game
that involves uncovering an entire board containing hid-
den mines. The game is played in turns. In each turn, a tile
is selected to uncover. If the chosen tile does not contain
a mine, a portion of the board is revealed; however, if a
tile with a mine is selected, the game is lost automatically.
The board consists of tiles that are gradually uncovered.
The numbers on these tiles indicate how many mines are
adjacent to that specific tile. The game itself has several
difficulty levels, determined by the size of the board and
the number of mines it contains[1].

1.1. Motivations

The main goal was to develop an analytical/logical
method that, through appropriately arranged systems
of equations, would determine the rules for selecting
the safest move for a given situation on the board or
identifying where the mines are located. The next step
involved using the results from this approach to train an
artificial neural network and achieve the best possible
outcomes. The ultimate objective was to define the rules
of gameplay based on the outputs provided by the neural
network for specific board states.

1.2. Problems

The main challenges that might be encountered in
achieving the objectives were:

1. The selection of an appropriate analytical method
and the use of its results as a training dataset for
the artificial neural network.

2. The selection of the most suitable type of neural
network for playing Minesweeper.

3. The interpretation of the network’s output results
and their conversion into gameplay rules.

2. State of the art

2.1. Analytical methods

1. Single-point strategy

This is a popular approach that appears in many
studies related to Minesweeper. In brief, this
method involves identifying one cell adjacent to
a number as flagged (containing a mine), usually
based on randomness or an approximate choice.
Then, any adjacent number with not uncovered

tiles next to it is selected, and a simple formula is

applied[2]:

Mine = Number — Ad jacentFlags (1)

If the result of this operation is zero, the covered
tiles around the selected number are considered
safe. Conversely, if the number equals the count
of adjacent flags, the remaining tiles are identified
as mines[3]. In other cases, other tiles are selected
as flagged (Figure 1).
this strategy, such as remembering certain tiles
as less safe or making better flagging choices.
However, the main issue remains the element of
randomness[3].

There are extensions to

11 11

10111 1/1/11
|] 111 |

(@ (

Figure 1: This figure presents the principle of operation of the single-
point method.

2. Constraint Satisfaction Problem (CSP))

This method is relatively simple yet effective in its
operation. It involves marking all unknown tiles ad-
jacent to a number and then setting up a system
of equations. The unknown tiles around a given
number are equated to its value[4][5][6][3]. The
system is then solved using any method, such as
Gaussian elimination. As a result, it is determined
whether a given tile contains a mine or not, or if an
unequivocal result is unavailable. This method has
zero randomness; however, it is not 100% effective,
as there are times when a definitive solution cannot

be obtained[4][6].

1
2
2
2
|

Figure 2: A fragment of a Minesweeper game board.

Figure 3: A fragment of a Minesweeper game board with highlighted
auxiliary values.

Figure 2 shows a small fragment of the game board,
presented in a column format for a clearer illustration of
the CSP algorithm’s method. Next, in the Figure 3 the
same board as in Figure 2 is shown, but with the unknown
tiles marked with x’s — our unknowns.

Xx1+x =1 (2)
X1 +x24+x3=2 (3)
X +x3+x4 =2 (4)
xX3+x4+x5 =2 5)
x4+x5=1 (6)

Following this, the system of equations presented
above is constructed based on the contents of the board
This system must be solved using any
method, with the constraint that the values in the system
of equations must be integers. After obtaining the
resulting system, the status of the previously unknown
tiles can be assessed. If a given x is zero, the tile is safe;
if the unknown equals 1, the tile contains a mine. Any
other values usually indicate that the content of the tile
cannot be determined with 100% certainty. The final state
of the board is then obtained as shown in Figure 4.

i
2
i|2
2
1

Figure 4: The resulting game board.

and our X’s.

2.2. Heuristic methods

1. Supervised Learning

This approach is the first to require the use of
datasets generated based on analytical methods to
achieve measurable results. In this solution, a given
board state is the input state, and the action is to
uncover a specific tile[7]. Based on what the given
action has provided (information derived from
the analytical method), i.e. uncovering numerous
new tiles, hitting a mine, or uncovering a single
tile, the result is evaluated accordingly[7]. The
model needs to be trained on a large amount of data

2. Q-learning

This approach is similar to the previous method
but with some differences. Notably, the model
independently makes decisions during a specified
number of games. The results are then evaluated
accordingly. Following this, an attempt is made
to solve Minesweeper using the model. Decisions
are then made based on the knowledge acquired
during training[7]. Unfortunately, the number of
possible combinations increases as the board size
grows, which requires very lengthy training of the
model to improve its performance[8].

A potential issue with both approaches mentioned
above could be the number of game states the
model needs to remember and the way they are
evaluated (we want to do this as accurately as pos-
sibly). However, we can make certain assumptions
and evaluate some boards and configurations as
less important or irrelevant[1], which ultimately
makes it easier to assess effectively. This could help
improve the results[1].

3. Filter-based method

This approach involves selecting a specific tile and
assessing the probability of it containing a mine
based on a constructed sample of filters. Such a fil-
ter assumes a sample neighborhood and evaluates
each tile based on how safe its selection is. A set of
filters (Figure 5) is then applied to the given portion
of the board in a specific and predetermined order
(which is not without significance)[9]. Ultimately,
a rating for each tile is obtained. After evaluating
each tile in this manner, a decision is made about
which tiles to uncover.

Possible mine distribution:

Current grid situation:

OREG
% % % 9 % 5% numerate
T T T] _Fnumerate || [e]e
O L
IjSafeBlock I: L L
(& é
(0]
1@ é 1/2 — Lose Ii . ‘l
o 8| 12—0 - 8] ¢ ||
robe g,]
\! & | Probe g;: 1/3 — Lose l: 1 LI 1 =
|T1 0 ‘l 1/2—Lose 2/3—1 E L
o e Ve 1 LLlel] le
n.‘nnn Probe g Probe o.: li é
1/3 — Lose o0 9 . ! ’
_1;1 0 1/6 — 0 13— Lowe [I
0O 6l | s 1320 (o]]S,
[[&]:[&]) v6—2 [] [&] [®

Figure 5: This figure presents example filters and their principle of

operation.

2.3. Neural Networks

1.

\S]

Feedforward Neural Networks (MLP)

This is the first and simplest type of neural network
in the group. Such a network consists of multiple
interconnected layers, with two layers being
visible: the input and output layers (which can be
of any size). Between these, there are so-called
hidden layers that process data in their own way.
To achieve effectiveness, the network needs to be
trained on sufficiently large datasets and through
a sufficient number of iterations. The goal of this
network is to produce results as close as possi-
ble to the actual output based on the given input[2].

. Convolutional Neural Networks (CNN)

This network is similar to the heuristic filter-based
approach. Here, a set of filters of a defined size and
parameters is also defined, which are then applied
to the input data in a specified order. The difference
is that the filter is purely mathematical (figure 6)[2].
This network is similar to the heuristic filter-based
approach. Here, a set of filters of a defined size and
parameters is also defined, which are then applied
to the input data in a specified order. The difference
is that the filter is purely mathematical (Figure 6)[2].

1|1(1(0]|0
0 oj1|{1|1(0 413|4
0/1]0 Oj{0|1/1/1| |2|4|3
0 0({0f1/1/0| [2(3]|4
Filter 0{1(1/0,/0, Convolved
Input matrix festures

Figure 6: This figure presents the principle of operation of filters in
a Convolutional Neural Network (CNN).

One noteworthy aspect is the approach to evalu-
ating the risk of tiles on the Minesweeper board
when using neural networks. The first approach
involves providing the entire board as input and
obtaining the risk assessment for each covered tile
as output. The second method involves defining a
"sliding window." The risk is evaluated only within
this window (applied to a portion of the board),
which is then moved across different parts of the
board. The final approach is a slight variation
of the aforementioned "sliding window" method.
It focuses on determining the risk for only one
central tile, with tiles outside this central region
being considered unknown (Figure 7)[2].

e R

11 0.97 0.40

3 o
2 o092

Input Output

Neural network

- ek N) = el | -
-l
-

-k N) = el e -
°
&
2

u :> I:'> 0.95 1
3
2

Figure 7: This figure presents the principle of operation of the "slid-
ing window".

It is worth noting that there are other neural
network models as well as alternative heuris-
tic approaches to solving the Minesweeper game.
However, these do not enjoy widespread popularity
and are not extensively discussed in the available
scientific literature.

3. Our Implementation

At the outset, it is worth mentioning that Python was
chosen as the programming language due to its compati-
bility and the availability of built-in solutions. All the code
written for the project can be found in the repository on
GitHub.

https://github.com/awry1/minesweeper_ai

3.1. Analytical

1. CSP

In our implementation, we decided to use the CSP
approach described in section 2. We chose this
analytical approach due to its simplicity of imple-
mentation and the effectiveness of the method. To
solve the resulting systems of equations, we used a
modified Gaussian algorithm (with values required
to be integers and within a finite range for correct
interpretation of the results). If a safe move could
not be determined, the algorithm would choose
one of the available uncertain tiles.

. Improved Approach

When the algorithm could not make a decision that
would not result in a loss and needed to make a
choice to continue the game, the basic approach re-
lied on randomly selecting an unknown tile. We de-
cided to seek a solution that would minimize the
chance of hitting a mine. To assess the risk of un-
resolved tiles in the basic method, we constructed
a formula that takes into account the revealed tiles
and previously found mines.

This algorithm, along with the CSP method, helped
us in creating datasets for training neural networks.
The algorithm that determines the probability of a
specific tile being a mine calculates it by analyzing
the neighboring tiles. For each surrounding digit,
the partial probability assigned to it is computed
by dividing the value of that digit by the number
of covered neighboring tiles. The final result is ob-
tained by summing the partial probabilities, which
is then subjected to normalization.

Table 1: CSP Table

Game/Results | Wins | Loses | No decision
7x7 7 mines 12,7% 0% 87,3%

10x10 10 mines | 33,9% 0% 66,1%

20x20 20 mines | 92,2% 0% 7,8%

Table 2: Enhanced CSP Table

Game/Results | Wins | Loses | No decision
7x7 7 mines 73,2% | 26,8% 0%

10x10 10 mines | 89,1% | 10,9% 0%

20x20 20 mines | 99,9% 0,1% 0%

The differences in results between the two ap-
proaches arise from the standard CSP method’s

inability to determine the safety of every tile on
the board. This issue occurs when the matrix
equation solution does not specify a single safe
tile (only identifying mines or failing to find any
solution). The enhanced approach, which includes
additional risk calculations, addresses this problem
by estimating approximate probabilities for tiles
whose safety cannot be determined by the standard
CSP method. Unfortunately, this introduces the
potential for algorithm failure; however, the rate
of such failures is significantly lower compared to
the number of prematurely ended games with the
standard CSP approach.

3.2. Neural Network
1. Multi-Layer Perceptron (MLP) Network

In our case, we decided to use a pre-built solution
available in the PyTorch library. Our network
consists of 2 mandatory layers — input (game board
/ board segment) and output (risk of individual cells
/ specific tile) — as well as a predefined number
of hidden layers that process the data. We chose
to use 4 hidden layers containing between 10 and
100 neurons each. The activation function selected
was RELU. The output is passed through a sigmoid
function to ensure that the result is within the
range of 0.0 to 1.0.

. Convolutional Neural Network (CNN)

In this case, we also utilized an architecture avail-
able in the PyTorch library. Our network consists
of 3 filters with a base size of 5x5 and padding set to
2. The number of neurons in the layers ranges from
10 to 64. Each layer is activated using the RELU
function, and, similar to the previous solution, the
final result is passed through a sigmoid function.
We also apply one-hot encoding to the game
boards. This involves encoding certain key board
parameters, which cannot be numerically defined
by default or are computationally demanding, as
numbers to facilitate the network’s evaluation of
the game states.

. Encoding Neural Network (ENN)

This type of network is an extended approach com-
pared to the MLP networks. The model consists of
layers with typically varying numbers of neurons,
arranged in a shape reminiscent of a sideways
hourglass. In this arrangement, the number of
neurons gradually decreases from the input layer

to the central layer, and then increases again after
passing the midpoint. This shape is intended to
compress data in the first part and then decompress
it in the second part[10]. As a result, this type of
network can achieve better performance compared
to the feed-forward approach. Similarly to the two
previously described solutions, this network also
uses the RELU activation function and a sigmoid
function at the output.

4. Network Parameters
Here is the translation and a possible format for pre-
senting the detailed parameters of the neural net-
works used in the implementation (Tables 3, 4):

Table 3: Parameters for different Neural Networks.

Par/NN MLP CNN ENN
Epochs 300 300 300
Criterion MSE MSE MSE
Optimizer Adam Adam Adam
Learning rate 0.00005 0.00005 0.00005
Weight decay 0.000025 0.000025 0.000025
Step size 100 100 100
Gamma 0.9 0.9 0.9
Input layer size | board size | board size | board size
Output layer size | board size | board size | board size

0.8*input,

0.6*input,

25 5x5, 0.4%input,

Hidden layers 530 1;: 25 5x%5, 0.2"input,
’ 64 5x5 0.4*input,

0.6*input,

0.8*input

Table 4: Parameters for different Neural Networks using "sliding

window" method.

Par/NN MLP 5x5 | CNN 5x5
Epochs 300 300
Criterion MSE MSE
Optimizer Adam Adam
Learning rate 0.00005 0.00005
Weight decay 0.000025 0.000025
Step size 100 100
Gamma 0.9 0.9
Input layer size 25 25
Output layer size 1 1
25 5x%5,
Hidden layers sizes 5;)(’) 1;);) ’ 25 5x5,
’ 64 5x5

3.3. Decision Tree

Since Minesweeper is a game that can be solved
using specific logical rules, it was decided that it would
be worthwhile to attempt to create decision trees from
the solutions. To construct the tree, the results obtained
from the methods described earlier, which solve the board
based on the "sliding window" approach, were used. An
accurate model was ultimately created that correctly
assessed the specific properties of the board and, based
on those properties, proposed a specific path along with
the associated risk of hitting a mine. This approach
enables the description of Minesweeper rules and the
operation of a specific type of network in a manner that
is understandable to humans.

Figure 8 shows a fragment of the decision tree. Each
node consists of several key elements. The most impor-
tant of these are the coordinates of the cell in the "win-
dow" and the value of the number beneath it, used for
classifying the central cell.

The feature importance for each node can be derived
from how much the feature (cell) contributes to reducing
impurity in the tree. Higher feature importance indicates
that the corresponding cell plays a more significant role in
determining the classification of the central cell, influenc-
ing the decision-making process at that particular node,
as presented in Figure 9.

The next elements are the error rate, the number of
samples defining that part of the tree, and the distribu-
tion of samples among the predefined classes. The class
assigned to the central cell is derived from the class with
the highest number of samples in that node. By travers-
ing the tree from the root towards the leaves, one answers
the given condition and moves to the appropriate nodes.
Ultimately, the result is the class of the central cell.

In this way, the obtained decision tree can be repre-
sented as an algorithm consisting of a sequence of nested
conditional instructions. For example, the decision tree
shown in Figure 8, trained with 1000 games and results
returned by the neural network (CNN), can be interpreted
as follows: the first node (root) checks whether the cell at
position x =2 and y = 0 (where x is the horizontal axis and
y is the vertical axis in the "sliding window") is less than
0.5. The data received by the tree during training consists
of numerical values representing the game boards.

Where ‘ ’ denotes a cell outside the board, numbers
correspond to cells with digits, and ‘?° represents an
undiscovered cell (Figure 10). In other words, the first
node checks if the mentioned cell is outside the board
(i-e., cell_2_0=—1.0) or a digit equal to zero (i.e., cell_2_0
= 0). If so, it returns true; otherwise, it returns false. By
traversing all branches of the tree, the logic representing
the network’s behavior for these specific tests is obtained,
based on which a tree is created with a maximum depth

Decision Tree Visualization

Cell 2 0<=05

entropy = 1.127

samples = 13640

= [10500, 1528, 789, 823]
= not a mine

True

Cell 1 2<=65
entropy = 1.841
samples = 2644
value = [1220, 501, 381, 542]
class = not a mine

Cell 3 3<=65
entropy = 1.555
samples = 828

value = [17.0, 137.0, 244.0, 430.0]
class = mine

Cell 3 3<=65
entropy = 1.388
samples = 1816

value = [1203, 364, 137, 112]
class = not a mine

Cell 3 2<=65
entropy = 1.649
samples = 2438

value = [1381, 494, 303, 260]
class = not a mine

TANFAY

VAN

Figure 8: This figure shows a fragment of the decision tree with parameters for specific tests.

Feature Importances

0.00 0.05 0.10 0.15 0.20
Feature Importance

Figure 9: This figure shows the importance of each feature when
making decisions for the previously generated tree (features here are
the cells within the "sliding window").

mapping = {*_*: -1.8, *6': 6.8, '1': 1.8, '2': 2.8, '3': 3.0,
"4': 4.8, '5': 5.8, '6': 6.0, '7': 7.9, '8': 8.0, '?': 9.0}

Figure 10: This figure illustrates the mapping of cells in the win-
dow/board to numerical data for the neural network/decision tree (the
mapping is the same for both trees and networks).

of 8 (see Figure 8, which shows only a fragment of the
tree).

It is worth noting that the presented tree and the fea-
ture importances for this tree represent only specific op-
erations for the particular tests conducted on the neural
network. This means they do not accurately depict the
entire network. However, during the training of the trees,
it was observed that with an increasing number of gen-

erated test data, the results became more similar — some
nodes and general tree structures (tests performed, mainly
near the root) had similar values even if there were still
differences. Similarly, the importance values of the cells
often showed that the closest cells had the highest im-
portance, occasionally swapping places depending on the
constructed tree, as shown in Figures 11 and 12.

Feature Importances

0.00 0.02 0.04 0.06 0.08 0.10
Feature Importance

Figure 11: Feature importances for the first tree created from 1000
games using the CNN network, on a 10x10 board with 10 minesFeature
importances for the second tree created from 1000 different games than
those in Figure 12, using the CNN network, on a 10x10 board with 10
mines.

Feature Importances

0.00 0.02 0.04 0.06 0.08 0.10
Feature Importance

Figure 12: Feature importances for the second tree created from 1000
different games than those in Figure 11, using the CNN network, on a
10x10 board with 10 mines.

Even though it is not a true and faithful repre-
sentation of the entire neural network’s operation, it
suggests that a decision tree, given sufficiently large
test data, should theoretically approach a faithful and
human-understandable representation of the entire
neural network’s logic (though it will never achieve
complete accuracy).

4. Results

Neural networks were trained on data obtained
from analytical solutions along with described risk
prediction enhancements. The training dataset consisted
of 1,000 games for most solutions. Due to hardware and
time constraints, we decided to train the convolutional
network model on just 50 games — using a significantly
smaller dataset allowed us to further develop other parts
of the project, and the results presented by this model did
not deviate significantly from the other solutions. The
presented results were obtained after conducting 1,000
games. The board was randomly generated eachtime
based on a pre-determined seed to ensure that the results
obtained by each method were as comparable as possible.
For one of the three approaches, we used a holistic board-
solving method. In the other cases, we also employed a
method using a "sliding window," which in our case was
5x5 in size.

Results of individual approaches:

1. CSP (analytical solution, entire board)

For a 7x7 board with 5 mines, we achieved 93.0%
wins.

For a 10x10 board with 10 mines, we achieved
89.1% wins.

For a 20x20 board with 20 mines, we achieved
99.9% wins.

2. MLP Network (entire board)

For a 7x7 board with 5 mines, we achieved 0.4%
wins.

For a 10x10 board with 10 mines, we achieved 0%
wins.

For a 20x20 board with 20 mines, we achieved 0%
wins.

3. Convolutional Network (entire board)

For a 7x7 board with 5 mines, we achieved 3.5%
wins.

For a 10x10 board with 10 mines, we achieved 0%
wins.

For a 20x20 board with 20 mines, we achieved 0%
wins.

4. Encoding Network (entire board)

For a 7x7 board with 5 mines, we achieved 0.4%
wins.

For a 10x10 board with 10 mines, we achieved 0%
wins.

For a 20x20 board with 20 mines, we achieved 0%
wins.

It is worth noting that for the MLP and ENN
networks using the full board method, as board sizes
increased, they struggled with selecting subsequent
moves. They frequently chose already uncovered cells
as the next move, resulting in no change to the board
(the move was ignored), and thus, the same cell was
selected repeatedly. This issue appears to often stem
from the neural networks not recognizing a new state as
a distinct board — a problem inherent to MLP and ENN
networks. Consequently, for simplicity, these situations
were considered losses in the results presented below
(Tables 5, 7, 9).

Another key issue is that the MLP network in the 5x5
variant mostly returned results that did not reflect the ac-
tual situation on the board at all — only values of 0 were
returned. The results obtained with this variant are not

representative of this method and are due to the random-
ness of board selection, since when the entire board re-
turned equal values, the same predefined field was always
uncovered (Tables 6, 8, 10).

To better illustrate the results, Tables are presented
below showing all the results obtained. The first three
rows present the percentage of wins achieved after a given
number of moves — if the game did not end after a speci-
fied number of moves, it was recorded as a win.

Table 5: Results for standard method (without "sliding window") on
a 7x7 board with 5 mines.

Game/NN | CSP | MLP | CNN | ENN
1 move - 82,3% | 71,0% | 83,1%
3 moves - 1,5% | 38,7% | 4,4%
5 moves - 0,4% | 16,5% | 0,4%
Full game | 93,0% | 0,4% 3,5% 0,4%

Table 6: Results for "sliding window" method (5x5) on a 7x7 board
with 5 mines.

Game/NN | MLP/5x5 | CNN/5x5
1 move 84,5% 88,6%
3 moves 56,0% 63,8%
5 moves 31,3% 49,2%
Full game 8,3% 21,0%

Table 7: Results for standard method (without "sliding window") on
a 10x10 board with 10 mines.

Game/NN | CSP | MLP | CNN | ENN
1 move - 88,7% | 67,4% | 86,1%
3 moves - 0,1% | 37,2% | 0,3%
5 moves - 0% 18,1% 0%

Full game | 89,1% 0% 0% 0%

Table 8: Results for "sliding window" method (5x5) on a 10x10 board
with 10 mines.

Game/NN | MLP/5x5 | CNN/5x5
1 move 89,7% 93,8%
3 moves 64,2% 78,7%
5 moves 42.9% 64,5%
Full game 1,3% 6,5%

5. Summary

After comparing all the obtained results, it can be
conclusively stated that the analytical method proved to
be the best for all the tested cases. It is also worth noting
that the waiting time for the results of this method was

Table 9: Results for standard method (without "sliding window") on
a 20x20 board with 20 mines.

Game/NN | CSP | MLP | CNN | ENN
1 move - 94,8% | 59,3% | 95,6%
3 moves - 0% 20,6% 0%
5 moves - 0% 5,6% 0%

Full game | 99,9% 0% 0% 0%

Table 10: Results for "sliding window" method (5x5) on a 20x20
board with 20 mines.

Game/NN | MLP/5x5 | CNN/5x5
1 move 69,6% 96,4%
3 moves 36,5% 90,4%
5 moves 17,3% 81,7%
Full game 0,7% 26,1%

significantly lower than for artificial neural networks. The
results of these methods are discussed below.

For both the feed-forward learning method and the
data compression/decompression method, the results
were relatively similar — they performed best on smaller
boards. For larger boards, with just 3 moves, most of
them were unable to continue the game effectively. The
convolutional network performed better, as it never
got stuck and always made a move. However, train-
ing this model required considerably more time and
computational power to achieve acceptable results.

Another issue with artificial neural networks is the
inability to describe their operation in an understandable
way. To select optimal parameters, one must rely on trial
and error based on how the model performs in a series
of games. It is difficult to rely on existing scientific work
as results are very sensitive to minor changes, so there
may be a different optimal approach for each case[7]. To
help understand the operation of neural networks, con-
structing decision trees based on the obtained results can
be useful. In our case, the best approach was the afore-
mentioned manual adjustment of parameters through a
series of tests. A similar approach has been encountered
in other scientific works.

We concluded that despite numerous attempts to
train the best neural network model, we were unable to
create one that could realistically compete with the much
simpler analytical solution based on solving systems of
equations. Nevertheless, it was shown that with a proper
amount of data and an appropriate maximum depth
value, it is possible to construct a decision tree that can
at least to some extent represent how a neural network
operates in a way that is comprehensible to a human user.

References

(1]

Z. W. Preslav Nakov, “Minesweeper, #minesweeper,” Berkeley
EECS, 2003. doi: 10.1109/TKDE.2003.180.

M. H. Sajjad, “Neural network learner for minesweeper,” Lough-
borough University, 2022. doi: 10.1109/TKDE.2022.180.

B. David, “Algorithmic approaches to playing,” Harvard Univer-
sity’s DASH repository, 2015. doi: 10.1109/TKDE.2015.180.

R. Massaioli, “Solving minesweeper with matrices,” Programming
by Robert Massaioli, 2013. doi: 10.1109/TKDE.2013.180.

B.Y. C. Ken Bayer, Josh Snyder, “An interactive constraint-based
approach to minesweeper” American Association for Artificial
Intelligence, 2006. doi: 10.1109/TKDE.2006.180.

C. Studholme, “Minesweeper as a constraint satisfaction prob-
lem” American Association for Artificial Intelligence, 2000. doi:
10.1109/TKDE.2000.180.

R. K. N. Yash Pratyush Sinha, Pranshu Malviya, “Algorithmic ap-
proaches to playing,” International Institute of Information Tech-
nology Bhubaneswa, 2021. doi: 10.1109/TKDE.2021.180.

B. Smulders, “Optimizing minesweeper and its
hexagonal variant with deep reinforcement learn-
ing” https://research.tue.nl/en/studentTheses/
bcceee8c-dea7-4309-8c4d-4d03ceeb6a2d4, 2023. doi:

10.1109/TKDE.2023.180.
S. C. C. Z. Z. G. Jinzheng Tu, Tianhong Li, “Exploring ef-
ficient strategies for minesweeper, The AAAI-17 Workshop
on What’s Next for Al in Games? WS-17-15, 2017. doi:
10.1109/TKDE.2017.180.

[10] J. C. B. Jozef Fekia¢, Ivan Zelinka, “A review of

methods for encoding neural network topologies in

evolutionary computation.” https://citeseerx.ist.
psu.edu/document?repid=repl&type=pdfé&doi=
814e438666496db4126e23404b2baf707218d7£2, 2011.

doi: 10.1109/TKDE.2011.180.

e— 10

https://research.tue.nl/en/studentTheses/bcceee8c-dea7-4309-8c4d-4d03cee6a2d4
https://research.tue.nl/en/studentTheses/bcceee8c-dea7-4309-8c4d-4d03cee6a2d4
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=814e438666496db4126e23404b2baf707218d7f2
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=814e438666496db4126e23404b2baf707218d7f2
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=814e438666496db4126e23404b2baf707218d7f2

	Introduction
	Motivations
	Problems

	State of the art
	Analytical methods
	Heuristic methods
	Neural Networks

	Our Implementation
	Analytical
	Neural Network
	Decision Tree

	Results
	Summary

