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Abstract
This article offers a comprehensive examination of the field of X-ray optics and the methods employed to simulate
X-ray propagation through multi-lens systems. The publication presents three distinct approaches to address X-ray
optics problems, including the utilization of oriented Gaussian beams, the fast Fourier transform, and the second-order
Runge-Kutta method. It also provides an in-depth analysis of the paraxial wave equation used in X-ray optics and
how the paraxial approximation can be employed to reduce computational complexity. Finally, the article provides a
detailed mathematical description of the concave lens used in X-ray focusing.
Furthermore, the article offers a comparative analysis of each method’s advantages, disadvantages, and limitations. It
also highlights the differences in computation speed, required data points, and precision of each approach.
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1. Introduction
The field of X-ray optics is rapidly evolving due to the

potential of visualizing microscopic objects. To achieve
this visualization, it is necessary to focus X-rays onto the
object of interest. Currently, the most popular method
of achieving this is by using lenses with a concave pro-
file, either spherical or parabolic. However, the materi-
als used for X-ray focusing have complex refractive in-
dices, denoted as n = 1− δ + iβ , where δ is responsible
for X-ray refraction in lenses and β for attenuation of the
X-ray intensity [1]. The ideal material for X-ray lenses
should have a high refractive value and low absorption
coefficient while being durable and inexpensive [1]. Un-
fortunately, meeting these requirements simultaneously
is challenging. Beryllium is a commonly used material for
X-ray focusing, but the production cost of a beryllium lens
is approximately €5,000 [2]. Additionally, the lens mate-
rial oxidizes during use, requiring periodic replacements.
Achieving high magnification with short-distance X-ray
focusing necessitates complex optical systems consisting
of several lenses, making experiments costly. To reduce
these costs, cheaper andmore efficient lensmaterials must
be found or developed, and more extensive theoretical re-
search must be conducted [2].

This publication aims to present and compare three
numerical methods used to calculate the propagation and
focusing of X-ray waves through a multi-lens system.
The publication outlines a method based on fast Fourier
transform (FFT), finite differences, and oriented Gaussian
beams.

2. Mathematical description of
propagation
In the field of X-ray optics, the paraxial wave equa-

tion has emerged as a reliable method for computing the
electric wave field. The aforementioned equation is de-
rived from the Helmholtz equation, which provides an ap-
proximate solution. Over time, the paraxial equation has
gainedwidespread acceptance due to its accuracy and effi-
cacy in computing the electric wave field. The Helmholtz
equation can be expressed as follows [3–5]:

∇⊥E +
d2E
dx2 − k2E = 0. (1)

The equation Eq. 1 features the wave number, de-
noted by the symbol k. In the case of an electromagnetic
wave propagating through a vacuum at the speed of light,
k is defined as k = ω0

c0
, where ω0 represents the angular

frequency and c0 is the speed of light in a vacuum [3].
The second derivatives that arise in equation Eq. 1

substantially influence the computation time. In order to
mitigate the computational complexity, we propose to em-
ploy the paraxial approximation [3].

In geometric optics, the paraxial approximation de-
scribes the propagation of light via geometric rays. This
approximation assumes that the angle θ between the rays
and the propagation axis of the optical system remains
small, i.e., θ ≪ 1 [5].

Sincewe are considering propagation in the direction
of the OX axis, it is reasonable to assume that |Axx| ≪
|kAx|. This implies that the angle θ between the wave and
the z axis is very small, and consequently, the expression
uxxeikx contributes insignificantly to the calculation. As a
result, this expression can be neglected without impacting
the accuracy of the computation. The paraxial Helmholtz
equation can be expressed as follows [3, 5]:

∇⊥E +2ikEx = 0. (2)

For each methodology, we shall exclusively consider
the values of the function at appropriately chosen points
within the domain. These points shall be represented by
spatial steps denoted by ∆x and ∆y, which correspond to
the X and Y axes, respectively. The function values at
the chosen points shall be denoted by Ai, j = A(i∆x, j∆y),
where i, j ∈ N [3].

In order to establish the initial condition, wewill con-
sider the function as follows [3]:

E0(y) =
1

2πσ2 exp[−y2/(2σ
2)]. (3)

This expression denotes the probability density func-
tion of a normal distribution with zero mean and standard
deviation of σ . It is noteworthy that the function satis-
fies the normalization condition and is symmetric with re-
spect to the y-axis. In addition, this function is continuous
and differentiable. These features make it a suitable initial
condition for a wide range of applications in various fields
of science and engineering.

2.1. Description of the concave lens
Modern X-ray lenses adopt parabolic concave sur-

faces to eliminate aberrations commonly seen in lenses
with spherical concave surfaces. Due to the low refrac-
tive index, the focusing effect of a single lens is minimal,
and a multiple-lens system is often used to achieve a sig-
nificant focusing effect. When the lenses are arranged in a
row, one after the other, the lens system operates as a sin-
gle lens and is referred to as a compound refractive lens
(CRL) [1, 2, 4].

The lens at a point (x,y) is described by the function
B(x,y)= ω0

c0
(iδ +β )d(x,y), where δ denotes the refractive

index, and β represents the absorption coefficient. Addi-
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tionally, the function d(x,y) is defined by the formula [6]:

d(x,y) =

{
1 if the ray is in the lens.
0 if the ray is not in the lens.

To provide a geometrical description of the lens, we
shall employ the functions denoted as F(y,z) and ∆F(ym,zl)

∆y .
These functions are defined by the following formulas [6,
7]:

XL(y) = max{−0.5Ry2 +0.5(W −Wsm),0},

XR(y) = min{0.5Ry2 +0.5(W +Wsm),W},

F(y) = XR(y)−XL(y),

∆F(ym)

∆y
≃ F(ym+1)−F(ym−1)

2h
.

In this context, R denotes the curvature of the lens,
W refers to the maximum thickness of the lens, and Wsm

denotes the minimum thickness of the lens.

Figure 1: Diagram of a concave lens.

3. Mathematical description of the
methods used
The paraxial wave equation in X-ray optics can be

solved through various methods, including the finite dif-
ference method, the fast Fourier transform method, and
the method based on oriented Gaussian beams.

3.1. Finite difference method
The system of ordinary differential equations indi-

cated by equation Eq. 2 can be effectively solved through
the use of a variety of standard numericalmethods that are
well-suited to this purpose. Among the available meth-
ods, the second-order Runge-Kutta method is a particu-
larly universal approach that yields reliable and accurate
results. The second-order Runge-Kutta method is given
by the equations [6]:

yn+1 = yn +h f
(

tn +
h
2
,
1
2
(yn + yn+1)

)
,

yn+ 1
2
= yn +

1
2

h f
(

tn +
h
2
,yn+ 1

2

)
.

The computational framework for the Runge-Kutta
method with an intermediary point consists of two
steps [6].

▶ In the first step, intermediate points are calculated us-
ing an iterative scheme. The following equations are
utilized to calculate the intermediate points:

A(0)
i+ 1

2 , j
=

Ai, j + r(Ai, j+1 +Ai, j−1)

1+ ∆x
2 Bi+ 1

2 , j
+2r

,

A(n+1)
i+ 1

2 , j
=

Ai, j + r
(

A(n)
i+ 1

2 , j+1
+A(n)

i+ 1
2 , j−1

)
1+ ∆x

2 Bi+ 1
2 , j

+2r
. (4)

The parameters k and r are defined as k = ω0
c0

and r =
i∆x

4k(∆y)2 , respectively.
▶ In the second step, grid points values are calculated
using equation:

Ai+1, j = 2A(m)

i+ 1
2 , j

−Ai, j.

Here, m is the last iteration made using formula Eq. 4

3.2. Method based on the fast Fourier transform
The paraxial wave equation is commonly solved us-

ing the fast Fourier transform (FFT), which is highly effi-
cient. However, as the exact solution of the paraxial equa-
tion is in the form of an infinite Fourier series, truncation
is necessary when using the FFT, which can lead to er-
rors. While methods for estimating the truncation error
of the Fourier series are well-developed for analytically
determined functions, they are difficult to apply to func-
tions that are digitized on a grid, as is the case in X-ray
optics [8]. The Nyquist principle is useful for determin-
ing the necessary frequency of digitization but does not
estimate the truncation error of the Fourier series. Fur-
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thermore, research shows that different focus characteris-
tics are sensitive to the quality of calculations to varying
degrees [8].

The fast Fourier transform is an algorithm for
determining the discrete Fourier transform and its
inverse. The algorithms for computing the discrete
Fourier transform are based on the divide-and-conquer
method, which recursively divides a transform of size
N = N1N2 into transforms of size N1 and N2 [9]. The
Cooley-Tukey algorithm is commonly used, as it is highly
efficient in terms of execution time. However, the input
sample vector must have a length of N = 2k, where k is
a natural number. The computational complexity of the
algorithm used is O(N log2(N)), which is significantly
better than the O(N2) complexity resulting from a naive
implementation [9].

The calculation procedure for the fast Fourier
transform-based method is divided into two steps:

1. In the first step, the signals before the lens and on
the lens are calculated:
(a) Firstly, the input signal for the discrete Fourier

transform is computed using the equation
Eq. 3. The Fourier transform is then applied
to this signal to obtain Am(0).

(b) In the subsequent step, the inverse discrete
Fourier transform is computed for x = xc,
where xc represents the geometric center of
the lens. The following equation is employed
for this purpose:

A j(x) =
1
N

N
2 −1

∑
m=−N

2

Am(0)e
ic0x

ω0∆y2 (cos( 2π

N m)−1))
ei 2π

N m j.

(c) Following that, A j(x) is multiplied by
e(−B(x,y)F(y j)), and the discrete Fourier trans-
form is applied. This yields the new initial
condition, A

′
m(0).

2. In the second step, the signal after the lens is calcu-
lated using A

′
m(0) as a new initial condition:

A j(x) =
1
N

N
2 −1

∑
m=−N

2

A
′
m(0)e

ic0x
ω0∆y2 (cos( 2π

N m)−1))
ei 2π

N m j.

3.3. Method based on oriented Gaussian beams
The Helmholtz equation Eq. 2 is closely approxi-

mated by Gaussian beams, which have widths that are
substantially larger than the wavelength of X-rays. As
a result, the superposition of Gaussian beams can be
considered nearly exact solutions to the aforementioned

equation [2]. In practice, virtually all solutions to X-ray
optics problems can be constructed using specially
chosen sums of Gaussian beams [2].

In our work, we utilize oriented Gaussian beams,
which are Gaussian beams that propagate at specific
angles to the optical axis of the optical system. This
approach combines the properties of geometrical optics,
which provide Gaussian beams with clear wave prop-
agation directions and localized transverse directions,
with wave optics, which demonstrate that Gaussian
beams are nearly exact solutions to the Helmholtz wave
equation [2]. We find that this method is particularly
well-suited for addressing multi-lens problems and
enables us to calculate the focus with a high degree of
accuracy [2].

The present study proposes a methodology based on
oriented Gaussian beams to calculate the propagation of
electromagnetic waves through a thin lens. The calcula-
tion scheme involves several steps that are described be-
low [7].

▶ First, E0m is obtained by discretization of the initial
condition Eq. 3.

▶ Next, the propagation value at the geometric center of
the lens in front of the lens denoted by xc, is calculated
for the vector position rm = (x0,y0).

E(r) = ∑
m

E0mG(r,rm,e1,m).

Here, G is a function defined by equation:

G(r,rm,e1,m) = exp[ik0(r− rm)e1,m]×

h

(2π{σ2 + i[(r− rm)e1,m]/k0})
1
2
×

exp
(
−

[(r− rm)e2,m]
2

2{σ2 + i[(r− rm)e1,m]/k0})

)
, (5)

where e1,m = (x,ym) is the direction of wave propaga-
tion and e2,m is a vector perpendicular to e1,m.

▶ In the next step, the propagation value at xc behind
the lens and the new directional vectors are calculated
using equations:

E(r)+ = E(r)exp[ik0(−δ + iβ )F(y)],

e+1,m,y = e1,m,y −δ
∆F(ym)

∆y
,

e+1,m,x = 1−
(e+1,m,y)

2

2
.

▶ Finally, the final directional vectors for calculating
propagation outside the lens should be calculated
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using equations:

e
′
1,y = ℜ{−i

Dy[E(r)]
E(r)

}/k0,

e
′
x = 1−

e
′2
1,y

2
.

Here, Dy[E(r)] is defined as follows with vector rm =
(x0,ym):

Dy[E(r)] = ∑
m

ik0e1,mE0mlG(r,rm,e1,m).

3.4. Estimating the accuracy of numerical simula-
tions: a modified Runge’s rule for estimating
errors in numerical simulations
The Runge method is a technique used to estimate

the precision of a finite difference simulation by compar-
ing the computations executedwith different spatial steps.
Themethod involves calculating the quotient of the differ-
ence between results obtained with two different spatial
steps, normalized by a factor that depends on the accu-
racy of the method. The Runge method is expressed by
the following equation [3]:

Q(h1) =

∣∣∣∣ Zh1 −Zh2

(h2/h1)n −1

∣∣∣∣ . (6)

Here, Zh1 and Zh2 represent the outcomes of a nu-
merical approximation with spatial steps h1 and h2, re-
spectively, where h2 < h1. The accuracy of the method is
denoted by n [3].

Estimating errors in FFT-based methods is chal-
lenging, especially when the initial function under
consideration is not sufficiently smooth. However, when
dealing with propagation through a lens, for instance,
and the function is continuous but not differentiable, the
possibility of error estimation is nonexistent. The Runge
rule is also inapplicable in such cases due to the lack of
spatial steps, which makes it impossible to determine the
method’s order [3]. The inability to estimate errors is a
significant limitation of FFT-based methods that must be
addressed to enhance their efficacy.

In the context of methods utilizing oriented Gaussian
beams, the Runge method Eq. 6 can also be applied [7].

4. Results
The present study involved simulations with an ini-

tial beam width of 0.0001 meters, using concave lenses
with a curvature of 1

15000 m−1. The lenses in question had a
maximumwidth of 0.001 meters and a minimumwidth of

3× 10−5 meters. The refractive index was set at 2.216×
10−6, while the absorption coefficient was 3.18× 10−10.
Those parameters correspond to a concave lens made of
beryllium.

4.1. Results with 1 lens
The interval [−0.000256,000256] meters was uti-

lized to perform the calculations with a spatial step of
∆y = 2.5×10−7 meters along the OY axis. Moreover, for
the Runge-Kutta method, an additional spatial step of
∆x = 0.001 meters was included.

The results of the analysis are presented in Figures
Fig. 2, Fig. 3, and Fig. 4, where the findings obtained from
the FFT, oriented Gaussian beam, and Runge-Kutta meth-
ods are displayed, respectively.

Figure 2: Results obtained using the FFT method at 0, 5, 10, 15, 20,
and 25 meters. The values are given in millions.

Figure 3: Results obtained using the oriented Gaussian beammethod
at 0, 5, 10, 15, 20, and 25 meters. Function values are given in millions.

It can be observed that using a single lens produces
similar results across all methods. Theoretical analysis has
shown that the maximum focus value is approximately
15.04 meters. The methods yield the following results:

▶ The Runge-Kutta method has a focus point at 15.69
m with a Runge rule of 1.64% and a relative error
of 4.31% based on the focus point. The relative er-
ror based on the maximum value at the focus point is
0.20%.
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Figure 4: Results obtained using the Runge-Kutta method at 0, 5, 10,
15, 20, and 25 meters. Function values are given in millions.

▶ The FFT method has a focus point at 15.10 m with a
relative error of 0.39%, based on the focus point. The
relative error based on themaximumvalue at the focus
point is 0.00%.

▶ The Gaussian beam method has a focus point at 15.03
m with a Runge rule of 0.00% and a relative error
of 0.08%, based on the focus point. The relative er-
ror based on the maximum value at the focus point is
0.04%.

It is worth noting that the Runge rule and relative er-
ror for the maximum value at the focus point were calcu-
lated using different spatial steps of ∆y, which were 2.5×
10−7 meters and 2×10−7 meters respectively.

4.2. Results with 5 lenses
The interval [−0.000256,000256] meters was uti-

lized to perform the calculations with a spatial step of
∆y = 6.25 × 10−8 meters along the OY axis. Moreover,
for the Runge-Kutta method, an additional spatial step of
∆x = 0.0001 meters was included.

The results of the analysis are presented in Figures
Fig. 5, Fig. 6, and Fig. 7, where the findings obtained from
the FFT, oriented Gaussian beam, and Runge-Kutta meth-
ods are displayed, respectively.

Figure 5: Results obtained using the FFT method at 0.0, 1.0, 2.0, 3.0
and 4.0 meters. The values are given in millions.

Figure 6: Results obtained using the oriented Gaussian beammethod
at 0.0, 1.0, 2.0, 3.0 and 4.0 meters. The values are given in millions.

Figure 7: Results obtained using the Runge-Kutta method at 0.0, 1.0,
2.0, 3.0 and 4.0 meters. The values are given in millions.

It can be observed that using a five lenses produces
different results across all methods. Theoretical analy-
sis has shown that the maximum focus value is approx-
imately 3.00 meters. The methods yield the following re-
sults:

▶ The Runge-Kutta method has a focus point at 3.09
m with a Runge rule of 4.12% and a relative error
of 2.71% based on the focus point. The relative er-
ror based on the maximum value at the focus point is
3.55%.

▶ The FFT method has a focus point at 3.02 m with a
relative error of 0.38%, based on the focus point. The
relative error based on themaximumvalue at the focus
point is 3.86%.

▶ The Gaussian beam method has a focus point at 3.01
m with a Runge rule of 0.00% and a relative error
of 0.05%, based on the focus point. The relative er-
ror based on the maximum value at the focus point is
0.90%.

It is worth noting that the Runge rule and relative er-
ror for the maximum value at the focus point were calcu-
lated using different spatial steps of ∆y, which were 6.25×
10−8 meters and 3.125×10−8 meters, respectively.
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4.3. Results with 10 lenses
The study involved performing calculations on the

interval [−0.000256,000256] meters with a spatial step
∆y of 3.125×10−8 meters for the OY axis.

The results of the analysis are presented in Figures
Fig. 8 and Fig. 9, where the findings obtained from the
FFT and oriented Gaussian beam methods are displayed,
respectively.

Figure 8: Results obtained using the FFT method at 0.0, 1.0, 1.5, 2.0
and 2.5 meters. The electric field strength module is given in millions.

Figure 9: Results obtained using the oriented Gaussian beammethod
at 0.0, 1.0, 1.5, 2.0, 2.5 and 3.0 meters. The electric field strength
module is given in millions.

It can be observed that using ten lenses produces
different results across all methods. Moreover, it was not
possible to obtain reliable results for the Runge-Kutta
method. Theoretical analysis has shown that the max-
imum focus value is approximately 1.50 meters. The
methods yield the following results:

▶ The FFT method has a focus point at 1.52 m with a
relative error of 1.05%, based on the focus point. The
relative error based on themaximumvalue at the focus
point is 9.20%.

▶ The Gaussian beam method has a focus point at 1.51
m with a Runge rule of 0.01% and a relative error
of 0.39%, based on the focus point. The relative er-
ror based on the maximum value at the focus point is
1.76%.

It is worth noting that the Runge rule and relative
error for the maximum value at the focus point were
calculated using different spatial steps of ∆y, which
were 3.125 × 10−8 meters and 1.5625 × 10−8 meters,
respectively.

5. Conclusion
This research article presents three distinct methods

for simulating radiation propagation using concave
lenses. The study explores the relative error for each
method and calculates the Runge rule. The results
indicate that, for a single lens, all methods provide
comparable outcomes. However, the method based on the
Runge-Kutta scheme presents the highest error, which is
notably greater than the other methods. Nonetheless, the
accuracy of the calculation is still acceptable.

With five lenses and ten lenses, the test results are
similar to those with one lens. However, it is crucial to
note the larger error of the Runge-Kutta method, which
is attributed to an insufficient number of ∆y points. De-
spite the increase in calculation error, the other methods
present themselves favourably. It is noteworthy that the
Runge-Kutta-based method for 10 lenses failed to provide
reliable outcomes, owing to the enormous error incurred
in the computations caused by an excessively large vari-
able ∆y.

The time required to determine the maximum focus
point is the highest for the directed Gaussian beam
method (6 minutes 55 seconds). The fastest method
turned out to be the FFT-based method (about 1 second),
while the calculation time for the Runge-Kutta method is
close to the FFT method (about 2 seconds). On the other
hand, the time required to reach the maximum focus
point is completely different. For the FFT-based method
for 5 and 10 lenses, the calculations were completed in
about 1 second. However, there is a significant increase
in calculation time for the Runge-Kutta method for 5
lenses (22 minutes 38 seconds), which is very close to the
method based on oriented Gaussian beams (22 minutes
53 seconds). For 10 lenses, the time required to obtain the
maximum focus point for the method based on oriented
Gaussian beams is 55 minutes 43 seconds.

In summary, the Gaussian beam method is the most
accurate and stable. However, its disadvantage is the sig-
nificant increase in calculation time, relative to the num-
ber of lenses used, because the computational complex-
ity is N2. On the other hand, the method based on the
fast Fourier transform is the fastest. This is due to the
fast Fourier transformation algorithm, which reduces the
computational complexity to a Nlog2(N). Although this
method is not as accurate as the method based on Gaus-
sian beams, the calculation error is at a low level. How-
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ever, the disadvantage of this method is the limited num-
ber of ∆y points we can consider due to the instability of
the solution if these points are too close to each other. The
second-order Runge-Kutta method is the least favourable
of the methods presented, as it is much less accurate than
theGaussian beammethod andmuch slower than the FFT-
based method. Furthermore, computing the next step xi

for the parallax axis requires determining the step xi−1
first, which results in greater memory complexity. This
makes the method not very effective for X-ray propaga-
tion applications.
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