
Neural approach for rhyming word recommendations
Aleksandra Borowska
s181307@student.pg.edu.pl
Gdańsk University of Technology
ul. Narutowicza 11/12, Gdańsk, Poland

Natalia Kosakowska
s180771@student.pg.edu.pl
Gdańsk University of Technology
ul. Narutowicza 11/12, Gdańsk, Poland

Samuel Szurman
s175702@student.pg.edu.pl
Gdańsk University of Technology
ul. Narutowicza 11/12, Gdańsk, Poland

https://doi.org/10.34808/0vcg-ps40

Abstract
This research paper deals with the problem of rhyme generation. The project concerns words in the Polish language.
Two methods have been proposed to determine whether two words rhyme. A proprietary algorithm was created and
three types of neural networks were trained. The efficiency of the methods and the way each of the discussed methods
works was compared.

Keywords:
algorithm, neural network, poem, rhyme

TASK Quarterly 27 (3) 2023

https://doi.org/10.34808/0vcg-ps40

1. Introduction
Rhymes play a significant role for the artist, not only

in terms of lyric writing, but also for musicians, where
rhyme unifies the text and gives it rhythm and regular-
ity [1]. Rhymes have always been associated with the
creativity and originality of the artist. In modern poetry,
rhymes are less common, but in music they are still the
basis of songwriting [2]. With advances in technology,
lyric creation can become much easier with the use of
programs that can generate or recommend a rhyme for
a given word. In addition, when the algorithm is properly
corrected, these rhymes can have a better quality or accu-
racy compared to the rhymes that a human will suggest
[3].

It is not possible for an algorithm to be universal
or adaptable depending on the language. The process
of rhyming can be complicated not only by the number
of words appearing in a given language, but also by
the rhyming rules or the phonetics and rhythmicity of
the words. Whether words rhyme or not often depends
not on spelling, but on pronunciation. All the rules,
definitions and types of rhyme for a specific language
must be taken into account in order for this program to
best serve its purpose [4].

In English, rhymes rely primarily on phonetics,
with pronunciation, accent, and rhythm playing key
roles. This language, however, has a complex relationship
between spelling and pronunciation, which can make
rhyme detection more challenging [5]. In languages
with more consistent orthography and phonetic rules,
such as Portuguese [6] or Spanish [7], rhymes are more
closely linked to spelling, though phonetic factors like
pronunciation and stress still need to be considered for
accurate rhyme detection.

This paper proposes an algorithm for identifying and
evaluating rhyming words in the Polish language, primar-
ily based on the sound of word endings. Additionally, neu-
ral network models were trained to mimic this algorithm.

2. State of the art
Rhyme generation has already appeared in methods

that are based on recurrent neural networks and language
models. The essence of these solutions is not rhyme, be-
cause rhyme is only one component of the works. In most
cases, this problem is solved from a broader perspective
and the main goal is to generate poetry or song lyrics in
such a way that they sound as realistic as possible and do
not suggest the use of artificial intelligence. It is impor-
tant to maintain the best possible quality of the generated
texts and rhymes and to properly evaluate this process. In

the paper “Deep-speare: A Joint Neural Model of Poetic
Language, Meter and Rhyme” [8] a unidirectional LSTM is
used to model rhymes. LSTM learns to separate rhyming
and non-rhyming pairs in a quatrain. It does this by com-
paring the last word (t) of one line with the remaining
words (x, y, z) also at the end of the line. The final re-
sult is one pair of rhyming words (t, x) and two pairs of
non-rhyming words (t, y) and (t, z). The trained model
learns the margin and determines the best rhyming pair.
The second-best pair is used to quantify the remaining
rhymes. Estimating the rhyme between twowords is done
by calculating the cosine of similarity during generation.
By adding other non-rhyming words from the dictionary,
the process can be easily increased.

The solution presented in "GPoeT: a Language
Model Trained for Rhyme Generation on Synthetic Data"
[9] utilises a language model (LM) to generate rhymes
in English. It relies on a dictionary that provides each
word’s pronunciation along with its corresponding
phonemes, encoded in ASCII format. Based on this data,
two separate dictionaries were constructed with different
key structures.

The first dictionary maps phoneme sequences to
words that form perfect rhymes, e.g., ’eyn’ → ’campaign’,
’overtrain’, ’plane’. The second dictionary focuses solely
on assonant rhymes. The rhyme generation process is
guided by specific metrics derived from selected NLTK
functions, such as word_tokenize and get_close_matches.
Words are then classified into one of three categories:
perfect rhyme, assonant rhyme, or no rhyme.

The paper "Automatic Detection of Internal and Im-
perfect Rhymes in Rap Lyrics" [10] was based on a dic-
tionary containing phonemes. These are compared and
returned as log-odds, indicating the probability of a pair.
They are stored in two matrices, one for vowels and the
other for consonants, and the results of phoneme pairs are
used to determine scores according to the formula (1).

vowelScore+ stressScore+ consonantScore (1)

VowelScore is the score found in the vowel matrix for
vowels. StressScore corresponds to the indication of the
accent on the vowels. The more similar the accent, the
higher the score. ConsonantScore corresponds to the en-
tries in the matrix of consonants occurring after a vowel
as in the case of the words: code and mold.

The paper "Creating and Evaluating a Lyrics Gener-
ator Specialized in Rap Lyrics with a High Rhyme Den-
sity" [11] is based on the work of Hirjee and Brown [10].
However, there is a difference - instead of grouping sylla-
bles by evenly distributing consonants to vowels, syllables
are divided by using the CMU pronunciation dictionary.
Thanks to this, words are better divided into syllables, and

2

thus the detection of multi-syllable rhymes is improved.
In "Rapformer: Conditional Rap Lyrics Generation

with Denoising Autoencoders" [12], a rap corpus built
on the BERT-base model is used. The system predicts
200 candidate words to end a line, selecting those with
the highest rhyme score. This score is determined by the
longest vowel overlap between the candidate word and
the target word.

The paper “Supervised Rhyme Detection with
Siamese Recurrent Networks” [13] describes the detec-
tion of rhymes in German. In this solution, Siamese
Recurrent Networks (SRN) are trained to predict whether
two words rhyme. The architecture is based on a three-
layer model of bidirectional LSTMs followed by another
dense layer that forwards. Sequences rhyme when the
model score is 0.5. Using 5000 rhymes from the database,
non-rhyming sequences are generated. Based on these,
SRNs are trained for 100 epochs in a 2 : 3 ratio and an
accuracy of 96% is obtained. Additionally, the SRN was
also trained on an English database of 10,000 rhyme
pairs, which also resulted in an accuracy of 96% and for
30,000 rhyme pairs, it was 97% accurate.

In "Using Siamese Neural Networks to Create a
Simple Rhyme Detection System" [14], a Siamese Re-
current Network (SRN) trained on rap lyrics from the
Genius website was used to predict rhymes. The dataset
consisted of 1,000,000 rhyme pairs — 500,000 positive
and 500,000 negative. The data was split into three
subsets: 60% for training, 30% for validation, and 10%
for testing. The model’s architecture includes a Siamese
LSTM layer with 64 hidden units, followed by three dense
layers and an input layer. The system achieved a 95%
accuracy on the test set.

Chinese poetry requires that the last characters of
some lines rhyme according to precise tonal rules. Each
character has a tone assigned to it. This causes a bit
more problems because it takes into account not only the
pronunciation but also the tonality, which consists of the
tones Ping (horizontal), Ze (falling) and Ping|Ze [15].

In the "Rhyming Knowledge-Aware Deep Neural
Network for Chinese Poetry Generation" [16] solu-
tion, the model is based on the Sequence-to-Sequence
(Seq2Seq) architecture, which consists of an encoder and
a decoder. They use the LSTM structure to analyse the
relationships between characters within a line, as well as
the influence of previous lines on the generation of sub-
sequent lines. In this case, the encoder in the Recursive
Encoder Layer transforms the input character sequence
into a fixed-size context vector, and these vectors are
additionally enriched with tonal information using a
one − hot vector, thus maintaining the requirements of
Chinese poetry. Phonological tones replace the original
cell states and enforce control governing the selection

of characters. The Embedding Layer uses the word2vec
method, where Chinese characters are represented as
dense, low-dimensional vectors, which is important for
creating poetry. In the Recurrent Decoder Layers, the
context vector is taken as input and generates an output
sequence of characters. Both the semantics and the tone
of the poem are taken into account. In order to optimise
the selection of suitable characters, the so f tmax function
is used, which calculates the probability distribution
for the next character and assigns a higher score to
characters that meet the tone and rhyme requirements.

In the article "Rhyme Detection of Hindi and Ra-
jasthani Poems using Statistical-Based Methods" [17],
classical static methods and analysis of similarity between
phonetic features were used. Rhyme analysis was based
on the repetition of final sounds "a" and "i", frequency
of words with specific properties and characteristics of
phonetic waves. For example, for the word aatma the
phonetic wave is:

ASCII(a)+ASCII(a)+ length(aatma) =

97+97+5 = 199 (2)

where a higher wave value indicates a greater tonal
influence of a given word in the structure of the poem.
Each of the poems was represented as a feature vector,
which allowed for its comparison with other texts in
the feature space. Then, comparative methods were
used to determine cosine similarity, Euclidean distance
and Jaccard index. If at least two of the three methods
assessed the text as similar, it was classified as a poem.
Three algorithms were used to evaluate the effectiveness
of the solution. The first one involved an SVM classifier
that searched for the optimal decision boundary between
classes (poems and non-lyrical texts) in the feature space.
Thanks to its ability to work in high-dimensional spaces,
SVM proved effective in modeling complex dependencies
between features. Another method was the use of neural
networks. These modeled nonlinear dependencies in
the data by relying on weight layers and activation
functions. Kernel methods were also used, where the
algorithms transformed the input data into a new feature
space, which allowed for better class differentiation. This
method proved to be particularly effective in working
with small data sets. For both Hindi and Rajasthani, the
kernel methods proved to be the most effective, with
accuracy of over 93%.

"Dynamically Scoring Rhymes with Phonetic Fea-
tures and Sequence Alignment" [18] uses linguistic
foundations with genetic optimisation methods to create
a universal rhyme scoring function. Rhyme is defined as
the phonetic similarity between the stress tails of two or
more words. The stress tail includes: nucleus (the central
vowel sound of a syllable), coda (consonant sounds after

3

the nucleus) and onset (ll subsequent syllables after the
most stressed syllable).

This definition assumes that the most stressed part in
a word determines its significance for rhyme scoring. For
example, the words station and creation rhyme, despite
having different numbers of syllables, because their stress
tails are similar.

Phonemes, which are the basic sound units, are de-
composed into phonetic features, which allows the rhyme
function to be generalised to any language. Phoneme
analysis is based on the International Phonetic Alphabet
(IPA) standard. The calculation process is multi-stage:

▶ extraction of stress tails - for two words w1 and w2,
the function extracts stress tails s1 and s2 according to
syllables from the highest stress value

▶ matching syllables - syllables s1 and s2 are matched,
and each pair of syllables is assessed according to the
formula:

S(σ1,σ2) = αw ∗A(w1,w2)+

αν ∗Rν(ν1,ν2)+ακ ∗A(κ1,κ2) (3)

where:

▶ αw, αν , ακ - weights assigned to onset, nucleus
and coda,

▶ A(x,y) - consonant matching in onset and coda us-
ing the Needleman-Wunsch algorithm,

▶ Rν - evaluation of vowels based on the phonetic
similarity matrix

Matching of consonants and vowels is carried out dy-
namically in a similar way to the formula 3 and the fi-
nal rhyme result for words R(w1, w2) is calculated as a
weighted average of the obtained results.

In this solution, weight optimisation was performed
using a genetic algorithm. The population was 100
individuals representing a set of weights. The matching
function was to minimise the squared error between
the rhyme function results and the reference data. The
obtained results were satisfactory, as it was possible to
obtain a mean square error (MSE) of 0.012, which means
very good agreement of the model results with human
assessments.

3. Data
An important stage of every project is the data col-

lection phase. This project utilised the publicly available
database from SJP (Dictionary of the Polish Language)
[19]. The database is used both for creating the training
and test datasets for the neural networks described in

Section 5.1, as well as serving as the solution space for
the algorithm described in Section 4, whose purpose is to
recommend rhymes for a given word.

Figure 1: Distribution of the score parameter in the data set

The files used by the models have the following
structure: base word, rhyme candidate, score. The score
value is calculated using the aforementioned algorithm
and ranges from 0 to 1 (the closer the value is to 1, the
more the words rhyme). Figure 1 shows the distribution
of the score parameter for word pairs included in the
training dataset. For clarity, instances were grouped into
10 intervals based on the score value. The largest number
of instances belongs to the group with a score range of
0.0 to 0.1, followed by the ranges of 0.4–0.5 and 0.5–0.6.

4. Our approach

4.1. Scoring
Our algorithm determines whether a pair of words

rhyme or not, producing a final score on a scale of 0 to
1. The method assumes that each word contains at least
one vowel and does not include capital letters or special
characters.

The first step involves dividing each word in a pair
into two parts, labeled Segment A and Segment B. Seg-
ment B consists of the last vowel (or group of vowels next
to each other) and the last consonant (or group of con-
sonants). All letters preceding Segment B constitute Seg-
ment A. The next step unifies Segment B based on pro-
nunciation. In the Polish language, some letters repre-
sent the same sound, especially consonants at the end of
a word. During this step, different written variants of the
same sound are unified according to Table 1. If the unified

4

Segments B of both words being compared are different,
the final score is set to 0, and the algorithm terminates.
Otherwise, the base rhyming score is set to either 0.5.

Table 1: Unification of different versions of the same sounds

Written versions of the same sounds Unified version
sz, ż, rz sz
cz, dż cz
p, b p
k, g k
ć, dź ć
c, dz c
f, w f
t, d t
s, z s
h, ch h
u, ó u

The previous step essentially determineswhether the
twowords rhyme or not. The subsequent step assesses the
quality of the rhyme. In this phase, Segments B are com-
pared to each other. The score is calculated using the for-
mula (4). Here, lengthsequence represents the common se-
quence starting from the end of the Segment A. This value
is then divided by the length of the maximum sequence,
which is equal to the length of the Segment A of the first
word minus 1 (excluding the first letter of Segment A).

score = scorebase +(1− scorebase) ·
lengthsequence

lengthmax
(4)

The final step involves penalising differences in the
number of syllables, as shown in formula (5). The ’max’
function ensures that the score does not fall below 0.

score f inal = max(score−0.05 · |∆syllables|,0) (5)

4.2. Syllable counting
In our solution, we used pyphen to determine the

number of syllables in words. Pyphen is a Python library
that divides words into syllables and can be applied to
many languages, including Polish. The divisions are
mostly correct; however, pyphen encounters difficulties,
especially with words starting with a vowel. To address
this issue, we proposed our own algorithms for counting
syllables. The algorithm counts all the vowels in a word,
with two exceptions. The first exception occurs when ’i’
precedes another vowel, as in this scenario the letter ’i’
softens the preceding consonant(s) and does not form a
separate syllable. The second exception is when the letter
’u’ follows ’a’ or ’e’. In the vast majority of cases, the
letter ’u’ sounds like the consonant ’ł’ in this scenario,
therefore it is not counted by the algorithm.

4.3. Rhyme searching
Our application searches for rhyming words for a

given one entered by the user from a list sourced from the
website https://sjp.pl/sl/growy/. This list currently
contains 3,186,487 Polish words. Instead of comparing
each word in the list with the user’s input individually,
we grouped the words by their properties. We created
a new dictionary where the keys consist of two parts:
the number of syllables and the unified Segment B of
the words. Each key in the dictionary corresponds to
a list of words from the original list. The largest list in
the dictionary contains 19,358 words. Therefore, in the
worst-case scenario, our algorithm checks around 164.6
times fewer words than beforehand. This approach is
necessary due to limited computational power on the
server.

5. Approach based on neural net-
works

5.1. Neural Network architecture
Three different neural network architectures were

implemented, as illustrated in Fig. 2-3. The models
consist of the following layers:

▶ Embedding: A layer responsible for representing
words in a vector space, where similar words are
located close to each other, capturing semantic and
phonetic relationships between words.

▶ Flatten: A layer that transforms data from the Em-
bedding layer into a single long sequence to be passed
to the next layer.

▶ Dense: A deep layer with a ReLU activation function
that models nonlinear relationships between data. A
higher number of neurons in the layer allows for the
capture of more complex patterns.

▶ Dropout: A layer introducing random neuron
dropout during training to prevent overfitting.

▶ LSTM (Long Short-Term Memory): A recurrent
layer that facilitates the retention of dependencies
between words in a pair. Its memory capabilities
enable better pattern analysis.

▶ Output: A Dense layer with a sigmoid activation
function returning a value in the range of 0–1,
indicating the degree to which two words rhyme.

5

https://sjp.pl/sl/growy/

Table 2: Model 1 architecture

Table 3: Model 3 architecture

Table 4: Model 2 architecture

6

The first model architecture (Model 1) comprises
only an Embedding layer, a Flatten layer, two Dense
layers, and an Output layer. This is the simplest of
all the proposed architectures, designed to assess the
effectiveness of a very simple neural network for the
given task.

The second model architecture (Model 2) extends
the first by including a larger number of Dense layers (5
layers, allowing for capture of more complex patterns)
and Dropout layers, aimed at preventing the network
from learning patterns only for majority classes.

The third model architecture (Model 3) is the most
advanced, incorporating an LSTM layer which captures
long-term dependencies and sequential patterns in data.

5.2. Experiments
The neural networks discussed in Section 5.1 were

trained using nested cross-validation, which allowed si-
multaneous hyperparameter tuning (optimiser type, num-
ber of epochs, batch size) and statistically significant eval-
uation of model performance.

For the outer loop, the value of k = 10 was defined,
where k is the number of folds into which the dataset is
divided. Out of these, k−1 folds are used as the training
set (passed to the inner loop), and 1 fold is used as the test
set. For the inner loop (responsible for hyperparameter
tuning), the value of k = 3 was applied.

During training, models were protected against
overfitting by employing the EarlyStopping callback,
which monitored changes in a specific metric during
training and stopped the process when the metric showed
insufficient improvement. Additionally, the ModelCheck-
point callback was used to save the model weights
corresponding to the lowest loss value. The loss function
used in the training process was the mean squared error
(MSE). In Tables 5-7, the metrics MSE, MAE, and R2

obtained for each model and each fold are presented.

Table 5: Performance metrics for Model 1

Fold R2 MSE MAE

1 0.9617 0.0043 0.0352
2 0.9497 0.0056 0.0411
3 0.9634 0.0042 0.0345
4 0.9567 0.0048 0.0371
5 0.9557 0.0050 0.0378
6 0.9509 0.0056 0.0383
7 0.9596 0.0046 0.0355
8 0.9545 0.0051 0.0391
9 0.9528 0.0053 0.0392
10 0.9553 0.0050 0.0361

Average 0.9560 0.0049 0.0374

Table 6: Performance metrics for Model 2

Fold R2 MSE MAE

1 0.9595 0.0046 0.0337
2 0.9420 0.0064 0.0445
3 0.9581 0.0048 0.0347
4 0.9432 0.0063 0.0399
5 0.9525 0.0054 0.0362
6 0.9474 0.0060 0.0382
7 0.9567 0.0049 0.0355
8 0.9571 0.0048 0.0358
9 0.9455 0.0061 0.0367
10 0.9525 0.0053 0.0377

Average 0.9514 0.0054 0.0373

Table 7: Performance metrics for Model 3

Fold R2 MSE MAE

1 0.6957 0.0343 0.1179
2 0.8405 0.0177 0.0782
3 0.6998 0.0341 0.1201
4 0.8792 0.0133 0.0620
5 0.7828 0.0246 0.1014
6 0.7891 0.0241 0.0877
7 0.8265 0.0196 0.0788
8 0.8734 0.0142 0.0606
9 0.8808 0.0133 0.0599
10 0.8772 0.0137 0.0607

Average 0.8145 0.0209 0.0827

Based on the results presented in the tables above, it
is evident that Model 1 and Model 2 achieve very similar
metric values. Compared to Model 3, they demonstrate
higher performance and lower variance in the results ob-
tained across different folds.

6. Results

6.1. Results of experiments
To evaluate the performance of the trained models,

they were tested on a dataset of nearly 5,000 word pairs.
The evaluation involved calculating the MSE, MAE, and
R2 metrics by comparing the models’ predictions with
those of the reference algorithm. Based on the values
presented in Table 8, Models 1 and 2 achieved the best
results, with both models yielding similar performance
across all metrics.

7

Table 8: Metrics obtained during model testing

Metrics Model 1 Model 2 Model 3
MSE 0.0052 0.0057 0.0145
MAE 0.0367 0.0382 0.0608

R2 0.9542 0.95 0.8729

Furthermore, to compare the performance of the
three models, the rhyme quality results for 15 random
word pairs presented in Table 9 were analysed. The
results indicate that neural networks achieve very good
performance for shorter words, but perform worse with
longer ones. This insight could be valuable for refining
the models to enhance their accuracy. Additionally, it
can be observed that the LSTM model often produces
results that are significantly different from those of other
models, both better and worse. The discrepancies in
results obtained by the LSTM model compared to models
1 and 2 may stem from the fact that the LSTM network
treats consecutive word pairs as sequential data, where
the order of pairs and words matters. However, in the
considered problem, the order does not play a role. For
LSTM, the sequence of input vectors is crucial, which
likely explains the cases where the network generates
significantly different results compared to the other two
models.

Table 9: Calculated rhyming scores by compared algorithms

Pair of words Ground Model 1 Model 2 Model 3truth
białawą, sztucy 0 0 0 0.03
bądźcie, wióra 0 0 0 0.17
międzysezonem,
bursztynnikiem

0 0.38 0.45 0.17

fotokopiach,
anhydrynowych

0 0.37 0.47 0.13

chciałbyś,
roztrwaniałabyś

0.47 0.53 0.66 0.44

widoku,
rosołku

0.5 0.38 0.5 0.47

rysunki,
tętniczki

0.5 0.41 0.5 0.46

bała, siodła 0.5 0.56 0.5 0.46
czarowi,
korbowi

0.67 0.6 0.67 0.52

skrzyżowaniu,
majstrowaniu

0.8 0.6 0.52 0.38

gotowość,
wariantowość

0.82 0.4 0.48 0.49

kpi, wygłupi 0.9 0.9 0.96 0.89
pakowaniem,
blikowaniem

0.92 0.56 0.61 0.43

smakowaniem,
lokowaniem

0.92 0.57 0.6 0.34

drań, pasań 0.95 0.95 0.98 0.92

7. Discussion and future works
The project successfully developed an algorithm for

evaluating rhymes in the Polish language and trained
neural network models that effectively replicate its
functionality. The algorithm primarily focuses on the
phonetic structure of word endings. However, the words
in the datasets were not subjected to morphological
analysis, nor were they selected to cover the full range
of possible cases. This likely contributes to the discrep-
ancies observed in the R2 metric. The neural networks
predominantly learned to evaluate rhymes correctly for
word pairs representing the most common morphological
patterns. A key challenge moving forward would be
to create a new dataset that accounts for a more bal-
anced distribution of examples, incorporating a broader
spectrum of morphological variations.

The presented approach has been implemented
and is now accessible on the website https://
rhymesgenerator.eu.pythonanywhere.com/ in Polish.
The back-end component was developed in Python using
the Flask library, while the front-end was crafted in
TypeScript utilising the Angular framework.

Further efforts could focus on devising algorithms
for other languages. For languages like Spanish or Por-
tuguese, which, similarly to Polish, have a spelling system
that largely unambiguously reflects pronunciation, the
algorithms should be similar, provided they account for
the phonetic rules specific to each language. Conversely,
a challenge would arise, for example, with English,
where such ambiguity does not exist. It is important to
remember, however, that spelling alone does not convey
all the information about a word’s pronunciation. In
future work, it would be beneficial to rely on a purely
phonetic transcription.

References
[1] iZotope, “Mastering rhyme schemes in lyric writing,” 2018. Ac-

cessed: 2024-12-01.
[2] C. Obermeier, W. Menninghaus, M. von Koppenfels, T. Raettig,

M. Schmidt-Kassow, and S. A. Kotz, “Aesthetic and emotional ef-
fects ofmeter and rhyme in poetry,” Frontiers in Psychology, vol. 4,
p. 10, 2013.

[3] O. Vechtomova, G. Sahu, and D. Kumar, “Researchers develop
real-time lyric generation technology to inspire song writing,”
AIhub, 2021. Accessed: 2024-12-01.

[4] A. Popescu-Belis, Atrio, B. Bernath, E. Boisson, T. Ferrari,
X. Theimer-Lienhard, and G. Vernikos, “Gpoet: a languagemodel
trained for rhyme generation on synthetic data,” in Proceedings
of the 7th Joint SIGHUM Workshop on Computational Linguistics
for Cultural Heritage, Social Sciences, Humanities and Literature,
pp. 10–20, Association for Computational Linguistics, 2023.

[5] E. Suresh Kumar and P. Sreehari, “Accent, rhythm and intona-
tion,” in A Handbook for English Language Laboratories, pp. 41–
66, Foundation Books, 2009.

8

https://rhymesgenerator.eu.pythonanywhere.com/
https://rhymesgenerator.eu.pythonanywhere.com/

[6] H. Gonçalo Oliveira, A. Cardoso, and F. Pereira, “Tra-la-lyrics:
An approach to generate text based on rhythm,” pp. 47–55, 06
2007.

[7] P. Gervás, “An expert system for the composition of formal span-
ish poetry,” Knowledge-Based Systems, vol. 14, pp. 181–188, 06
2001.

[8] J. Lau, T. Cohn, T. Baldwin, J. Brooke, and A. Hammond, “Deep-
speare: A joint neural model of poetic language, meter and
rhyme,” 07 2018.

[9] A. Popescu-Belis, R. Atrio, B. Bernath, E. Boisson, T. Ferrari,
X. Theimer-lienhard, and G. Vernikos, “Gpoet: a language model
trained for rhyme generation on synthetic data,” 01 2023.

[10] H. Hirjee and D. Brown, “Automatic detection of internal and
imperfect rhymes in rap lyrics.,” 01 2009.

[11] M. Wentink, “Creating and evaluating a lyrics generator special-
ized in rap lyrics with a high rhyme density,” February 2023.

[12] N. I. Nikolov, E. Malmi, C. Northcutt, and L. Parisi, “Rapformer:
Conditional rap lyrics generation with denoising autoencoders,”
in Proceedings of the 13th International Conference on Natural Lan-
guage Generation (B. Davis, Y. Graham, J. Kelleher, and Y. Sripada,
eds.), (Dublin, Ireland), pp. 360–373, Association for Computa-
tional Linguistics, Dec. 2020.

[13] T. Haider and J. Kuhn, “Supervised rhyme detectionwith Siamese
recurrent networks,” in Proceedings of the Second Joint SIGHUM
Workshop on Computational Linguistics for Cultural Heritage, So-
cial Sciences, Humanities and Literature (B. Alex, S. Degaetano-
Ortlieb, A. Feldman, A. Kazantseva, N. Reiter, and S. Szpakowicz,
eds.), (Santa Fe, New Mexico), pp. 81–86, Association for Com-
putational Linguistics, Aug. 2018.

[14] P. Minogue, “Using siamese neural networks to create a simple
rhyme detection system,” 2021.

[15] G. B. Downer and A. C. Graham, “Tone patterns in chinese po-
etry,” Bulletin of the School of Oriental and African Studies, vol. 26,
no. 1, pp. 145–148, 1963.

[16] W.-C. Yeh, Y.-C. Chang, Y.-H. Li, and W.-C. Chang, “Rhyming
knowledge-aware deep neural network for chinese poetry gener-
ation,” in 2019 International Conference on Machine Learning and
Cybernetics (ICMLC), pp. 1–6, 2019.

[17] I. Kumar and K. Dutta, “Rhyme detection of hindi and rajasthani
poems using statistical-based methods,” in 2023 IEEE Interna-
tional Conference on Contemporary Computing and Communica-
tions (InC4), vol. 1, pp. 1–5, 2023.

[18] B. Bay, P. Bodily, and D. Ventura, “Dynamically scoring rhymes
with phonetic features and sequence alignment,” in 2019 IEEE 31st
International Conference on Tools with Artificial Intelligence (IC-
TAI), pp. 1581–1585, 2019.

[19] Słownik języka polskiego. Wydawnictwo Naukowe PWN, 2023.

9

	Introduction
	State of the art
	Data
	Our approach
	Scoring
	Syllable counting
	Rhyme searching

	Approach based on neural networks
	Neural Network architecture
	Experiments

	Results
	Results of experiments

	Discussion and future works

