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Abstract
This article presents research on the model of forecasting the average daily air pollution levels focused mainly
on two solutions, artificial neural networks: the NARX model and the LSTM model. The research used an air
quality monitoring system. This system includes individually designed and implemented sensors to measure the
concentration of pollutants such as PM10, PM2.5, SO2, NO2 and to record weather conditions such as temperature,
humidity, pressure, wind strength and speed. Data is sent to a central database server based on the MQTT pro-
tocol. Additional weather information in the area covered by pollution monitoring is collected from the weather
services of the IMGW and openwethermap.org. The artificial neural network models were built in the MATLAB
environment, the process of learning neural networks was performed and the results of pollution prediction for the
level of PM10 dust were tested. The models showed good and acceptable results when forecasting the state of PM10
dust concentration in the next 24 hours. The LSTM prediction model were more accurate than the NARX model.

The future work will be related to the use of artificial intelligence algorithms to predict the concentration of other
harmful substances, e.g. PM2.5, NO2, SO2 etc. A very important task in the future will be to frame the entire system
of monitoring and predicting smog in a given area.
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1. Air pollution prediction models
This article presents research on the model of fore-

casting the average daily air pollution levels in the city of
Lomza and its vicinity focused mainly on two solutions,
the NARX (Nonlinear AutoRegressive eXogenous) model
and the LSTM (Long Short-Term Memory) model. In the
analysis of solutions, the forecasting efficiency was as-
sumed as the main selection criterion. The results were
analyzed on the basis of mean square error MSE or RMSE,
correlation coefficient R, and plots of comparison of val-
ues between observed and predicted measurements. On
the basis of the constructed model, a system was devel-
oped to predict the concentration of PM10 on 24 hours
ahead. Due to the non-linearity of pollutants and their
dependence on and between meteorological parameters,
artificial neural network models proved to be useful with
promising results for use in complex and non-linear sys-
tems. As a result of numerical experiments, two solutions
were selected related to the use of artificial neural network
algorithms, the NARXmodel and the LSTMmodel. On the
basis of the presented types of artificial neural networks:
NARX and LSTM and the presented structure of training
vectors, network models were built in the MATLAB en-
vironment, the process of learning neural networks was
performed and the results of pollution prediction for the
level of PM10 dust were tested.

2. Collection of air pollution data
form the city of Lomza
Data collection was based on air pollution sensors

designed and built by Incontech, a company cooperating
in the ongoing project. The sensors measure the follow-
ing data: concentration of PM10 and PM2.5 dust, concen-
tration of gases such as: nitrogen dioxide NO2 and sul-
fur dioxide SO2. Furthermore, the sensors also measure
weather conditions around the sensors, such as tempera-
ture, humidity and pressure. Additionally, some meteoro-
logical data for Lomza are obtained frompublicly available
weather services – especially, the data concerning wind
direction and its strength.

2.1. Sensor deployment
Air pollution sensors were deployed in the city of

Lomza and surrounding areas in the number of about 30
devices. The deployment of the sensors took into account
the following: 1) the analysis of the distribution of res-
idential, park and industrial areas; 2) the altitude of the
areas; 3) the influence of the river valley on air movement
in the city; and 4) directions and strength of winds blow-

ing in the area. A plan for the distribution of sensors in
the city of Lomza and their status is shown in Figure 1.

The sensors transmit data to a central server using
the Message Queueing Telemetry Transport (MQTT) pro-
tocol, creating a distributed telemetry network that ex-
tends across Lomza and the surrounding area. Transmit-
ted data of sensor status are collected in a database, taking
into account the measurement timestamp of each compo-
nent. Sensors send the measurement of each examined
value every 10 minutes. The collected set of source data
on pollution covered the period of more than one year,
from the beginning of January 2021 till the end of Febru-
ary 2022.

2.2. Pollution data preprocessing
While measuring the levels of air pollution in a par-

ticular location/region, one uses the term “Particle pollu-
tion” or “Particulate Matter” (PM). In the present research
the main focus was on PM10 which stands for an air pol-
lution particle with a diameter of 10 micrometers or less.
In Polish standards the maximum daily PM10 dust level is
set at 50 g/m3.

Preliminary analyses for data from December 2021
have shown a high correlation of measured levels of PM10
pollutants with weather conditions, such as temperature
and wind speed [1], as shown in Figure 2.

To supplement the data for the study, a system was
built to acquire meteorological data from publicly avail-
able weather sensors (openweathermap.org, imgw.pl),
containing information on changes in: 1) wind strength
and its direction, 2) temperature, 3) humidity, and 4)
pressure. The operation of the weather data acquisition
system was based on API (Application Programming
Interface) services and weather service page parsing
mechanisms, which allowed the pollution data to be
supplemented with the status and forecast of weather
conditions.

The collected data, represented as time series,
required preliminary analysis, preprocessing and pro-
cessing [2]. In this stage of the research, the accuracy
and continuity of the recorded dataset and significant
deviations of the data from the average values were
diagnosed. Breaks in the data streams were verified
and some methods for filling in missing data by adding
averaged values from neighboring measurements were
proposed.

Matching particular time of unsynchronized mea-
sured data and weather data to a fixed time resolution
was carried out, and then sets of data vectors were
prepared in csv format, adapted to the requirements of
the artificial neural network learning system, containing
measurement time information. The process of building
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Figure 1: Distribution and status of sensors used in research in and around Lomza [source: http://sensory.incontech.pl]

Figure 2: Correlation analysis in the pollution and weather data set (December 2021)

feature vectors began with a search through all measure-
ments received from sensors, realized within a 10-minute
time window. Next, selected data from weather services
were matched to the measured data realized within the
same time window. The next step involved searching and
matching data for a given sensor within a +24 hour time
window.

Some example sets of aggregated sensor data are pre-
sented in Table 1, and include: the date and time of mea-
surement, PM10 concentration level at current time and
24 hours before (PM10t−24), selected weather conditions
such as: temperature, humidity, air pressure, and wind di-
rection and its strength (abbreviated as follows: Temp,
Hum, Press, Wind Deg, Wind Speed), and, in addition,
the same quantities specified at time +24 hours (Tempt+24,
Humt+24, Presst+24, Wind Degt+24, Wind Speedt+24) are

shown in the table. The last column represents the ex-
pected value of the neural network’s response, which is
the value of PM10 concentration at specific time after the
next 24 hours (10t+24).

Real world datasets obtained from a number of sen-
sors and received from weather services, vary in units
and range. By defining a single data set as a vector of
features x = [x1,x2,x3, . . . ,xN ], we could notice significant
differences between numerical values of features, describ-
ing different physical values and differing even by orders
of magnitude. This, in turn, can cause difficulties in the
network learning process. Nevertheless, such difficulties
can be prevented by the input data normalization proces
[2]. Based on the analysis of the ranges of the collected
data, feature vector normalization algorithms were used.
Normalization allowed obtaining, in all observed columns
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Table 1: Real input data vectors (date: 02.12.2021)

Time PM10 PM10 Temp Hum Press Wind
Deg

Wind
Speed

Temp Hum Press Wind
Deg

Wind
Speed

PM10

t t-24 t t t t t t+24 t+24 t+24 t+24 t+24 t+24

00:00 42.88 24.00 3.42 89.85 97748.97 204.00 7.41 3.00 64.98 98800.14 254.00 7.19 9.63
00:10 58.13 24.00 3.46 90.09 97752.18 204.00 7.41 2.99 65.19 98793.32 254.00 7.19 11.75
00:20 51.25 23.63 3.61 90.11 97729.41 204.00 7.41 3.03 64.34 98800.54 254.00 7.19 8.00
00:30 54.63 21.88 3.74 90.12 97719.66 214.00 7.50 2.93 62.63 98836.62 254.00 7.19 5.38
00:40 50.88 23.00 3.81 90.36 97730.93 214.00 7.50 2.91 61.57 98832.62 261.00 6.13 5.00
00:50 41.25 18.00 3.95 90.42 97712.52 214.00 7.50 2.95 61.58 98846.61 261.00 6.13 5.25
01:00 55.50 13.88 4.10 90.50 97698.38 214.00 7.50 2.86 61.87 98884.53 261.00 6.13 5.88
01:20 40.50 12.38 4.34 89.68 96988.80 214.00 7.50 2.91 61.58 98407.08 261.00 6.13 5.63
01:30 36.75 14.00 4.40 90.45 97679.86 219.00 7.94 2.88 62.63 98897.98 265.00 6.10 5.50
01:40 46.25 14.00 4.58 90.23 97652.68 219.00 7.94 2.91 63.00 98917.07 265.00 6.10 4.25
01:50 24.50 11.88 4.59 90.68 97692.56 219.00 7.94 2.88 62.36 98928.69 265.00 6.10 5.00

of input data, values bounded between a fixed range of 0
and 1. Selected example sets of normalized data used as a
source for machine learning algorithms are presented in
Table 2.

In the conducted research, selected subsets of such
prepared data vectors were tested in the process of learn-
ing, validation and testing of artificial neural network
models, as presented in the following sections.

3. Nonlinear Autoregressive with
External (Exogenous) Input
(NARX)
In this paper, a non-linear auto-regressive neural net-

work with exogenous inputs, NARX neural network, is
used to develop models for air quality prediction. NARX
neural network is represented by equation (1):

y(t) = f [(u(t −nu), . . . ,u(t −1),u(t),y(t −ny), . . . ,y(t −1)] (1)

where: u(t) - input to neural network at time t , y(t) - out-
put from neural network at time t , nu - input order, ny -
output order.

By using previous output values as inputs to the
neural network, NARX network can be modeled as a
network with serial-parallel neural network structure.
For NARX neural network structure, the previous output
values, which are used as inputs to the neural network,
are the actual output values. The backpropagation
algorithm is used for training of this neural network
structure [2].

3.1. NARX model test results
Nonlinear Autoregressive Network with Exogenous

Inputs is a recurrent dynamic network with feedback con-

nections that enclose several layers of the network [3].
The hourly and daily data were used in the training of arti-
ficial neural networks. Matlab Neural network time series
tool is used in order to solve this problem. NARX method
is applied to the modeling system. The NARX network is
shown in Figure 3 with tapped delay lines and two-layer
feed-forward network, a sigmoid transfer function in the
hidden layer, and a linear transfer function in the output
layer.

Figure 3: NARX network overview

The collected data was used in the process of
learning, validation and testing of a preprepared artificial
neural network model. The artificial neural network
model learned was to forecast air pollution 24 hours
in advance. The artificial neural network model in-
cludes an input vector: x(t)=PM10(t), PM10(t − 1),
humidity(t+1), wind_speed(t+1), wind_direction(t+1),
temperature(t + 1), pressure(t + 1) and an output vector
y(t) = PM10(t +1).

The simulated results for NARX using some variable
parameters are illustrated in Table 3 and Figures 4 to 10.
The Levenberg-Marquardt (LM) algorithm converged
upon a resolution after maximum 40 iterations with no
significant error cross-correlation or autocorrelation
issues identified. Therefore, there are highly significant
(p < 0.1) correlations between output and target data at
good fit (R values that more significant than 0.9).

Graphical representations of the simulation of NARX
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Table 2: Normalized input data vectors (date: 02.12.2021)

Time PM10 PM10 Temp Hum Press Wind
Deg

Wind
Speed

Temp Hum Press Wind
Deg

Wind
Speed

PM10

t t-24 t t t t t t+24 t+24 t+24 t+24 t+24 t+24

00:00 0.0454 0.0244 0.4684 0.8985 0.2749 0.5655 0.3705 0.4600 0.6498 0.3800 0.7047 0.3595 0.0085
00:10 0.0623 0.0244 0.4692 0.9009 0.2752 0.5655 0.3705 0.4598 0.6519 0.3793 0.7047 0.3595 0.0108
00:20 0.0547 0.0240 0.4722 0.9011 0.2729 0.5655 0.3705 0.4606 0.6434 0.3801 0.7047 0.3595 0.0067
00:30 0.0584 0.0221 0.4748 0.9012 0.2720 0.5933 0.3750 0.4586 0.6263 0.3837 0.7047 0.3595 0.0038
00:40 0.0543 0.0233 0.4762 0.9036 0.2731 0.5933 0.3750 0.4582 0.6157 0.3833 0.7242 0.3065 0.0033
00:50 0.0436 0.0178 0.4790 0.9042 0.2713 0.5933 0.3750 0.4590 0.6158 0.3847 0.7242 0.3065 0.0036
01:00 0.0594 0.0132 0.4820 0.9050 0.2698 0.5933 0.3750 0.4572 0.6187 0.3885 0.7242 0.3065 0.0043
01:20 0.0427 0.0115 0.4868 0.8968 0.1989 0.5933 0.3750 0.4582 0.6158 0.3407 0.7242 0.3065 0.0040
01:30 0.0386 0.0133 0.4880 0.9045 0.2680 0.6072 0.3970 0.4576 0.6263 0.3898 0.7354 0.3050 0.0039
01:40 0.0491 0.0133 0.4916 0.9023 0.2653 0.6072 0.3970 0.4582 0.6300 0.3917 0.7354 0.3050 0.0025
01:50 0.0250 0.0110 0.4918 0.9068 0.2693 0.6072 0.3970 0.4576 0.6236 0.3929 0.7354 0.3050 0.0033

Table 3: Result of NARX with parameters n = 10 (Train and Retrain)

MSE R Epoch Time Performance Gradient Validation Check

Training 6.4949e-2 8.03681e-1 17 0:00:13 0.002234 0.167 6
Validation 5.8214e-2 7.02314e-1 17 0:00:13 0.002234 0.167 6
Testing 8.9903e-2 9.14083e-1 17 0:00:13 0.002234 0.167 6

are shown in Figures 4-8.

Figure 4: Performance plot of NARX (plotperform)

There are decreases in errors in training, validation,
and testing as shown in Figure 2 until iteration 17 is at-
tained which illustrated that there is no element of inci-
dence of overfitting.

The training, validation, and testing are performed in
an open-loop fashion. Likewise, the R values are also cal-
culated based results obtained through open-loop train-
ing.

Figure 5: Training state of NARX (plottrainstate)

Figure 6: Error histogram of NARX (ploterrhist)
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Figure 7: Regression of NARX plot (plotregression)

Figure 7 showed the regression of the NARX plot
with four different plots representing the training, vali-
dation, and testing and output data. This congested plot
of NARX helps show that most of the data points are
highly inter-related. The solid straight lines represent
the best fit linear regression line between outputs and
targets of training (blue), validation (green), testing (red),
and output of all (black) while the dashed line in each
plot represents the perfect result – outputs = targets. The
regression (R) value indicates the relationship between
the outputs and targets. If R is close to zero means there
is no linear relationship between outputs and targets
but, if R = 1, then there is an indication that there is an
exact linear relationship between outputs and targets. In
this research work, it was shown that the training data
(R=0.80368) indicates a average fit, validation (R=0.70231),
and test (0.91408) results also show R values that more
significant than 0.79706.

Figure 8 shows the Time Series Response of NARX,
which gives a clear indication where time points were se-
lected for training, testing, and validation. The inputs, tar-
gets, and errors versus time were well displayed through
time Series Response.

General measures of performance error evaluation
(targetoutput) were achieved and summarized in column 2
of Table 1. These results suggested that the NARX model
produces a average predictive capacity for fit and accu-
racy. In order to forecast the unmeasured air quality pa-
rameters, a NARX model was created. Research shows
that the use of the NARXmodel in the forecasting of PM10
for the next 24 hours ahead gives average results; the accu-
racy of themodel is at the level of 80%, indicating a reason-

Figure 8: Time-series response of NARX (plotresponse)

ably good fit. While it may not be perfect, an 80% accuracy
level is generally considered decent for many forecasting
applications.

4. Long short-termmemory (LSTM)
In the next part of the paper, another artificial model

of the LSTM neural network used in the research is de-
scribed. Long short-term memory prevents backpropa-
gated errors from vanishing or exploding. Instead, errors
can flow backwards through unlimited numbers of virtual
layers unfolded in space. That is, LSTM can learn tasks
that require memories of events that happened thousands
or evenmillions of discrete time steps earlier. LSTMworks
even given long delays between significant events and can
handle signals that mix low and high frequency compo-
nents [4].

Unlike other rectilinear models, it has feedback loops
that enable better communication between individual lay-
ers and neurons. An individual LSTM called a unit con-
sists of a cell, an input gate, an output gate, and a forget
gate. The cell remembers the values at any time inter-
vals, and three gates regulate the flow of information to
and from the cell. Due to the fact that it is recursive, the
function is well suited for time series prediction and clas-
sification tasks. Because events can occur in time series
data sets at varying intervals, the LSTM was developed as
a coping framework with the problem of the disappearing
gradient, which appears during the training of ordinary
recursive neural networks. The error of the disappearing
gradient is that in the model learning phase, the weights
on the lines connecting individual neurons are constantly
updated, in the case of very low updating values, there
is some kind of stagnation and lack of any changes, the
model becomes stuck waiting for a larger excitation sig-
nal. At worst, this can stop the neural network from train-
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ing any further [5]. A visualization of a recursive neural
network such as the LSTM is shown in Figure 9.

Figure 9: Recurrent Neural Network (RNN), with additional feed-
forward layer

The algorithm was verified in laboratory conditions,
using the Matlab programming environment [6]. The se-
quential regression LSTM network was trained. In each
time step of the input sequence, the LSTM network learns
to predict the value of the next time step. The predic-
tAndUpdateState () function is used to predict time frames
one at a time and update the network status with each
forecast. An example of the LSTM network architecture
for predicting PM10 pollution from the measured data is
shown in the Figure 10.

4.1. LSTM model test results
A number of studies were carried out with differ-

ent structures of the input vectors, i.e. with different sets
of process features. The study of correlation of individ-
ual features with the baseline value - the forecast average
value for the next daywas carried out. The performance of
the model is represented by the Loss, RMSE indicators and
time series plots representing the network of forecast re-
sults against the original test series. The model adopts an
iterative approach to train the network model to achieve
some performance (prediction accuracy), see Figure 11.

To predict the value of multiple time slots in the fu-
ture, the predictAndUpdateState() function was used
to predict the time slots one at a time and update the net-
work status with each forecast. For each forecast, the pre-
vious forecast was used as an input to the function. Fig-
ure 12 shows a training time series plot with predicted
values.

Figure 12: Graph of training time series with forecast values

If we have access to the actual values of the time steps
between forecasts, we can update the network state with
the observed values instead of the predicted ones. To pre-
dict the new sequence, the network state is reset with re-
setState(). Resetting the network state prevents previous
forecasts from affecting the forecasts for the new data. An
example of comparing the predicted values with the test
data can be seen in Figure 13.

If environmental conditions or input data change
over time, and the LSTM model is not sufficiently adapt-
able, it may have difficulty adjusting to these changes.
Updating the model to account for these variations is
necessary. If the data contains missing information
or noise, the LSTM network may struggle to make
accurate predictions. Observed values may be distorted
or incomplete, affecting the quality of forecasts. The
longer the forecast horizon, the more challenging it
becomes to obtain accurate predictions. LSTM networks,
like other models, have limitations in forecasting over
extended periods because errors can accumulate. In-
sufficient training data can lead to underfitting of the
LSTM model, resulting in low-quality predictions. In the
case of recurrent networks, having a sufficiently large
historical dataset is important. Finally, we evaluated
the accuracy of the proposed method using the RMSE
between observed and predicted values. We adjusted
the learning rate, epoch, and batch size of the model to
obtain optimal results. In this study, we obtained PM10
concentration data and meteorological data consisting
of humidity, wind speed and direction, temperature,
pressure and PM10 for use as input nodes. The output
variable was predicted PM10 concentration. All data
were partitioned into two sets, with 85% used for training
and 15% for testing. The optimal settings for the LSTM
model for both PM10 prediction were a learning rate of
0.01, epoch of 250. The RMSE values were 20.4163 for
PM10, with a processing time of 5:57 min.
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Figure 10: Sample LSTM network architecture [based on Matlab Deep Network Designer]

Figure 11: LSTM network training with specific options using the trainNetwork function

Figure 13: Comparison of the forecasted values with the test data

5. Conclusions
As a result of numerical experiments, two solutions

related to the use of artificial neural network algorithms,
the NARXmodel and the LSTMmodel, were selected. The
models showed good and acceptable results when fore-
casting the state of PM10 dust concentration in the next 24
hours. We also compared the total average MSE or RMSE
of prediction of PM10 the LSTM prediction model were
more accurate than the NARX model.

Differences between observed and predicted values

in the context of LSTM (Long Short-Term Memory)
networks can result from various factors such as missing
data, changing environmental conditions, a long fore-
casting horizon, or insufficient training data. There are
many potential sources of these differences that require
attention and analysis in the context of improving the
quality of LSTM model predictions.

It’s valuable to conduct a thorough analysis and ex-
periments to understand which of these factors contribute
to the differences between predictions and observed data
and how to improve the LSTM model’s forecasting qual-
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ity.
The future work will be related to the use of artifi-

cial intelligence algorithms to predict the concentration
of other harmful substances, e.g. PM2.5, NO2, SO2 etc. A
very important task in the future will be to frame the en-
tire system of monitoring and predicting smog in a given
area.
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