
Analysis of cores affinity within the containerized environment based
on selected IOT middleware - observations and recommendations
Robert Kałaska
Faculty of Electronics
Telecommunications and Informatics
Gdansk University of Technology

Narutowicza 11/12, 80-392, Gdansk, Poland

Abstract
The Internet of Things gets bigger and bigger audiences. This topic is really popular in science and also in industry.
There are many fields for research. One of them is efficient deployment against resource utilization. Another one is
containerization within IoT platforms. One of the commonalities of these two topics is different CPU affinity against
containerized platforms to get the best performance. There were plenty of papers dedicated to containerization even
in IoT but none of these focused on core affinity. As this survey analyzes the scalability and stability of the platform in
different core-container configurations based on the IoT platform - DeviceHive, it brings a novelty to this area. Most
interesting observations were made in the field of the same configurations in terms of the number of nodes but varying
with core affinity. Analyzed observations may be useful during the architecture planning phase for containerized IoT
platforms.

Keywords:
IoT, HPC, Containerization

TASK Quarterly 27 (1) 2023

https://doi.org/10.34808/0n9g-zh19

https://doi.org/10.34808/0n9g-zh19


1. Introduction
For the last few years, many people have focused on

the Internet of Things. The latest research showed that
there are around 50 billion devices linked with the IoT
(end of 2020) [1] and future forecast aims at 500 billion de-
vices connected in the IoT network [2]. There are many
research papers in this field dedicated especially to cloud
computing [3], processing on edge [4][5] and container-
ization of IoT platforms [6] [7]. Taking an in-depth look
at these articles we can find out that containerization is a
preferable technique to set up an isolated environment. It
has a lower footprint than virtualization. One of the most
commonly used containerization tools is Docker [8]. It
may be interesting to see if different CPU cores affinity
of the same number of cores affects the performance of
the proposed platform setup and if so in what manner.
This article proposes different platform configurations –
varying with node numbers running middleware server
- Docker nodes. The main goal of the research was to
check if attaching a limited and unique set of CPU cores
to each container provides better results than attaching
more cores but shared along with other containers. What
is important – the total CPU cores available for the whole
platform stay the same on each configuration. The orig-
inal paper was presented in [9] but as the results may be
interesting for a wider group of researchers I also decided
to present these results in English. Moreover, there are
also additional figures and short analyses which were not
presented in previous work.

The paper is structured as follows. Section 2 presents
related work in this area. Section 3 describes different
techniques for obtaining isolated environments - virtual-
ization and containerization and their differences. Section
4 provides information on how kernel controls the CPU
affinity and what kind of algorithms for core assignment
are usedwithin kernel and Docker. Section 5 evaluates the
proposed test environment and metrics. Section 6 discuss
the obtained results and finally Section 7 concludes this
research.

2. Related work
To achieve better performance using CPU core

affinity several works were already presented. In [10]
authors benchmarked microservice architecture using
TeaStore which is an open source microservices bench-
mark. They analyzed results against testbed hardware.
After analysis, researchers proposed optimization using
CPU core affinity which resulted in an uplift of 22 %
in throughput and a latency reduction of about 18 %.
Another survey [11] aimed at core affinity against file
upload in Hadoop - an open-source platform for efficient

processing and storing large datasets. The authors ran
a prepared benchmark with different core affinities and
analyzed the results. After an in-depth analysis of the
obtained results, they proposed a framework for dynamic
core affinity. Their solution improved 42 % throughput
in the Hadoop file upload scenario. There is also a
study [12] dedicated to web server (Lighttpd) scalability.
The authors analyzed different workload configurations
under different core affinity setups. Researchers observed
scalability improvement up to 45% using the Balancing
network interrupt handling load method in TCP/IP
intensive workload configuration.

Many researchers also focused on performance sur-
veys between containerized, virtual, and bare-metal en-
vironments. In [13] author proposed a macro-benchmark
performance comparison between two different technolo-
gies - virtualization using Xen and containerization using
LXC. Obtained results showed that performance is better
on LXC but in the testbed, against the ability to isolate re-
sources, Xen gained 200 times better results. The author
comes with the observation that containerization may be
better fitted for PaaS clouds while virtualization may be
fitted for IaaS clouds. In-depth analysis of different con-
tainerization technologies and virtualization with Xen on
HPC servers were made in [14]. Each of the benchmarked
containerization solutions (LXC, OpenVZ, and VServer)
represented much better results in comparison to virtu-
alization with Xen. The provided results were also sim-
ilar to bare-metal performance. Similar to [13] authors
also found out that isolation of resources is not working
properly in a containerized environment resulting in up
to 89.6 % drop in performance when another container on
the same machine is stress-loaded. Another interesting
survey was made in [15]. The authors compared differ-
ent containerization technologies: LXD, Docker, and LXC.
Each of them was compared in terms of RAM speed (97-
99%), CPU intensive code (73-95%) and IO read (74-85%),
write (77-83%). The average performance of Docker was
81.7%, LXD 90.5% and LXC 86.5%.

There were also some works dedicated to the
comparison of different IoT middlewares such as [16],
where authors compared the stability and scalability
of SiteWhere and ThingsBoard middlewares. They
concluded that SiteWhere had better performance results
for MQTT but worse stability and ThingsBoard had
better performance in REST API. A similar topic had been
surveyed in [17]. It contains benchmarks of platforms
Konker, Orion+STH, SiteWhere, and InatelPlat. Tests
were conducted for 10000 parallel users and different
packet sizes represented as various number of parameters
sent. The best performance was achieved by SiteWhere.

Finally, there is also research dedicated to con-
tainerization deployment within IoT technologies. The
possibility of deploying containerized nanoservices in IoT

2



networks was analyzed in [18]. The authors proposed
optimization resulting in sizing down the container size
to a few tens of MBs simultaneously achieving initializa-
tion time of the whole nanoservice in less than a minute.
Another work [19] is focused on the design of a mobile
cloud that is built of containers deployed on IoT devices.
The proposed architecture named IoTDoc was compared
against the Amazon EC2 solution. Testbed were based on
Swarm Managers and Node Managers deployed on both
clouds. The results of Amazon Cloud were better but the
proposed architecture in some resource-oriented (DD
write test) cases presented comparable performance. An
interesting solution dedicated to improving scalability
based on proper load distribution may be found in [20].
The authors analyzed a scenario where an IoT network is
built of three layers: sensor, gateway, and cloud. In the
proposed architecture each gateway was running three
services - reading data from sensors, processing, and
transferring to the cloud. Thanks to containerization and
division to microservices authors achieved proper load
distribution within the proposed cloud.

None of these works analyze core affinity against
containerized environments. Novelty outcomes of this
work may provide an important contribution to the field
of proper deployment in HPC architectures. Moreover, as
tests are executed within IoT middleware platforms and
IoT application scenarios, proposed observations could
be directly implemented in this area, especially in the
containerized deployment of cloud middleware.

3. Containerization and virtualiza-
tion
Different concepts result in obtaining the isolated en-

vironment - containerization and virtualization. They dif-
fer in architecture and consequently, performance, start
time, and footprint are different from each other. In this
section, I will shortly describe its concept and highlight
the difference.

3.1. Virtualization
In classic virtualization the component named sys-

tem hypervisor allows different guest OS to run parallel
on the single bare-metal machine. System hypervisor may
have different implementations e.g. being part of a root
OS (solutions like KVM) or running directly on bare-metal
(e.g. ESXi). Each parallel-running guest OS obtains its
components for computing, storage, and network. Guest
OS has its own ISA. Translation of its instructions to host
ISA may be different (e.g. Hardware Virtualization or Bi-
nary Translation) [21].

3.2. Containerization
Containerization is the lightweight concept of virtu-

alization. The main idea is that each container is running
on the same host kernel instance. Behind the scenes it
is implemented using the concept of cgroups and names-
paces [22]. Using the above solution its possible to isolate
the whole process while all resources are controlled by
one host kernel.

3.3. Comparison of both technologies
Virtualization is made on the hardware layer so

obviously its start time is much higher (measured in
minutes) while the containerization to start needs only
to spawn a new process so its start time is much lower
(measured in seconds). There were many types of
research dedicated to performance comparison. In [23]
authors compared Docker and KVM using such tools
as Sysbench, Phoronix, and Apache and showed that
Docker had better results in all tests. Another research
[24] provides us with the conclusion that Docker has a
noteworthy better performance than KVM. These show
that containerization has a much lower footprint. In
[25] in-depth comparisons were made against KVM,
Docker, and bare-metal. Results also showed a visible
difference in favor of Docker against KVM. Moreover, the
performance of the containerized environment was quite
similar to bare metal. No significant performance drops
were observed. On the other hand, using containerization
it is not possible to run another operating system when
using virtualization it is possible to run e.g. Linux in
parallel with Windows. In the figure 1 both architectures
are presented.

4. CPU affinity
In [26] we can find a description of CPU affinity as

the ability to bind one or more processes to one or more
processors. With this feature, we can completely control
which process is running on which core of the CPU. Us-
ing such a solution it is possible to improve the perfor-
mance of the provided platform but it needs to be done
carefully because invalid setting of processes against cores
may also lead to aggravate performance. Kernel realizes
CPU affinity using the scheduler. It is important to know
that the Linux scheduler naturally tries to keep the cho-
sen process running as long as possible on the same cores
to avoid switching between different cores. Linux and
Docker are both using the same scheduler named CFS -
Completely Fair Scheduler [27]. Its main idea is to sim-
ulate an ideal processor that can divide its resources be-
tween many tasks. Based on this concept its implementa-

3



Figure 1: Architecture overview of containerization (left side) and virtualization (right side)

tion calculates how much time each process is waiting for
the CPU and the one with the longest wait time is getting
the resources. A detailed overview of this solution may be
found in [28]. In this research, I simulated different affin-
ity with command taskset [29]. It allows to binding chosen
CPU to the chosen PID or started process.

5. Application model and testbed
description

IoT solutions are build of 3 layers:
1. sensors - standalone microelectronic devices
2. gateways/middlewares - brokers able to analyze

and process data before sending it further
3. cloud platforms - gathering data and realizing ad-

vanced business logic
The proposed application model involves the first

two layers. Sensors are simulated using a cluster of com-
puters while middleware is deployed on an HPC machine.
Devices send notification messages continuously in a
loop and middleware receives them and collects them in
a fast runtime in-memory database. Such messages might

be further processed by the cloud platform which is out of
the scope of this scenario. A similar application model is
proposed in [30]. The authors presented an IoT solution
aimed at measuring pollution levels. Sensor reads were
sent continuously to the server which processed the data.
In this case, I decided to send data continuously - without
any delay between each packet in favor of simulating a
high load on the middleware side.

To fully discover the impact of core affinity each step
beginning with architecture setup through software and
hardware configuration and ending with test configura-
tion must be done carefully. The proposed architecture
focuses on stable processing of high load from end devices
and thanks to the load balancer it can scale horizontally.
The simulator of end devices should be stable and repeat-
able, such as proposed in the following configuration. The
target software platform is dedicated to IoT and as this
survey is focused on containerization it should be easily
adaptable allowing quick startup within the containerized
environment. Each test case should provide reliable and
repeatable data. To achieve this goal the tests were re-
peated and the proposed test time provided us with hun-
dreds of thousands of samples to analyze.

4



5.1. Architecture overview
In the proposed survey the architecture consists of

device simulators that connect through the load balancer
to the middleware platform. Depending on the tested con-
figuration there might be different numbers of nodes run-
ning the middleware platform and each of them runs with
different core affinity. Middleware platformswithin dupli-
cated nodes exposed only its microservices. All common
(in terms of middleware) 3rd party software (Kafka, Re-
dis) was running on an independent container. It allows
to saving of runtime data to the same queue and cache and
also sharing configuration in one Postgres database. The
proposed architecture is presented in figure 2.

5.2. Device simulator
Device simulators were deployed on a cluster of

29 computers equipped with Intel Xeon CPU E5345
@2.33GHz, 8 GB RAM, and running CentOS 6. Each
machine was running in parallel with several dozen
client simulators - beginning with 30 devices up to 90
devices per machine. This gives a total load in the range
of 870 devices to 2610 devices working in parallel. Client
simulator was a Java application which constantly in a
loop generated 36 random bytes of data (sensor read) and
sent it using REST API with HTTPS to the middleware
server. Each client had a predefined time frame of work -
10 minutes - and all of them were started together.

5.3. Middleware platform and hardware
Nowadays web applications are based on microser-

vices. As the middleware for IoT presents a similar func-
tionality I decided to choose a platform that is built us-
ing microservices. Moreover, its architecture should not
be too fragmented to not consume much time on startup.
After analysis of available solutions, I decided to choose
DeviceHive. It is composed of 3 microservices:

▶ Frontend - to expose communication API of the ser-
vices with REST API and WebSocket

▶ Authorization - to realize authentication and autho-
rization of users and provide them JWT tokens to ac-
cess the Frontend service

▶ Backend service which realizes application logic.

Moreover, platforms also use 3rd party libraries like
databases (default Postgres) to store platform configura-
tion and users. To provide a low-latency and scalable so-
lution for data processing it runs Kafka (queue platform)
and Redis to store all messages during system runtime.

The above solution was deployed on Docker contain-
ers running on a high-performance server with 2 Intel
Xeon CPUs E5-2680 v2 @2.8 GHz with a total of 40 log-

ical processors (with HT) equipped with 128 GB of RAM
running Ubuntu.

5.4. Load balancer
Load balancer is running nginx software. It was con-

figured to expose two servers - one for authorization and
one for frontend service. Each of them was running with
load balancing using round-robin algorithm. Worker con-
nections and backlogs were set to 9000 to avoid bottleneck
on load balancer. Moreover SSL termination was on load
balancer and further communication was in plain HTTP.
Load balancer was running on standalone physical ma-
chine equipped with 20 cores Intel Xeon CPU and 64 GB
of RAM.

5.5. Testbed description
The test begins with startup of each containers and

its services. After that 3 different messages are sent to
"warm-up" the platform - allow load all needed classes to
JVM and initialize all additional software. These messages
are skipped in further analysis. When "warming-up" mes-
sages are successfully processed the main test part begins.
All clients starts to sends its messages. This part takes 10
minutes. If this time is up the shutdown command is sent
and data is collected from all containers and clients. De-
tailed analysis of collected data provide us with following
information:

▶ quantity of processed messages,
▶ businesses logic processing time measured on first
servlet of middleware

▶ correctness of processing - information on middle-
ware side

▶ request-response processing time

Above testbed were repeated for following configu-
rations of middleware deployment:

▶ 2 nodes with 0-9 cores for node 1 and 10-19 cores for
node 2

▶ 2 nodes with 0-19 cores assigned for both
▶ 5 nodes with 0-3 cores for node 1, 4-7 cores for node
2, 8-11 cores for node 3, 12-15 cores for node 4, 16-19
cores node 5

▶ 5 nodes with 0-19 cores assigned for each node
▶ 7 nodes with 0-2 cores for node 1, 3-5 cores for node 2,
6-8 cores for node 3, 9-11 cores for node 4, 12-14 cores
for node 5, 15-17 cores for node 6 and 18-20 cores for
node 7

▶ 7 nodes with 0-20 cores assigned for each node

Core affinity was achieved using taskset command within
the container. Tested machine was equipped with 2 CPUs,

5



Figure 2: Architecture of tested platform

each of physical 10 cores. 0-9 cores represented physical
cores of CPU 0 and 10-19 cores represented physical cores
of CPU 1.

The proposed testbed was repeated 7 times. Statisti-
cal analysis of the gathered results was made. Based on
the median of processing time the best and the worst test
run was removed, to filter results and present smoother
graphs. After that, the median of processing time, the
mean value of processedmessage quantity, and error rates
were calculated over the rest results. Such results were
presented in the graphs. Moreover, to introduce the reader
to the results of time processing values of the first and
third quartile were presented as well as median in corre-
sponding tables 1, 2, 3.

6. Proposed metrics
This paper is aimed at a performance comparison be-

tween onemulti-node configuration where the predefined
pool of cores is assigned to each node against the same
configuration with the same total number of cores but di-
vided into an equal number of cores independent for each
node. To provide descriptive results four valuesweremea-

sured:
1. number of successfully processed requests,
2. error rate,
3. frontend service processing time,
4. client processing request-response time,
The first one represents the number of successfully

processed requests along thewhole test - a 10-minute time
frame. Successfully means that middleware responds with
proper acknowledgment for incoming messages. The sec-
ond parameter presents the percent of error responses. It
is calculated as the number of error responses to all re-
sponses generated by the middleware platform. The third
metric shows the processing time on the server side mea-
sured on the first servlet inside the frontend microservice.
It is important to say that total processing in server time
also contains other parts of processing before and after
frontend microservice. The last measure is the time cal-
culated on the client side between request and response -
so the processing time of service from the client’s point of
view.

6



7. Results presentation and analy-
sis
Processing time measured on server side inside fron-

tend service of analyzed middleware is presented in figure
3 and corresponding tables 1, 2, 3. There are two visible
observations. When more cores are involved in process-
ing the processing time is much lower (2 node configu-
rations have much less time than others) and it works as
expected. Improving the number of cores improves scal-
ability. This observation was analyzed in-depth in arti-
cle [31]. The second and important observation, which
this paper aims for, is that configurations with the same
node numbers but varying in core affinity have visibly
different results. When individual cores are assigned to
a node processing time is more stable and significantly
lower. This means that JVM which realizes application
logic is more efficient when cores are assigned individu-
ally per container. Corresponding to the research ques-
tion – at this level, it is clearly visible that attaching cores
individually to a container provides better results – sta-
ble and faster. It is important to note that this time is
measured inside a servlet, so it does not show server de-
lays, OS layer processing, and other operations required
to properly resolve HTTP requests. On the opposite in
the figure 4 it is visible that the total number of success-
fully processed messages is a bit better for configurations
with more cores available but shared within many nodes.
This means that total performance is better in such con-
figurations. It shows that all software involved in process-
ing HTTP requests, until application logic servlet, is able
to process more requests when more cores are available,
even if these cores are shared with other nodes. More-
over, taking an in-depth analysis of the error rate pre-
sented in 5 shows that better performance in such con-
figuration has a significantly higher error rate. It is defi-
nitely visible on configurations with 5 and 7 nodes. The
error rate for those with individual cores is around 0 %
and the same node configuration with shared cores is be-
tween 2 - 4 %. Additional measures realized from a client
point of view are presented in figure 6 and corresponding
tables 4, 5, 6. According to the research question attaching
individual cores per container provides us with better re-
sults until the medium load (middle of load on processed
message quantity from figure 4), after that, it is reversed
– shared cores within many containers achieves better re-
sults. However, these differences are not as significant as
measured on the server side.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

870 1160 1450 1740 2030 2320

ti
m

e
 [

m
s
]

number of IoT devices

2 nodes individual
2 nodes common

5 nodes individual
5 nodes common

7 nodes individual
7 nodes common

Figure 3: Processing time inside frontend service

 500000

 600000

 700000

 800000

 900000

 1×10
6

 1.1×10
6

 1.2×10
6

 1.3×10
6

870 1160 1450 1740 2030 2320

n
u

m
b

e
r 

o
f 

p
ro

c
e

s
s
e

d
 m

e
s
s
a

g
e

s

number of IoT devices

2 nodes individual
2 nodes common

5 nodes individual
5 nodes common

7 nodes individual
7 nodes common

Figure 4: Number of successfully processed messages

 0

 1

 2

 3

 4

 5

 6

 7

870 1160 1450 1740 2030 2320

e
rr

o
r 

ra
te

 [
%

]

number of IoT devices

2 nodes individual
2 nodes common

5 nodes individual
5 nodes common

7 nodes individual
7 nodes common

Figure 5: Errors rate

8. Conclusions and future work
Optimization to utilize hardware most efficiently is

an important topic. In this survey, I analyzed if attaching a
limited and unique set of CPU cores to each container pro-
vides better results than attaching more cores but shared
along with other containers. Prepared real-world appli-
cation examples showed that under high load configura-
tions with shared cores presented about 10 % better per-
formance but with the cost of a higher error rate. Config-
uration with unique CPU cores attached presented more
reliable results with lower values of application logic pro-

7



Table 1: Processing time inside frontend service - 2 nodes individual and common

Number of IoT devices First quartile [ms] Median [ms] Third quartile [ms]
870.00 9.74 10.20 19.76 22.93 36.49 47.65
1160.00 10.02 10.75 21.26 26.10 39.02 52.85
1450.00 11.95 12.82 24.47 32.30 42.92 60.37
1740.00 12.64 13.17 25.94 34.11 45.39 63.41
2030.00 11.24 15.85 25.56 41.02 48.13 75.23
2320.00 5.15 11.92 8.41 31.81 28.29 69.06

Table 2: Processing time inside frontend service - 5 nodes individual and common

Number of IoT devices First quartile [ms] Median [ms] Third quartile [ms]
870 18.35 25.65 32.60 55.68 51.13 88.76
1160 19.36 32.65 33.75 70.52 51.77 103.45
1450 19.65 37.32 34.34 80.42 52.55 113.12
1740 19.35 39.77 34.29 87.48 53.73 122.83
2030 18.82 36.51 34.87 87.80 57.74 131.35
2320 18.09 29.96 36.17 75.49 63.29 133.02

Table 3: Processing time inside frontend service - 7 nodes individual and common

Number of IoT devices First quartile [ms] Median [ms] Third quartile [ms]
870 22.02 31.52 37.70 64.50 57.61 91.08
1160 21.82 34.79 37.89 72.89 58.28 99.84
1450 21.43 31.16 37.75 74.64 58.20 106.79
1740 21.57 25.38 38.19 67.33 60.90 107.95
2030 20.88 39.71 38.79 88.00 63.98 133.56
2320 20.57 25.92 41.11 66.10 71.12 133.41

Table 4: Request - response processing time - 2 nodes individual and common

Number of IoT devices First quartile [ms] Median [ms] Third quartile [ms]
870.00 200.06 215.69 308.76 328.10 755.14 789.87
1160.00 251.03 267.60 412.89 421.85 919.98 905.03
1450.00 318.84 331.24 494.55 501.31 966.19 921.92
1740.00 381.06 408.91 562.17 573.56 1006.04 933.70
2030.00 443.47 471.68 623.71 630.87 1019.60 959.28
2320.00 348.20 507.26 1088.70 682.74 4218.92 1177.86
2610.00 324.53 358.50 963.89 1275.15 6087.12 5542.19

Table 5: Request - response processing time - 5 nodes individual and common

Number of IoT devices First quartile [ms] Median [ms] Third quartile [ms]
870.00 268.99 271.90 406.79 405.91 658.59 651.91
1160.00 343.13 351.13 482.63 484.46 696.34 695.38
1450.00 395.24 402.71 531.22 538.45 747.67 736.97
1740.00 435.91 456.35 569.97 592.24 835.20 784.52
2030.00 458.20 517.05 596.91 655.53 1110.79 844.86
2320.00 430.60 596.45 563.27 740.05 1813.22 966.98
2610.00 330.60 587.61 461.21 744.14 1273.55 1100.60

Table 6: Request - response processing time - 7 nodes individual and common

Number of IoT devices First quartile [ms] Median [ms] Third quartile [ms]
870.00 338.70 308.48 456.59 418.31 621.10 588.17
1160.00 371.64 372.83 485.73 484.24 660.98 640.01
1450.00 438.90 424.37 571.59 547.35 811.08 714.49
1740.00 447.01 462.39 563.46 598.87 821.27 786.27
2030.00 442.44 551.08 584.70 680.13 961.54 859.03
2320.00 403.14 585.69 536.72 747.12 1341.09 1025.49
2610.00 361.59 639.76 494.26 831.77 1391.27 1246.60

cessing time. Taking into account the provided observa-
tion it could be stated that up to the proposed application

scenario, both assumptions are correct. When high reli-
ability is expected it is better to define core affinity for

8



 300

 400

 500

 600

 700

 800

 900

 1000

 1100

870 1160 1450 1740 2030 2320

ti
m

e
 [

m
s
]

number of IoT devices

2 nodes individual
2 nodes common

5 nodes individual
5 nodes common

7 nodes individual
7 nodes common

Figure 6: Request - response processing time

individual containers during the deployment phase, but
when crucial is performance it is better to provide con-
tainers with more CPU cores but shared within a cluster
of containers. Considering the real-world scenario, where
applications are deployed in the cloud managed by data
centers it is important information to the client if pro-
vided resources like CPU cores are assigned to the individ-
ual application or may be shared within many products.
IT professionals based on such information and results
presented in this paper may choose the best deployment
scheme that fits their needs. Considering future work in-
depth investigation should be done at the server and OS
layer to determine if tuning this field may provide better
results in such a scenario.

References
[1] R. G. S. Rethinavalli, “Botnet attack detection in internet of things

using optimization techniques,” International Journal of Electrical
Engineering and Technology (IJEET), vol. 11, no. 4, 2020.

[2] Y. B. Zikria, R. Ali, M. K. Afzal, and S. W. Kim, “Next-generation
internet of things (iot): Opportunities, challenges, and solutions,”
Sensors, vol. 21, no. 4, 2021.

[3] H.-L. Truong and S. Dustdar, “Principles for engineering iot cloud
systems,” IEEE Cloud Computing, vol. 2, no. 2, pp. 68–76, 2015.

[4] R. Morabito, I. Farris, A. Iera, and T. Taleb, “Evaluating per-
formance of containerized iot services for clustered devices at
the network edge,” IEEE Internet of Things Journal, vol. 4, no. 4,
pp. 1019–1030, 2017.

[5] C. Savaglio, P. Gerace, G. Di Fatta, and G. Fortino, “Data mining
at the iot edge,” in 2019 28th International Conference on Computer
Communication and Networks (ICCCN), pp. 1–6, 2019.

[6] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and
Y. Chen, “Orchestration of microservices for iot using docker and
edge computing,” IEEE Communications Magazine, vol. 56, no. 9,
pp. 118–123, 2018.

[7] M. S. Abdul, S. M. Sam, Norliza, Mohamed, K. Kamardin, R. Ak-
mam, and Dziyauddin, “Docker containers usage in the internet
of things: A survey,” 2019.

[8] V. G. da Silva, M. Kirikova, and G. Alksnis, “Containers for vir-
tualization: An overview,” Applied Computer Systems, vol. 23,
pp. 21–27, May 2018.

[9] M. Affek, S. Barański, T. Boiński, P. Gładkowska, T. Gruzdzis,

W. Janowski, R. Kałaska, H. Krawczyk, J. Kuchta, R. Lip-
iński, J. Łuczkiewicz, M. Matuszek, S. Olewniczak, P. Orze-
chowski, K. Selwon, A. Szamocki, J. Szymański, A. Wawrzyński,
K. Wicki, and K. Zawora, “Algorytmy i zastosowania inteligencji
obliczeniowej (kaskbook 2022).” online.

[10] S. Caculo, K. Lahiri, and S. Kalambur, “Characterizing the scale-
up performance of microservices using teastore,” in 2020 IEEE
International Symposium on Workload Characterization (IISWC),
pp. 48–59, 2020.

[11] J.-Y. Cho, H.-W. Jin, M. Lee, and K. Schwan, “On the core affin-
ity and file upload performance of hadoop,” in Proceedings of the
2013 International Workshop on Data-Intensive Scalable Comput-
ing Systems, DISCS-2013, (New York, NY, USA), p. 25–30, Asso-
ciation for Computing Machinery, 2013.

[12] R. Hashemian, D. Krishnamurthy, M. Arlitt, andN. Carlsson, “Im-
proving the scalability of amulti-coreweb server,” ICPE ’13, (New
York, NY, USA), p. 161–172, Association for Computing Machin-
ery, 2013.

[13] T. Scheepers, “Virtualization and containerization of application-
infrastructure: A comparison.”

[14] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. F. De Rose, “Performance evaluation of container-based
virtualization for high performance computing environments,”
in 2013 21st Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, pp. 233–240, 2013.

[15] A. R. Putri, R. Munadi, and R. M. Negara, “Performance analy-
sis of multi services on container docker, lxc, and lxd,” Bulletin
of Electrical Engineering and Informatics, vol. 9, pp. 2008–2016,
October 2020. 10.11591/eei.v9i4.1953.

[16] A. A. Ismail, H. S. Hamza, and A. M. Kotb, “Performance evalua-
tion of open source iot platforms,” in 2018 IEEE Global Conference
on Internet of Things (GCIoT), pp. 1–5, 2018.

[17] M. A. da Cruz, J. J. Rodrigues, A. K. Sangaiah, J. Al-Muhtadi, and
V. Korotaev, “Performance evaluation of iot middleware,” Journal
of Network and Computer Applications, vol. 109, pp. 53–65, 2018.

[18] J. Islam, E. Harjula, T. Kumar, P. Karhula, and M. Ylianttila,
“Docker enabled virtualized nanoservices for local iot edge net-
works,” in 2019 IEEE Conference on Standards for Communications
and Networking (CSCN), pp. 1–7, 2019.

[19] S. Noor, B. Koehler, A. Steenson, J. Caballero, D. Ellenberger, and
L. Heilman, IoTDoc: A Docker-Container Based Architecture of IoT-
Enabled Cloud System, pp. 51–68. Cham: Springer International
Publishing, 2020.

[20] B. Ahmed, B. Seghir, M. Al-Osta, andG. Abdelouahed, “Container
based resourcemanagement for data processing on iot gateways,”
Procedia Computer Science, vol. 155, pp. 234–241, 2019. The 16th
International Conference onMobile Systems and Pervasive Com-
puting (MobiSPC 2019),The 14th International Conference on Fu-
ture Networks andCommunications (FNC-2019),The 9th Interna-
tional Conference on Sustainable Energy Information Technol-
ogy.

[21] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs container-
ization to support paas,” in 2014 IEEE International Conference on
Cloud Engineering, pp. 610–614, 2014.

[22] R. Rosen, “Namespaces and cgroups – the basis of linux contain-
ers.”

[23] A. M. Potdar, N. D G, S. Kengond, andM. M. Mulla, “Performance
evaluation of docker container and virtual machine,” Procedia
Computer Science, vol. 171, pp. 1419–1428, 2020. Third Interna-
tional Conference on Computing and Network Communications
(CoCoNet’19).

[24] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated per-
formance comparison of virtual machines and linux containers,”

9



in 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 171–172, 2015.

[25] S. Mazaheri, Y. Chen, E. Hojati, and A. Sill, “Cloud benchmarking
in bare-metal, virtualized, and containerized execution environ-
ments,” in 2016 4th International Conference on Cloud Computing
and Intelligence Systems (CCIS), pp. 371–376, 2016.

[26] R. Love, “Cpu affinity.”
[27] K. Lynch, “Understanding linux container scheduling.”
[28] C. S. Pabla, “Completely fair scheduler.”
[29] R. M. Love, “taskset(1) — linux manual page.”
[30] C. Xiaojun, L. Xianpeng, and X. Peng, “Iot-based air pollution

monitoring and forecasting system,” in 2015 International Confer-
ence on Computer and Computational Sciences (ICCCS), pp. 257–
260, 2015.

[31] R. Kałaska and P. Czarnul, “Investigation of performance and
configuration of a selected iot system - middleware deployment
benchmarking and recommendations,” Applied Sciences, vol. 12,
no. 10, 2022.

[32] K. A. O. B. M. W. H. Adhitya Bhawiyuga, Dany Primanita Kar-
tikasari, “Architectural design of iot-cloud computingintegration
platform,” TELKOMNIKA, vol. 17, pp. 1399–1408, June 2019.

[33] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and
J. Henkel, “Computation offloading and resource allocation for
low-power iot edge devices,” in 2016 IEEE 3rd World Forum on
Internet of Things (WF-IoT), pp. 7–12, 2016.

10


	Introduction
	Related work
	Containerization and virtualization
	Virtualization
	Containerization
	Comparison of both technologies

	CPU affinity
	Application model and testbed description
	Architecture overview
	Device simulator
	Middleware platform and hardware
	Load balancer
	Testbed description

	Proposed metrics
	Results presentation and analysis
	Conclusions and future work

